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Abstract

We introduce a post-entry liquidity constraint to the standard model of a

�rm with serially correlated pro�tability and an irreversible exit decision. We

assume that �rms with no cash holdings and negative cash �ow must either exit

or raise new cash at a transaction cost. This creates a precautionary motive

for holding cash, which must be traded o¤ against the liquidity cost of holding

cash. We characterize the optimal exit and payout policy. The direct e¤ect of

�nancial frictions is to impose ine¢ cient exit, but there is also an indirect e¤ect

through higher equilibrium price which leads to ine¢ cient survival. (D81, D92,

G35)
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1 Introduction

We analyze how �nancial frictions a¤ect the optimal policy and survival prospects

of a �rm that operates under persistent cash �ow uncertainty. The persistence in

pro�tability implies that a �rm should exit if the current cash �ow falls su¢ ciently

low. Financial frictions imply that a �rm may also exit due to insu¢ cient liquidity

even when continuation would be economically e¢ cient. Our model captures the

interaction of these two dimensions� pro�tability and liquidity� underlying �rm exit,

and shows how the �rm should optimally manage its cash reserves to cope with the

liquidity constraint. The solution is a policy for exit and payouts that depends on the

current levels of both pro�tability and cash holdings. We also analyze the associated

steady state distribution of �rms in a competitive industry, and show how it can

involve either too much or too little exit, the latter case being a type of "survival of

the fattest."

Our starting point is a standard real option model of a �rm with serially correlated

pro�tability and an irreversible exit decision.1 In this setup the potential for future

pro�ts and the irreversibility of exit make it optimal for a �rm to continue even

when facing expected losses. Cash holdings are irrelevant in the absence of �nancial

constraints and the optimal policy is simply a negative threshold level of pro�tability

below which the �rm exits. The optimal exit policy thus requires the ability to sustain

negative cash �ows inde�nitely. It seems realistic in many contexts that a �rm with

a long history of losses would �nd it di¢ cult to keep raising more funds. But as soon

as there is a limit to a �rm�s ability to sustain losses the �rm�s problem changes in a

fundamental way.

In our basic case we model the liquidity constraint as the complete inability to

raise new funds. The �rm has an initial stock of cash that can only be augmented with

retained earnings. A �rm without cash and with a negative cash �ow is forced to exit

immediately regardless of its future prospects, so �rms have an incentive to hoard cash

in order to avoid ine¢ cient exit in the future. This precautionary saving is costly due

to the liquidity premium: cash holdings earn interest at a rate below the discount rate.

Therefore, if the �rm is su¢ ciently safe from forced exit� with a su¢ ciently benign

combination of cash �ow and cash holdings� it is strictly optimal to pay out some

of the cash to the owners. Thus, besides a¤ecting the optimal exit policy, the model

1See e.g. Chapter 7 in Dixit and Pindyck (1994).
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also generates the optimal dividend policy. At the same time, if the �rm is currently

unpro�table and the remaining cash holdings are relatively small, it can be optimal

to pay out the remaining cash and close down operations rather than run the risk of

forced exit later on. We call this feature of the optimal policy "precautionary exit."

We characterize the optimal policy and analyze its dependence on the properties of

the cash �ow process. Our model leads to a free boundary partial di¤erential equation

problem that does not have an analytical solution. Instead of attempting to solve the

�rm�s problem directly we formulate it as a recursive dynamic programming problem

and show how it can be easily solved by value function iteration. The solution has an

intuitive interpretation and we illustrate its comparative statics properties graphically.

Our numerical results show that even a small liquidity premium has a large impact

on optimal �rm behavior.

We do not explicitly model the causes behind the liquidity constraint. One natural

cause is asymmetric information: it can be di¢ cult for a �rm or a manager to credibly

convey to investors the potential for pro�ts.2 Aside from the liquidity constraint, our

model has no other imperfections such as agency problems.

The literal interpretation of the decision-maker in our basic model is a risk neutral

owner-entrepreneur who can increase cash holdings only through retained earnings.

Nevertheless, we believe our �ndings have relevance in the wider context. In an

extension we show that our results are robust to allowing the owners to raise new funds

at a transaction cost; in e¤ect the basic model assumes that this cost is prohibitive.

We also analyze the impact of the liquidity constraint at the level of an indus-

try. Our concept of competitive industry equilibrium with entry and exit of �rms is

essentially that of Hopenhayn (1992), and we assume that the uncertainty faced by

individual �rms is due to idiosyncratic productivity shocks. In this setup the liquidity

constraint causes an obvious overselectivity e¤ect in terms of productivity: some mar-

ginally productive �rms that should survive a temporary loss exit due to insu¢ cient

funds (or, more accurately, in order to preempt forced exit). This e¤ect tends to

make the remaining industry on average more productive by weeding out marginally

2For evidence on the importance of liquidity constraints for �rms, see, for example, Evans and

Jovanovic (1989), Holtz-Eakin, Joulfaian and Rosen (1994), and Zingales (1998). There is also

a literature on endogenous borrowing constraints, e.g., Albuquerque and Hopenhayn (2004), and

DeMarzo and Sannikov (2006). Holmström and Tirole (2011, esp. Chapters 1-2) discuss why agency

problems may cause a �rm to face a liquidity constraint.
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productive �rms that would need �nancing to survive. However, the liquidity con-

straint also induces some formerly productive �rms with su¢ cient cash holdings to

stay on even when their productivity falls below the socially e¢ cient exit threshold.

This is a type of �survival of the fattest�as coined by Zingales (1998). As a result

of these counteracting e¤ects, the liquidity constraint may either reduce or increase

the average productivity of �rms. In a calibrated example, we �nd that the former

e¤ect dominates as the liquidity constraint increases average productivity by 3:6%.

The welfare loss due to the liquidity constraint shows up as a consumer price that is

higher by 7:3%.

Related literature

Our model builds on elements from the literature on the optimal exercise of options,

where the seminal papers are by McDonald and Siegel (1986), who model the optimal

timing of investment under uncertain cash �ow, and by Dixit (1989), who analyzes

the �rm�s optimal entry and exit decisions in the same framework. A large number

of extensions to various directions is summarized by Dixit and Pindyck (1994). Our

paper extends this line of research to another direction by adding a liquidity constraint

that may prevent the �rm from covering operating losses.

One paper that addresses the e¤ects of liquidity constraints on the optimal exer-

cise of real options is by Boyle and Guthrie (2003), who analyze the optimal timing

of investment when uncertain wealth prior to the investment a¤ects the �rm�s abil-

ity to �nance the investment. Our paper, by contrast, focuses on post-investment

uncertainty and its e¤ects on optimal payouts and exit.

A special case of our model, where we assume away the liquidity premium, bears

close resemblance to the problem of a �nancially constrained �rm in Mello and Par-

sons (2000), who analyze the optimal hedging policy for a �rm that faces persistent

cash �ow risk and cannot raise new funds. Gryglewicz (2011) presents a model of a

�nancially constrained start-up �rm, where the mean level of a stochastic cash �ow

is learned over time. Eventually, as �rms mature, they either go bankrupt, or their

con�dence of being high type converges to certainty, in which case they face only i.i.d.

risk and their cash holdings increase without limit. In these models the �rm has to

choose the optimal exit policy, but it has no reason to ever pay out dividends.

It is important to make a clear distinction between our model and an ostensibly
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similar stream of literature that considers the problem of a liquidity constrained �rm

under non-persistent cash �ow risk. This other literature models cumulative earnings

as a Markovian stochastic process, which leads to independently distributed earnings

across periods, whereas we model the level of earnings as the state variable which

results in serially correlated earnings. Milne and Robertson (1996) is a representative

model of a �rm facing a memoryless pro�t stream under a �nancial constraint, where

the �rm faces exogenous liquidation if cash balance falls below a given threshold. The

optimal policy is to accumulate a bu¤er stock of savings up to a point and pay out

as dividends all income above that level. A number of other papers analyze various

additional features in a similar framework: Radner and Shepp (1996) and Dutta and

Radner (1999) add an operation policy that controls risk-return properties of the

earnings process, Décamps and Villeneuve (2007) analyze the optimal exercise of a

growth option, Peura and Keppo (2006) introduce a delay time to recapitalization,

and Rochet and Villeneuve (2005) allow �exible allocation of reserves in risky and

safe alternatives. Décamps, Mariotti, Rochet, and Villeneuve (2011) assume costly

recapitalization, and analyze the implications of such �nancing frictions on the �rm�s

cash management and stock price dynamics.

The attraction of modeling the level of pro�ts as a memoryless process is that it re-

sults in one-dimensional state-space, which yields analytical solutions. The drawback

is that the liquidity constraint is then the only reason why the �rm would ever exit,

because the future always looks equally pro�table. This is reasonable for a �rm that

consists of �nancial assets whose prices react to news in an e¢ cient market but is less

suited as a model of a �rm facing uncertainty over real (non-�nancial) operations.

In our setup, the �rm�s pro�tability (the level of expected pro�t �ow) �uctuates,

making entry and exit natural features of the economy irrespective of whether there

are liquidity constraints or not. Having a �rst-best benchmark that involves �rm exit

allows us to analyze how the liquidity constraint a¤ects �rm survival, and how, at

industry level, it impacts �rm selection.

There are also a few papers on the macroeconomic e¤ects of �nancial frictions that

are related to ours. Cooley and Quadrini (2001), Gomes (2001), and Jones (2003)

use as building blocks models of �rm dynamics with serially correlated productivity.

In Gomes�s and Jones�s papers �rms also face an exit decision, and in the latter

paper the �nancial constraint may force the �rm to exit in states where it would be

socially e¢ cient to continue. However, due to di¤erent focus, none of these papers
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characterize the joint exit-payout policy of the �rm.

Our setup is also related to the models of precautionary saving. The seminal

papers on precautionary saving by Zeldes (1989) and Deaton (1991) analyze the

problem of optimal lifetime consumption. Under serially correlated income shocks

the state space is two-dimensional (savings and expected income) as in our model;

the key di¤erence is that consumers do not face an exit decision. For consumers,

precautionary saving results from the convexity of marginal utility, whereas in our

model it results from the threat of forced exit.

Next we characterize the problem of the �rm. We begin with the basic model,

where the �rm cannot raise outside funds, and then add the possibility of raising cash

at a transaction cost. In section 3 we solve the �rm�s optimal policy. In section 4

we analyze the implications of the liquidity constraint for a competitive industry and

present a calibrated example.

2 The Problem of the Firm

The �rm faces a stochastic revenue �ow xt that follows geometric Brownian motion

dxt = �xtdt+ �xtdwt, (1)

where dwt is the increment of a standardized Wiener process (i.e., with mean zero

and variance dt). The �rm earns a pro�t �ow �t = xt � c where the �xed cost c is
a positive constant. Exit is irreversible and without an additional exit cost or scrap

value. (The entry decision will only show up in industry equilibrium.) The objective

is to maximize the expected present value of the income to the owners, discounted at

rate � > �.

There are two fundamentally di¤erent cases. An unconstrained �rm can accumu-

late negative pro�ts inde�nitely if needed. The problem of an unconstrained �rm is

described by the standard real option model of optimal exit. The sole decision is to

choose the exit threshold for xt, so there is no meaningful decision for when (if at all)

to retain cash or pay dividends.

A constrained �rm has to worry about its ability to cover negative pro�ts using

its existing cash reserves. The optimal exit policy depends both on revenue xt and

cash holdings st. The �rm�s cash holdings are augmented by the pro�t �ow and by

the interest earned on the cash holdings at an exogenous rate r � �. The di¤erence
5



� � r is the liquidity premium. If r < � then the cash held inside the �rm incurs a

cost to the owners, so they face a meaningful decision of how to pay dividends.3 The

downside of payouts is that reduced cash holdings lower the capability to cover any

future losses. We start by assuming that the liquidity constraint is very stark in the

sense that it is not possible to inject more cash into the �rm. In this case the �rm

is forced to exit if it has no cash while facing a negative cash �ow. We later extend

the model to the case where new funds may be raised at some transaction cost; the

basic version can be thought of as a special case in which such transaction costs are

prohibitive.

2.1 Unconstrained Firm

The unconstrained �rm will exit if the cash �ow becomes too negative. The value

function V � (x) gives the expected discounted future cash �ows for a �rm with current

revenue level xt = x, and it is de�ned by the familiar di¤erential equation:

�V � (x) = x� c+ �xV �x (x) +
�2

2
x2V �xx (x) (2)

(see e.g. Dixit and Pindyck 1994, Chapter 7) with the constraints that V �x be con-

tinuous ("smooth pasting") and have a �nite limit. This ODE has a well-known

closed-form solution. The �rm exits when xt falls to x� given by

x� =
� (�� �)
� � 1

c

�
, (3)

where � =
1

2
� �

�2
�

s�
�

�2
� 1
2

�2
+
2�

�2
< 0. (4)

The unconstrained value function is

V �(x) =

( �
c
�
� x�

���

� �
x
x�

��
+ x

��� �
c
�

for x � x�;
0 for x < x�:

(5)

2.2 Fully Constrained Firm

The constrained �rm has an initial cash balance s0 that is exogenous to the problem.

Cash earns interest at rate r � �. At any moment t, the �rm can run down its cash
3Another literal interpretation is that the owner-manager is risk neutral but discounts consump-

tion by more than the return on cash. Decamps et al (2008) interpret �� r as a reduced form of an

agency cost, caused by the manager engaging in wasteful activities with the �rm�s liquid assets.
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balance by paying dividends. Paying dividends is costless and instantaneous. The

objective of the �rm is to maximize the expected discounted stream of dividend pay-

ments. We denote by D := fDtgt�0 the cumulative dividend process. The restrictions
that we impose on this process are the following. First, since we allow only positive

dividend payments, the process must be increasing. Second, the dividend payment

dDt at time t can only be conditioned on past history of cash-�ows. Stated in tech-

nical terms, D must be adapted to the �ltration generated by the Brownian motion

fwtgt�0. Third, we assume that D is right-continuous (upward jumps in D represent

lumpy dividend payments). Finally, D must satisfy the liquidity constraint, which

requires that st � 0 for all t, where the dynamics of the cash balance st are given by:

dst = (xt � c+ rst) dt� dDt: (6)

The �rm is forced to exit if xt � c and st = 0, so the exit time � is given by

� := inf ft � 0 : xt � c and st = 0g : (7)

The objective of the �rm is to choose a dividend process to maximize:

sup
D
E
Z �

t=0

e��tdDt (8)

subject to (6), (7), and st � 0 for all t 2 [0; � ]. Note that this formulation allows
voluntary exit when xt < c and st > 0 by paying out the remaining cash as the

liquidation value: dDt = st.4

The �rm�s problem becomes much more intuitive once recast as a Markovian

control problem with suitably chosen state variables. Note that the history at time

t consists of past cash �ows fxt0g0�t0�t, past dividends fDt0g0�t0�t, and the initial
cash balance s0. Since the cash �ow process is Markovian, the part of the history

that de�nes the probability distribution for future incomes is summarized in the

current cash �ow level xt. Similarly, the part of the history that de�nes the �rm�s

capacity to satisfy the liquidity constraint is summarized as the current cash holdings

st, as derived from past cash �ows and dividend payments through equation (6).

Therefore, the pair (xt; st) summarizes the history part that is payo¤ relevant for the

future, and is su¢ cient for deciding the optimal policy at t by the Bellman�s Principle

of Optimality. Consequently, we may denote by V (x; s) the value of the �rm that

solves (8) starting from an arbitrary state point (x0; s0) = (x; s).

4We allow voluntary exit when xt > c, but this would never be optimal.
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In e¤ect, the problem of the �rm is to choose between three policy options at each

point of the state space. First, the �rm may exit, which is irreversible, and results in

the exit value st. Second, the �rm may pay a positive dividend dDt to the owners,

which shifts the �rm in the state space to cash balance level st � dDt. Third, the

�rm can continue without paying dividends, in which case the cash balance evolves

according to
dst
dt
= xt � c+ rst. (9)

The solution to the �rm�s problem is a division of the (x; s)�space into regions in
each of which one of the three policy options is optimal. The following Proposition

characterizes the solution in the case where r < � (the special case r = � will be

discussed later). For illustration, see Figure 1.

Figure 1: Optimal policy regions of a liquidity constrained �rm, with exit boundaryes and dividend boundary bs in the state space of revenue x and cash holdings s. The
steep dashed line ending at the zero pro�t-zero cash point (c; 0) shows where ds = 0.

The small gray region is a transitory region inside the continuation region.
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Proposition 1 (Optimal policy when 0 � r < �) There are constants xmin 2 (x�; c),
xmax > c, and smax > 0 such that the optimal policy has the following features:

1. If xt � xmin, it is optimal to exit immediately irrespective of st.

2. If xmin < xt < c, then there is a cut-o¤ value es (xt) > 0 such that it is optimal
to exit if and only if st � es (xt). es (xt) is decreasing in xt and limxt!c es (xt) = 0.

3. If xt � c, it is optimal not to exit, irrespective of st.

4. If xt > xmax or st > smax, it is strictly optimal to pay out some dividends (and

continue thereafter, if xt > xmin).

The proof is in Appendix A. Figure 1 illustrates the optimal policy. This is the

key �gure of our paper. The life span of a �rm is a stochastic path in the (x; s)�
space. While the �rm stays inside the continuation region its law of motion is given

by equations (1) and (9). The gray area inside the continuation region is a transitory

region: after leaving it, a �rm that follows the optimal policy cannot return there.

The �rm never ventures inside the dividend region, because payouts (which move the

�rm down along s-axis) keep it from crossing the boundary of that region. When

revenue x is su¢ ciently high, the dividend region reaches all the way to the s = 0

line, where the �rm operates with zero cash holdings and continually pays out all of

the pro�t �ow as dividends. The �rm�s life span ends when it hits the boundary of

the exit region for the �rst time.

We will next explain the intuition for why the optimal policy takes the form

depicted in Figure 1.

Continuation Region

The point of accumulating cash is to use it as a bu¤er that prevents ine¢ cient exit.

To see this, consider a situation where the �rm�s current cash holding st is small but

strictly positive, and where the pro�t �ow is exactly zero, i.e. xt = c. The �rm

is not currently making losses and there is a positive option value associated with

future pro�ts, so it cannot be optimal to exit. Neither can it be optimal to pay

out st as dividends, because this would cause the �rm to immediately move down

to the point (x = c; s = 0), which means that the �rm is forced to exit within the

"next instant" thus losing the option value. Therefore, there must be a non-empty
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continuation region, where it is optimal to retain cash inside the �rm despite the

di¤erence between the discount rate and the rate of return on cash holdings.

Now let�s consider the properties of the value function in the continuation region.

De�ne the value of the constrained �rm V (x; s) as gross of the cash holdings, so

the value at the time of exit is V (x; s) = s. Using Ito�s lemma, we can write the

di¤erential dV as:

dV (x; s) = Vs (x; s) ds+ Vx (x; s) dx+
1

2
Vxx (x; s) (dx)

2 . (10)

Taking the expectation and letting dt be small yields:

E (dV ) = Vs (x; s) ds+ Vx (x; s)�xdt+
1

2
Vxx (x; s)�

2x2dt,

where ds is from (9). The Bellman equation is V (x; s) = E (V + dV ) = (1 + �dt),

which can be solved for �V dt = E (dV ), leading to the following PDE:

�V (x; s) = (x� c+ rs)Vs (x; s) + �xVx (x; s) +
�2

2
x2Vxx (x; s) . (11)

Note that this PDE does not contain a cash �ow term. The reason is that, in the

continuation region, the cash �ow between the �rm and its owners is zero: Positive

cash �ow adds to the cash balance and negative �ow subtracts from it.

The PDE (11) does not have a closed-form solution. Further, it is valid only in the

continuation region, the boundaries of which must be optimally chosen as part of the

solution. We will next discuss the properties of these boundaries, which constitute

the optimal exit and dividend policies. The numerical solution of the problem is

discussed in Section 3.

Exit Policy

The liquidity constraint can only reduce the continuation value of the �rm, so the

constrained �rm should certainly exit whenever the unconstrained would, i.e., when

xt � x�. In addition, the �rm is forced to exit when it has no cash to cover the

current loss, i.e., when (xt � c; st = 0). This gives a �xed boundary for the value of
the �rm:

V (x; 0) = 0 for x � c. (12)

The �rm should clearly never exit while current pro�ts are positive (xt > c). Now

consider a �rm with a very small st and with xt < c. This �rm is depleting its cash
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but could in principle still continue. However, it is very likely to be forced to exit in

the near future. For any xt < c, and for su¢ ciently small st, the �rm is so unlikely

to bounce back to a positive cash �ow before s hits zero that the owners are better

o¤ exiting immediately and just taking the remaining st.5 Thus, there must be a

boundary between exit and continuation regions that lies strictly above s = 0 for

x < c. We call exiting when xt > x� and st > 0 precautionary exit.

We denote the exit threshold by ~s (x), de�ned in x 2 [xmin; c] where xmin is, in
practical terms, the lowest revenue at which the �rm ever operates. The lower is xt,

the less valuable the continuation value of the �rm, and thus the higher the s required

for continuation to be optimal, so ~s0 (x) < 0 in x 2 (xmin; c).
Inside the continuation region the value of the �rm must exceed the exit value s.

At the exit boundary the �rm is indi¤erent between taking the exit value and the

continuation value, so

V (x; ~s (x)) = s. (13)

Inside the continuation region the marginal value of cash must be at least unity,

else the owners would be better o¤ by paying out cash. Smooth pasting at the exit

boundary requires

Vs (x; ~s (x)) = 1, (14)

Vx (x; ~s (x)) = 0. (15)

It may seem unintuitive that the exit boundary is strictly above zero for all x < c.

To see this point more formally, suppose, by contrast, that the continuation region in

fact reached all the way down to s = 0 for some interval [x0; c], where x0 < c. Since a

cashless �rm is forced to exit at s = 0, the boundary value V (x; 0) = 0 is �xed for all

x � c. This implies that the �rst and second derivatives with respect to x must also
be zero within this interval: Vx (x; 0) = Vxx (x; 0) = 0 for all x 2 (x0; c). Substituting
these into the PDE (11) that holds in the continuation region yields Vs (x; 0) = 0

within this interval. But this leads to a contradiction, because Vs � 1 must hold in
the continuation region, or else cash would be more valuable outside than inside the

�rm. It follows that the continuation region cannot reach down to s = 0 for x < c.

The only way in which a �rm following the optimal policy can extinguish all funds

is to hit exactly the zero-�ow-zero-stock point for cash, fxt; stg = fc; 0g. Thus the
5It can be shown that the probability with which the �rm bounces up to positive pro�ts before

running out of cash goes to zero at a rate faster than s.
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constrained �rm will experience a forced exit with probability 0.6 Practically all exit

by liquidity constrained �rms is precautionary.

We assume that the scrap value of the �rm is zero, so the exit value of the �rm is

simply equal to its cash holdings. In the unconstrained case, adding a positive scrap

value would be equivalent to adding the rental opportunity cost of the scrap value to

the �ow cost. However, in the presence of a liquidity constraint an opportunity cost is

not equivalent to an operating cost as only the latter requires liquidity. In the extreme,

having a scrap value so high that the optimal exit threshold of an unconstrained �rm

is positive, the �rm cannot face negative cash �ows during its lifetime so the liquidity

constraint is redundant. Apart from this extreme case, the problem would not be

qualitatively changed by a positive scrap value.

Dividend Policy

When r < �, holding cash is costly. The bene�t of holding cash is that it may allow

the �rm to avoid a forced exit in the future when the option value of continuation

would still be positive. This bene�t is bounded above by V � (c), the unconstrained

continuation value at the zero pro�t �ow. Since the cost of holding cash increases

without bound in s, there exists, for any x, some s high enough such that it is better

to stop accumulating cash. This threshold value, denoted ŝ(x), de�nes the boundary

between the continuation region and the dividend region. It can be interpreted as a

target level of cash holdings that depends on current pro�tability. The �rm makes

payouts to owners to make sure it doesn�t hold more than the target level of cash;

hence we call ŝ the dividend threshold. The value of the �rm above the dividend

threshold must be:

V (x; s) = V (x; ŝ(x)) + (s� ŝ(x)) , when s > ŝ(x).

For su¢ ciently high x the possibility of forced exit is so remote that it is not worth

holding on to any cash. We denote the threshold above which it is optimal to not hold

any cash by xmax. In the limit x!1, the prospect of forced exit becomes irrelevant,
and thus the value of the �rm must converge to the value of the unconstrained:

lim
x!1

V (x; s) = V �(x) + s. (16)

6The �rm�s position in (x; s)-space cannot evolve along the boundaries of the continuation region

because, if st = 0 and xt > c then ds > 0, and if xt < c then the �rm exits if it hits the boundary

fx; ~s (x)g.
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At the dividend threshold, cash is equally valuable inside as it is outside the �rm,

where one dollar is of course worth one dollar. Thus, the value matching condition

Vs (x; ŝ(x)) = 1 (17)

must hold at the dividend threshold. The associated smooth-pasting condition re-

quires7

Vss (x; ŝ(x)) = 0, (18)

Vxs (x; ŝ(x)) = 0: (19)

The �rm is constrained at the margin only in the continuation region; there having a

dollar more would increase the value of the �rm by more than a dollar: Vs (x; s) > 1.

When the �rm hits the dividend threshold from inside it pays out just enough

cash to not cross the boundary. However, if the �rm were to start at s0 > ŝ(x0), then

it would immediately pay out the excess s0� ŝ(x0) as a lump sum dividend. (For

a new �rm this means that the owners have more than enough funds to endow the

�rm with the optimal level of precautionary cash holdings; the �lump dividend�at

the start is then the cash that owners retain for themselves.) A lump sum dividend

is also paid out as the liquidation value upon precautionary exit. Note that if a �rm

that enters the industry at revenue level x0 can choose its initial cash holdings then

s0 = ŝ(x0) is the optimal choice.

Comparative Statics

We next illustrate how the �rm�s optimal policy depends on the parameters of the

stochastic process. To do this, we solve the optimal policy numerically in a manner

to be explained in Section 3. We vary one parameter at a time from a set of baseline

parameters. The results are depicted in Figure 2. The solid lines mark the borders of

the continuation region in the liquidity constrained case, and the vertical dashed lines

mark the optimal exit threshold in the unconstrained case. The left panel shows the

relation of the optimal policy and �, the volatility of the cash �ow process. As is well

known, the unconstrained exit threshold x� is decreasing in �. Here the increased

option value shows up as an enlarged continuation region. As in the unconstrained

7In terms of Dumas (1991), the dividend is �an in�nitesimal requlator�(while exit is a discrete

regulator) so there must be �super-contact�at ŝ(x).
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case, higher volatility makes it optimal to accept bigger losses because it increases the

upside potential while the downside is still protected by the exit option. Furthermore,

the dividend boundary shifts out to the right also because, at any given x, higher

volatility increases the risk of facing forced exit within any given period of time.

The right panel of Figure 2 shows the e¤ect of varying �, the percentage drift of

the cash �ow process. Higher � increases the option value at any given level of losses,

as the �rm is more likely to bounce back to positive pro�ts within any given period

of time. However, higher � also makes the �rm safer at any given point� by making

it less likely that forced exit would threaten it within any given time� so it is not

obvious that a higher � should also shift out the dividend boundary. However, we

have found no examples of the opposite.

Figure 2: Comparative statics of the optimal policy around baseline parameter values

r = 0:05, � = 0:1, � = 0, � = 0:25, c = 1. Left panel: volatility: � 2 f0:1; 0:25; 0:4g,
from smallest to largest region. Right panel: drift: � 2 f�0:05; 0; 0:05; 0:09g, from
smallest largest region.

2.3 Special Case: No Liquidity Premium (r = �)

Consider now the special case in which there is no liquidity premium: r = �. Hoarding

cash is now costless, so it can never be strictly optimal to pay dividends. The optimal

policy is thus de�ned by dividing the (x; s)� space between the exit region and

the continuation region. The qualitative properties of the exit region and the exit

threshold ~s (x) are the same as with r < �.
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Holding cash inside the �rm can be strictly optimal only when there is a positive

probability of being forced to exit in the future. Of course, no matter how high xt,

falling below x� always remains possible. However, the worst-case cash �ow under

which the owners would ever want to continue is the cash �ow at the unconstrained

exit policy, x� � c. The �rm becomes irreversibly unconstrained if it accumulates so

much cash that the interest income from its cash holdings could be used to cover the

worst-case losses forever. This de�nes the escape level of cash as

s� =
c� x�
r

. (20)

This means that a �xed boundary condition

V (x; s�) = V � (x) + s� (21)

now replaces the free boundary ŝ(x) seen in the r < � case. For st � s�, the �rm

is indi¤erent between paying dividends or not and V (x; s) = V � (x) + s. Above the

escape level of cash, the �rm can no longer run out of cash before �rst becoming so

unpro�table that it would want to exit even in the absence of a liquidity constraint.

As the �rm is then in e¤ect unconstrained, its exit policy is the same as that of an

unconstrained �rm: exit if and only if x � x�. We summarize these results in the

following proposition:

Proposition 2 (Optimal policy when 0 � r = �) If xt > x� and st < (c� x�) =r,
it is strictly optimal to refrain from paying dividends. If xt > x� and st > (c� x�) =r,
the owners are indi¤erent between paying dividends and continuing without paying

dividends. The optimal exit policy is qualitatively the same as when r < � (see

Proposition 1).

The special case without a liquidity premium is quite similar to the setup of

a �nancially constrained �rm in Mello and Parsons (2000). They study optimal

hedging, namely how �rms should use futures contracts on an asset that is correlated

with their pro�ts to reduce the risk of ine¢ cient exit. They do not take into account

that the �rm becomes permanently safe from ine¢ cient exit at a �nite level of cash

holdings, but instead assume that the constrained �rm�s value reaches that of the

unconstrained case only in the limit of in�nite cash holdings. The environment faced

by the agent in DeMarzo and Sannikov (2008) also features serially correlated cash
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�ow and saving is possible without liquidity costs; there precautionary exit does not

arise because expected cash �ow is assumed to be always positive (due to a parameter

restriction which implies that the exit threshold is always positive). There is also no

liquidity premium in the model of Gryglewicz (2011), so it is never strictly optimal

to pay out dividends. To generate predictions about the dividend policy he assumes

that the �rm pays dividends at the indi¤erence boundary, which is equivalent to our

s� (but is changing over time due to learning).

Small Liquidity Cost

It turns out that the optimal policy, in particular the dividend policy, is very sensitive

to small liquidity costs. Figure 3 shows the impact of varying the return on �rm�s cash

holdings, r. As r gets closer to � it becomes less costly to hold cash so continuation is

everywhere more attractive and the continuation region expands. The limiting case

results in the escape level of cash s�, from (20), that is much higher than the highest

cash holdings that the �rm would ever keep even at a liquidity premium of just one

basis point. The limiting case is qualitatively di¤erent, because there is no trade-o¤

between the liquidity cost of the cash holdings and the expected bene�t of preventing

exit.8 However, while the optimal payout policy is very sensitive to r near �, the value

of the �rm is not. When r is very close to � the liquidity cost is negligible, and there

is a large region in state space where the �rm is almost indi¤erent between retaining

and paying out cash. (There the marginal value of cash, Vs, is only very slightly

above unity). The high sensitivity of optimal policy to r near � means that, even if

the liquidity premium were close to zero, the optimal behavior of �rms would not be

well approximated with a model where the liquidity cost is completely assumed away.

2.4 Generalization: New Cash Injections

The assumption that the �rm can not raise new cash is quite stark, and is made in

order to identify the e¤ects of the liquidity constraint in its most transparent form.

Here we generalize the model to the case where owners can increase the �rm�s cash

8It can be shown that as the optimal policy converges to the limiting case as r " � , in the sense
that, for every point (x0; s0 < s�) in the continuation region of the limiting case r = �, there exists

r0 < � for which (x0; s0) is in the continuation region.
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Figure 3: Optimal policy at varying levels of the liquidity premium � � r. Discount
rate is held �xed at � = 0:1; other parameters are held at � = 0; � = 0:25, c = 1,

and r 2 f0; 0:05; 0:09; 0:099; 0:1g from smallest to largest regions. In the limiting case
r = � there is no actual dividend region, but above the escape level of cash s� the

owners are indi¤erent between hoarding and paying out cash.

holdings at some transaction cost. Speci�cally, suppose that they can, at any point

in time, inject any amount s of cash at cost � + ( + 1) s, where � is the �xed and 

the marginal transaction cost. The injection of cash causes the �rm to jump directly

upwards in the state space (x; s).

Paying the transaction cost can only be optimal when the �rm would otherwise

face immediate forced exit (s = 0 and x < 0) because otherwise the cost could still be

postponed and, with luck, even avoided. If the �rm decides to incur the transaction

cost, then its target level of cash is

s+ (x) = argmax
s
fV (x; s)� (1 + ) sg . (22)

The target level s+ equalizes the marginal cost of new cash and its marginal value at

the �rm, Vs (x; s+ (x)) = 1+ . Transaction costs are independent of current revenue

x, so raising cash must be more desirable the higher the current x (as long as x < 0).

Therefore, if raising cash is ever optimal, then there must be some x+min 2 (x�; 0) such
that cash is raised on an interval fs = 0; x 2 [x+min; 0]g and nowhere else. The lowest
x where the �rm replenishes its cash holdings, x+min, is the point where the value of
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exit (which is zero on the s = 0 line) is just equal to the value of continuing from

fx; s+ (x)g net of the transaction cost of moving there:

V
�
x+min; 0

�
= V

�
x+min; s

+
�
x+min

��
� � � (1 + ) s+ = 0. (23)

If transaction costs are su¢ ciently high then it is never optimal for the �rm to

raise new cash. This is the case when maxs fV (0; s)� (1 + ) s� �g � 0, i.e., the

�rm�s value net the transaction cost would be negative. Notice that "prohibitive"

transaction costs are �nite, because the bene�t (from some probability of ine¢ cient

exit prevented) is necessarily �nite.

We describe in Section 3 how the optimal policy with new cash injections can be

solved numerically. Figure 4 depicts the optimal policy for a �rm that faces positive

but not prohibitive transaction costs. The qualitative di¤erence to the optimal policy

in the basic model (recall Figure 1) is the segment of horizontal axis where cash is

raised and the associated target curve s+ (x) directly above. For su¢ ciently low cash

�ow the �rm still �nds it optimal to exit with positive cash holdings rather than incur

the transaction cost.

Holding cash is costly when r < �, so without a �xed transaction cost �rms would

raise cash continuously only to o¤set a contemporaneous negative cash �ow. The

�xed cost makes it is optimal to raise new cash in lumps in order to postpone the

prospects of having to incur it again. In the absence of a marginal transaction cost it

would be optimal to "jump" all the way to the dividend boundary. Any transaction

costs reduce the value of continuation and shift the exit boundary to the right.

The unconstrained case, with the simple exit threshold x� in (3), is the limiting

case where both the �xed and the marginal transaction cost are zero. The constrained

case, where the �rm never raises new cash, is equivalent to assuming that the cost

parameters are prohibitively high. Hence this setup encompasses both the constrained

and unconstrained cases of the basic model.

The setup with cash injections allows various interpretations. One literal interpre-

tation is that of a risk-neutral owner-entrepreneur who allocates her wealth between

two assets; one liquid asset that can be used to pay o¤ possible losses, and another

illiquid asset that yields a higher rate of return but can only be turned into liquid

form at a transaction cost. The entrepreneur has deep pockets in terms of the illiquid

asset, but the transaction cost makes it desirable to hold some liquid assets as well

and, in some circumstances, let the �rm fold rather than incur another transaction
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Figure 4: Optimal policy when cash can be raised at a transaction cost. Amount

s+ (x) of new cash is raised when s = 0 and x 2 [x+min; c].

cost.

A broad interpretation of the extended model analyzed in this section is a �rm that

can raise new equity at a transaction cost. This interpretation is similar to Décamps

et al (2011) who analyze the case of non-persistent cash �ow risk. Assuming that there

is a �xed cost associated with raising equity, the �rm delays the recapitalization until

it has used up its liquid assets. Then, upon hitting fs = 0; x 2 [x+min; 0]g, it will
raise new equity in order to increase its cash balance to level s+ (x) that equalizes

the marginal value of internal cash with the marginal cost of raising equity. The new

owners supply the �rm with cash and are compensated with an equally valuable stake

in the �rm. Our calibrated example of industry equilibrium in Section 4.2 will adhere

to this interpretation of the �rm�s problem.

Comparative Statics

In Figure 5, we illustrate how the level of transaction costs a¤ects the optimal policy.

In addition to the case with prohibitive transaction parameters (seen already in Figure
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1), we solve the policy for a case of low and high transaction costs. In each case the

exit boundary is further left than under prohibitive costs, as the threat of forced exit

is not as grave with the possibility to raise new capital. The lower the transaction

costs, the further the exit boundary shifts towards the unconstrained exit threshold.

With low transaction costs it is cheap to add cash whenever necessary, so it is possible

to reduce the liquidity cost and never hold very much cash, so the continuation region

becomes smaller. In the limiting case the �rm holds no cash; it pays out pro�ts as

they come in, and raises cash as it makes losses.

Figure 5: Optimal policy is under high (left panel) and low (right panel) transaction

cost parameters:  = � = 0:1 in the case of "low" and  = � = 0:005 in the case

of "high" costs. The case with prohibitively high transaction costs (.e., the fully

constrained �rm) is depicted in dashed curves for comparison. Other parameters are

as in Figure 2.

3 Solution Method

The PDE de�ned by (11) and the various free boundary conditions cannot be solved

analytically. To solve the �rm�s problem we turn to a discrete-time approximation

of the problem and solve it numerically.9 In the binomial process approximation of

9The program for solving the optimal policy is available at http://www.hse-econ.�/murto.

20



geometric Brownian motion the evolution of x is governed by

x (t+�) =

8<: x (t) e�
p
� with probability q = 1

2

�
1 +

���2

2

�

p
�

�
x (t) e��

p
� with probability 1� q

(24)

where �, the length of the time period, can be set arbitrarily small.10 The evolution

of the cash balance is now

s (t+�) = (s (t)� � (t)) (1 + r�) + (x (t)� c)�, (25)

where � (t) 2 [0;�s (t)] is the dividend paid at time t. The dividend cannot be so

high as to make the cash holdings negative at any point in time, so the maximum

feasible dividend is restricted by min fs (t+�) ; s (t)g � 0, where �s (t) � s (t)+

min f0; (x (t)� c)�= (1 + r�)g.
The value function of the �rm, stated in recursive form, is

V (x (t) ; s (t) jt) =

max

(
s (t) ;

max�2[0;�s]

n
� + 1

1+��
E [V (x (t+�) ; s (t+�) jt+�)]

o
;

)
(26)

where s (t+�) is from (25).

The recursion in (26) satis�es Blackwell�s su¢ cient conditions so it is a contraction

mapping. Thus it can be solved by iterating backwards in time: Starting from an arbi-

trary VT (x; sjT ) the value function converges to a unique solution that approximates
V (x; s).11

Augmenting the value function with the additional option of raising more cash is

straightforward. When solving for the optimal policy, (26) is replaced with

V (x (t) ; s (t) jt) =

max

8>><>>:
s (t) ,

max�2[0;�s]

n
� + 1

1+��
[EV (x (t+�) ; s (t+�) jt+�)]

o
,

maxs+2[s(t);1) fV (x (t) ; s+jt)� � � (1 + ) (s+ � s (t))g

9>>=>>; (27)

where s (t+�) is from (25). The numerical solution method is otherwise unchanged.

10This way of discretizing geometric Brownian motion was inspired by Cox, Ross and Rubinstein

(1979).
11A natural starting point for the backward induction is V (x; sjT ) = s: This means that the

problem is turned into a �nite-horizon problem with forced exit in the last period. By increasing T

the value function at t = 0 converges to that of the in�nite horizon problem.
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4 Industry Equilibrium

We saw in Section 2 how a liquidity constraint causes �rms to exit at higher levels

of current revenue compared to unconstrained �rms. It might therefore seem obvious

that, at the level of an entire industry, the liquidity constraint would cause there

to be fewer but on average more productive �rms. However, as we next show, this

�rm-level reasoning is misleading, because it does not take into account the impact

that the liquidity constraint has on output price in competitive equilibrium.

In order to analyze the impact of the liquidity constraint on a competitive industry,

we use the de�nition of industry equilibrium similar to Hopenhayn (1992) and Dixit

and Pindyck (1994, Ch 8.4).12 There is a continuum of �rms. We assume that for

each �rm the revenue x depends on �rm-speci�c output or �productivity�z and an

endogenous industry-speci�c output price p, so that

xt = pzt: (28)

We assume that productivity z follows geometric Brownian motion

dzt = �zt dt+ �ztdwt; (29)

with the shocks dwt independent across �rms. New �rms of known productivity z0
can be established by paying an entry cost �. Entering �rms choose the initial level of

cash holdings to maximize value, so that s0 = s+(x0), where s+ is from (22). (In the

fully constrained case s0 would have to be an exogenous parameter.) To guarantee

the existence of steady state, we assume an exogenous �death rate�� > � at which

�rms are forced to exit with their cash holdings as the exit value (see Appendix B for

details).13 In steady state, both the dying and the endogenously exiting �rms must

be balanced by an equal in�ow of new �rms of type fz0; s0g.
The industry faces a demand curve D(p) for its output. We assume that the

demand curve is everywhere strictly downward sloping. The equilibrating variables

12Liquidity constraints are introduced to a similar steady-state setting by Gomes (2001) to study

the relation of cash �ow and investment, and by Cooley and Quadrini (2001) to study the age-

conditional relation of growth and �rm size. Jones (2003) averages over simulated time series of

individual �rms to study the impact of liquidity constraints on the propagation of aggregate shocks.
13The risk of exogenous exit changes the �rm�s optimal policy slightly compared to Section 2: the

�rms discount the future at rate �+� instead of � and the Bellman equation of the constrained �rm

includes a term �s on the right hand side of (11).
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are price of output p and mass of �rms m. Firms are atomistic, so there is no

aggregate uncertainty in steady state. As p is constant, the revenue of individual

�rms (28) follows the same process (1) that we assumed earlier in Section 2. All �rms

follow the same optimal policy, which in turn results in a stationary distribution of

z. In steady state, m and p must satisfy market clearing

D (p) = m�z (p) , (30)

where �z denotes the cross-sectional average output of �rms in steady state (�z depends

on p because the exit policy in terms of z depends on p). Entry is endogenous, so

equilibrium must also satisfy the zero-pro�t condition for entering �rms

V
�
pz0; s

+(pz0)
�
= � + (1 + )

�
�+ s+(pz0)

�
, (31)

where the total entry cost includes �nancing costs for both the �physical�entry cost

� and the initial level of cash holdings s+.14

Equilibrium price is fully determined by the entry condition (31): p must adjust to

eliminate expected rents to entrants. (If entry were pro�table then more �rms would

enter and m would increase, and if entry resulted in expected loss then no one would

enter and m would decrease.) Since the value function V is increasing in revenue,

p is uniquely determined by (31) and V is obtained numerically as described in the

previous section. In the unconstrained case the entry condition (31) is replaced by

V � (pz0) = �, where V � has the closed form seen in (5).

For any p, the mass of �rms is determined from (30) as m = D(p)=�z (p). The

role of m is merely to close the model. We are not interested in the number of �rms

but rather on the cross-sectional distribution of productivity, which is independent

of m and of the shape of the demand curve because the model has, at industry-level,

constant returns to scale.15 Thus m and D will not feature in our analysis.16

4.1 Survival of the Fattest

The model assumes perfect competition, so the only component of welfare that can be

a¤ected by the liquidity constraint is consumer surplus, which varies in the opposite

14Note that entry, unlike recapitalization, may take place at a positive level of revenue.
15A doubling of entry �ow doubles the steady state industry output.
16For a more detailed exposition of this industry equilibrium concept, see Miao (2005), who studies

capital structure (in the absence of liquidity constraints).
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direction as p. Maximum welfare is, of course, attained in the unconstrained case,

so the liquidity constraint can only increase p. In real terms, there are potentially

three di¤erent components to the price distortion: higher aggregate entry cost (due

to higher turnover), lower average productivity, and higher liquidity costs. As it turns

out, turnover and productivity can move to either direction.

Figure 6: Liquidity constraint and average productivity in industry equilibrium.

To understand why the impact of the liquidity constraint on mean productivity

is ambiguous, consider, for simplicity, the fully constrained case where there are no

cash injections. Suppose that the entering �rms have no cash holdings (s0 = 0). The

position of �rms in (z; s)-space is illustrated in Figure 6. Entry level z0 is at the point

to the right of the zero-pro�t level (z = c=p) where the continuation value matches

the entry cost. As price is distorted upwards, the lowest type to ever continue (zmin)

is below the unconstrained exit threshold (z�), even though the associated revenue

level is higher (Recall xmin > x� in Figure 1). The higher price makes it optimal for

�rms with su¢ cient cash reserves to continue at productivity levels that would trigger

exit in the unconstrained world. The light shaded region (ine¢ cient survival) covers

�rms that would exit in the unconstrained solution but stay in under the liquidity

constraint. The dark region (ine¢ cient exit) covers �rms that are more productive
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than the unconstrained exit threshold z� but exit due to the liquidity constraint.

Whether mean productivity is increased or decreased by a liquidity constraint depends

on which of these two e¤ects dominates.17 In the working paper version of this paper

we analyze numerically how the steady state outcomes vary in z0 and s0 and show

that mean productivity is decreased when the entry cost is su¢ ciently low (see Murto

and Terviö, 2010). Here we instead move to a calibrated example with cash injections.

4.2 A Calibrated Example

We now present a quantitative example based on the general model with cash in-

jections, using the transaction cost parameters estimated by Hennessy and Whited

(2007) with U.S. data. They estimated that (�nancial companies excluded) the mar-

ginal cost of raising new equity is  = 0:09 and the �xed cost of recapitalization is

� = $59; 800.18 We take most parameters from Miao (2010), who also models the

�rm revenue process as a geometric Brownian motion. Speci�cally, we set the drift

� = 0:0075; volatility � = 0:15; the exogenous �rm death rate � = 0:04, and the

discount rate � = 0:0525. We set the liquidity premium at �� r = 0:01, the same as
used by Décamps et al (2011), which results in r = 0:0425:

We are left with the �xed operating cost c and entry cost �. We aim to choose these

parameters so as to match a �rm turnover rate of 0:07 and the recapitalization rate

of 0:175. We take the turnover rate from Miao (2010) and the recapitalization rate

is estimated by Hennessy and Whited (2007). We aim to choose the �xed operating

cost c and entry cost � in order to match the �rm turnover and recapitalization

rates with the targets. To do this, we calculate the steady state �rm distributions

for a wide range of combinations c and �. This is done by �rst solving numerically

the optimal �rm policy (as explained in Section 3). The steady state distribution

is then obtained by iterating the �rm distribution according to this policy until the

distribution converges (see Appendix B for more details). Various statistics including

turnover rate and recapitalization rate are then readily computed from the steady

state distribution.
17If s0 is su¢ ciently high and � not too high then z0 2 (z�; c=p) and the picture is more compli-

cated, as some of ine¢ ciently exiting �rms are replaced by less productive �rms.
18Hennessy and Whited estimate the costs separately for small and large �rms, as well as for the

total population of non-�nancial �rms. In our model, small �rms can become large and vice versa,

so we use their results for the total population.
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Figure 7 depicts the contours of our calibration targets in the space of endogenously

determined parameters (entry cost �, operation cost c). Holding �xed c, equilibrium

turnover (lighter contours) is decreasing in �; this is natural as � is from the economy�s

point of view a cost of replacing underperforming �rms with new ones. Less obviously,

the recapitalization rate (black contours) is also decreasing in �, even though a higher

entry cost makes recapitalization more attractive relative to "replacing" the entire

�rm. However, higher entry cost also implies a higher equilibrium price of output,

so entering �rms (whose productivity is exogenous) are more pro�table and thus less

likely to need a recapitalization.

The shapes of the target curves make it clear that there is a unique match (��; c�).

To understand why this is so, consider for a moment scaling up all cost parameters (�

and c, as well as transaction costs  and �). Such a change would amount to scaling of

monetary units, so equilibrium price would also be scaled by the same factor. In (�; c)-

space space such scaling amounts to moving along a ray from the origin, so turnover

rate would be constant along any ray. However, in the calibration, transaction cost

parameters are �xed, so while moving out on a ray from the origin recapitalization

becomes relatively cheaper. This explains why contours of recapitalization rate bend

downwards so that the recapitalization rate is higher further out from the origin on

any ray. Recapitalizing an existing �rm and replacing it with a new �rm (turnover)

are substitutes from welfare point of view. Turnover contours bend in upwards so the

turnover rate is decreasing along a �xed ray from the origin. As seen in the �gure,

this implies exactly one point where both targets are matched at the same time.

The unique match of the calibration targets is at �� = 0:48, c� = 0:12. This

implies a �xed one-time entry cost of $480:000, and a yearly �xed cost of $120; 000.

In interpreting these �gures, note that we do not explicitly model inputs such as

labor and physical capital. The revenue is best interpreted as describing revenue net

of adjustable inputs under a constant returns to scale production technology.

Having calibrated the model, we calculate other steady state outcomes at the

calibrated parameter values. To quantify the impact of �nancial frictions, we also

calculate the corresponding distributions in the absence of transactions costs (see

Appendix B for details). The top row of Table 1 reports the key �gures. Equilibrium

output price is 7:2% higher than in the absence of transaction costs. Resulting average

productivity is 3:6% higher than in the absence of transaction costs. Thus, at the

calibrated parameters, the productivity-enhancing e¤ect of excessive "weeding out"
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Figure 7: Level curves of calibration targets in the space of endogenously determined

parameters. Dashed black curves the recapitalization rate, and the lighter dashed

curves depict the turnover rate. Target levels are depicted as solid curves.

is stronger than the "survival of the fattest".19 As the model has perfect competition,

the increase in output price paid by the consumers represents the welfare loss from

�nancial frictions.

Finally, we look at the robustness of the industry outcomes with respect to our

key parameters. First, we replace the transaction cost parameters taken from Hen-

nessy and Whited (2007) with the corresponding parameter values taken from Gomes

(2001), namely  = 0:028 and � = $80; 000. Note that Gomes estimates the �xed

transaction cost to be considerably higher and the marginal cost lower than Hennessy

and Whited (2007). The results are reported in the second row of Table 1. We see

that theses parameters imply somewhat higher entry and operating costs, while the

19We �nd that this is reversed if entry cost is set su¢ ciently low, but this implies turnover rates

that are too high to be consistent with this data.
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price impact is lower, 4:8%. Second, we investigate how changing the liquidity pre-

mium ��r a¤ects the results by repeating the calibration exercise with r = 0:475 (low
liquidity premium) and r = 0 (high liquidity premium). The results are reported in

last two rows of Table 1. Both the entry and operating costs are increased (decreased)

from baseline case as the liquidity premium is decreased (increased). Making �nancial

frictions more severe by increasing the liquidity premium increases the market price

as expected.

Case � c �p (%) �z (%)

Baseline 0.49 0.12 7.2 3.6

Gomes (2001) parameters 0.74 0.18 4.8 3.8

Low liquidity premium 0.55 0.14 6.6 3.4

High liquidity premium 0.40 0.09 8.9 4.7

Table 1. Calibration results. Matched entry cost �, �xed operating cost c, and the

implied percentage impact on steady state price p and average productivity z.

5 Conclusion

We have analyzed the problem of a liquidity constrained �rm that faces persistent

cash �ow uncertainty. We view our model as a natural framework for analyzing how

pro�tability and liquidity jointly a¤ect the �rm�s exit and payout policies, and how

liquidity constraint distorts production at the industry level. We abstract away from

some important aspects of �rm dynamics such as growth options, agency issues, and

choice of �nancing structure. We are hopeful that our model framework proves useful

for future work along these lines.

Appendix A: Proof of Proposition 1

Preliminaries. We begin by three lemmas that collect together the key properties
of V (x; s) utilized in the proof. The �rst one merely records properties of V (x; s)

that are discussed in more detail in Section 2.2 of the main text:

Lemma 1 V (x; s) is continuous and increasing in both arguments, and V (x; s) � s
for all (x; s). Depending on the optimal policy at (x; s):
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� If it is optimal to exit, then V (x; s) = s.

� If it is optimal to continue without paying dividends, then V (x; s) > s, Vs (x; s) >
1, and the following partial di¤erential equation holds locally at (x; s):

�V (x; s) = (x� c+ rs)Vs (x; s) + �xVx (x; s) +
�2

2
x2Vxx (x; s) : (32)

� If it is optimal to pay dividends and continue thereafter, then V (x; s) > s and
Vs (x; s) = 1 .

Proof. Choosing dividend dDt = st and exiting immediately thereafter is a feasible

policy at every point in state space and gives value st. It follows immediately that

V (x; s) � s for all (x; s). In particular V (x; s) = s whenever it is optimal to exit

and V (x; s) > s whenever it is strictly optimal to continue. The application of

Bellman�s principle and Ito�s lemma imply that if it is optimal to continue without

paying dividends, then the value function must satisfy the Hamilton-Jacobi-Bellman

equation (32) locally at (x; s), and Vs (x; s) > 1 (see Section 2.2 in the main text).

Finally, if it is optimal to pay a positive dividend dD > 0 and continue thereafter, the

principle of dynamic programming gives V (x; s) = dD+V (x; s� dD), which implies
that Vs (x; s0) = 1 for all s0 2 [s� dD; s]. Continuity and monotonicity of V (x; s)
follow from the properties of state transition dynamics and monotonicity of cash �ow

with respect to x.

Lemma 2 establishes lower and upper bounds for V (x; s):

Lemma 2 For all (x; s), we have

V (x) + s � V (x; s) � V � (x) + s; (33)

where

V (x) =

( �
c
�
� c

���

� �
x
c

��
+ x

��� �
c
�
for x > c

0 for x � c
; (34)

and where V � (x) is given by (5) and � is given by (4) in the main text.

Proof. Consider the following policy: pay out immediately any positive cash reserves,
and thereafter keep cash holdings at st = 0 by immediately paying out any incoming

cash. This leads to forced exit as soon as xt � c. The unique value function that
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satis�es the appropriate di¤erential equation (equation (2) in the main text) together

with the boundary condition V (c) = 0 is given by (34). Since this policy is feasible, it

gives a lower bound for the value of the optimally managed �rm. On the other hand,

the net value of a �rm that faces no liquidity constraint is V � (x), and this must be

an upper bound for the liquidity constrained �rm.

Finally, Lemma 3 states that a �rm that is at the edge of being pro�table (xt = c)

is more valuable to its owners than its cash holdings. This lemma guarantees that

positive cash holdings are optimal at least under some conditions:

Lemma 3 V (c; s) > s for all s > 0.

Proof. The key to this result is the kink in the value function V (x) at x = c.

Take an arbitrary s > 0, and let xt = c, st = s. Take a sequence f�ng1n=1 such
that limn!1�n = 0 and �n > 0 for each n. Denote by Vn the expected payo¤ of a

feasible (but suboptimal) policy, according to which the �rm continues without paying

dividends for a period of length �n, and thereafter pays out all incoming cash:20

Vn = e
���nE (V (xt+�n) + st+�n) .

Since xt is a geometric Brownian motion, we have:

xt+�n � xt
xt

� N
�
�xt�n; �

2�n

�
.

Standard properties of Normal distribution imply:

E
����xt+�n � xtxt

� �xt�n

���� =
r
2

�
�
p
�n.

Since Normal distribution is symmetric around its mean, we have

E
�
max

�
0;
xt+�n � xt

xt
� �xt�n

��
=
1

2
E
����xt+�n � xtxt

� �xt�n

���� = �
r
�n

2�
,

so that

E [max (0; xt+�n � xt)] =
�xtp
2�

p
�n + o (�n) ;

20Note that st > 0 and xt � c = 0, so that the �rm is not under threat of immediate forced exit.

Therefore, as we consider short intervals �n, we can safely ignore the possibility that st0 = 0 for

some t0 2 [0;�n].
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where o (�n) denotes terms that go to zero at least linearly in �n. Denoting by � the

derivative from right of V (x) at the kink:

� := lim
x#c
V (x) > 0,

and noting that

Est+�n = st + E
Z t+�n

t0=t

(xt0 � c+ rst0) dt0 = st + o (�n) ;

we have

Vn = e���nE (V (xt+�n) + st+�n)

= e���n
�
max

�
0; �

�xtp
2�

p
�n

�
+ st + o (�n)

�
= �

�xtp
2�

p
�n + st + o (�n) .

Therefore, for n large enough, Vn > st. But since the optimal policy is at least weakly

better than this strategy, we have V (c; st) � Vn for any n, and it follows that

V (c; st) > st.

Proof of Proposition 1
Part 1: We want to show that there is some x0 > x� such that stopping is optimal

for all x � x0, s � 0. Suppose the contrary. Then we can �nd a sequence fxn; sng1n=1
with xn > x� for all n, limn!1 sn = s > 0 and limn!1 xn = x

�, such that all points

(xn; sn) are within the continuation region so that (32) holds by Lemma 1.21 Since

V � (x�) = 0, it follows from Lemma 2 that V (x�; s) = s for all s. Therefore

V (xn; sn) ! sn and

Vs (xn; sn) ! 1

as n ! 1. By the smooth-pasting condition of the unconstrained �rm, we have
V �x (x

�) = 0, and therefore we must have

Vx (xn; sn)! 0.

21Part 2 of the Proposition, which we will prove shortly, states that it is optimal to exit whenever

s is small enough for all x < c, and therefore we can assume a limit point s > 0 for sn.
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(Otherwise we would have either V (xn; sn) < sn or V (xn; sn) > V � (xn) + sn for n

large enough, hence violating Lemma 2.)

Since (32) must hold at all points in the sequence fxn; sng1n=1, we have:

�2

2
x2nVxx (xn; sn)! (�� r) s+ c� x�.

On the other hand, from the corresponding Hamilton-Jacobi-Bellman equation of the

unconstrained �rm (equation (2) in the main paper) we have

�2

2
x2V �xx (x

�) = c� x� < (�� r) s+ c� x�,

and therefore

lim
n!1

Vxx (xn; sn) > V
�
xx (x

�) .

But since V (xn; sn) ! V � (x�) + sn and Vx (xn; sn) ! V �x (x
�), this implies that

V (xn; sn) > V
� (xn) + sn for n large enough. This is a contradiction with Lemma 2.

We can conclude that V (x; s) = s for all s for some x > x�. We let

xmin := sup fx jV (x; s) = s for all s � 0g . (35)

Part 2: By Lemma 3, we have V (c; s) > s for all s > 0. It follows from continuity
of the value function that V (c� "; st) > st for some " > 0, so that xmin de�ned in
(35) satis�es xmin < c.

Next, we show that for all x 2 (xmin; c), there is some s0 > 0 such that V (x; s) = s
for all s � s0. Suppose, by contrast, that there is some x0 2 (xmin; c) such that

V (x0; s) > s for all s > 0. Since V (x; s) is increasing in x, this implies that V (x; s) >

s for all x 2 (x0; c), s > 0. Therefore, there is a continuation region that reaches all
the way down to s = 0 for the interval (x0; c), and by Lemma 1, (32) must hold for all

s su¢ ciently small. However, since a cashless �rm is forced to exit at s = 0 for x < c,

the boundary condition V (x; 0) = 0 must hold for the whole interval, and therefore

also Vx (x; 0) = Vxx (x; 0) = 0 for all x 2 (x0; c). Substituting these into (32) yields
Vs (x; 0) = 0 for x 2 (x0; c). But since V (x; s) � s for all (x; s) by Lemma 1, this is
a contradiction. It follows that V (x; s) = s for all x 2 (xmin; c) and for all s � s0 for
some s0 > 0. De�ne for all x 2 (xmin; c):

es (x) := max fs jV (x; s) = sg .
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It remains to show that es (xt) is decreasing in xt and limxt!c es (xt) = 0. The former
property follows from the monotonicity of V (x; s) in x: suppose on the contrary thates (x00) > es (x0) for some x00 > x0. But then, V (x0; es (x00)) > s = V (x00; es (x00)) which
violates the property that V (x; s) is increasing in x. The latter property follows from

the continuity of V (x; s): suppose that there is some s0 > 0 such that es (x) > s0 for all
x in some open neighborhood of c. But this means that V (x; s) = s for all 0 < s < s0

when x is arbitrarily close to c, and this is in contradiction with continuity of V (x; s)

and our previous �nding that V (c; s) > s for all s > 0.

Part 3: One available (non-optimal) policy is to pay-out all incoming cash and
keep cash balance at st = 0. When x > c, this policy gives value V (x) + s > s, so it

cannot be optimal to exit.

Part 4: Fix s > 0, and suppose that it is not optimal to pay dividends even

at high values of x so that (32) holds for all x. Let x ! 1. From equation (5) in

the main text and (34), V � (x) � V (x) ! 0, and therefore it follows from Lemma 2

that V (x; s) ! V � (x) + s. This means that Vs (x; s) ! 1, Vx (x; s) ! V �x (x), and

Vxx (x; s)! V �xx (x), so that

�V (x; s)� �xVx (x; s)�
�2

2
x2Vxx (x; s)! � (V � (x) + s)� �xV �x (x)�

�2

2
x2V �xx (x) .

But then, combining (32) and equation (2) in the main text,

rs! �s;

which is a contradiction because we have � > r and s > 0. It follows that the

continuation region must be bounded from the right: it is optimal to pay dividends

for high enough x. We let

xmax := inf fx > c jV (x; s) = V (x; 0) + s for all s � 0g :

Finally, �x x > xmin and suppose that it is not optimal to pay dividends even at

high values of s. But then, as s!1, it follows from (32) that

�xVx (x; s) +
�2

2
x2Vxx (x; s)!1:

But this is in contradiction with (33) holding for all x and s, and the fact that V �x (x),

V �xx (x), V x (x), and V xx (x) are all bounded and independent of s. We can therefore

conclude that the continuation region must be bounded from above: it is optimal to

pay dividends for high enough s. We let

smax := inf fs > 0 jV (x; s0) = V (x; s) + s0 � s for all x and for all s0 � sg :
33



Appendix B: Stationary distributions

Unconstrained Case

In the unconstrained case, the steady-state �rm distribution and its properties re-

ported in Section 4 can be derived analytically as follows. Denote y � log z. The exit
threshold is y� = log z� and new �rms are born at y0 > y�. Taking a discrete time

approximation, y follows the binomial process:

y (t+�) =

(
y (t) + �y with probability q

y (t)��y with probability 1� q

where � is the length of a period, q = 1
2

�
1 + ���2=2

�

p
�
�
, and �y = �

p
�. The

steady state condition gives a di¤erence equation for the mass of �rms located at an

arbitrary state point y,

(1� ��) [qf (y ��y) + (1� q) f (y +�y)]�y + g (y)�y = f (y)�y,

where f (y)�y is the mass of all �rms and g (y)�y is the mass of newborn �rms

at state point y. Taking the limit � ! 0 leads to a di¤erential equation for the

stationary �rm density:22

1

2
�2f 00 (y)�

�
�� (1=2)�2

�
f 0 (y)� �f (y) + g (y) = 0, (36)

with f (y�) = 0 and limy!1 f (y) = 0 as boundary conditions. In our setup g (y) is

positive at y0 and zero elsewhere. The point y0 splices the di¤erential equation into

two regions, with the f (y0) = f0 as a boundary condition in the middle. (f is �nite

but not di¤erentiable at y0). The value of f0 can be solved from the condition that

total probability density integrates to one. Combining the boundary conditions with

(36) yields the closed-form solution:

f (y) =

8>>>>>><>>>>>>:

0 y � y�

f0e
� (�+�)(y�y0)

2�2

 
e
�y

�2 �e
�y�
�2

!
 
e
�y0
�2 �e

�y�
�2

! y� < y � y0

f0e
� (�+�)(y�y0)

2�2 y0 < y

(37)

22See Dixit and Pindyck (1993), chapter 8, section 4.c for more details.
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where � � �2 � 2�; � =
p
8��2 + �2, and

f0 =
2�

�

�
e
�y0
�2 � e

�y�
�2

�
�
e
�y0
�2 � e

(���)y�+(�+�)y0
2�2

� : (38)

There is no economically sensible steady state unless z = ey has a �nite mean.

Here
R1
y0
eyf (y) dy <1 is a necessary and a su¢ cient condition for the �nite mean.

Taking out the terms that are independent of y in (37), the �nite mean requirement

becomes Z 1

y0

ey�
(�+�)y

2�2 dy <1. (39)

This holds if 2�2 � � � � < 0, which simpli�es to � > �.

Constrained Case

The stationarity proof in the unconstrained case is su¢ cient for the stationarity of

the distribution of z in the constrained process. As s is endogenously bounded by the

optimal dividend policy and, �rm by �rm, depends deterministically on the history

of z, the fact that z has a stationary distribution su¢ ces for the stationarity of the

joint distribution (z; s). However, now the optimal policy has no closed-form solution

so the steady state distribution must be computed numerically. In the discrete time

approximation the life span of each individual �rm is a Markov chain in the discretized

state space. Therefore, the steady state distribution is obtained by �rst computing

the optimal policy of an individual �rm, and then, starting from some initial �rm

distribution, iterating the �rm distribution according to the state transition equations

associated with the policy (where a constant mass of new �rms are established at the

birth point within each iteration) until the �rm distribution converges to the steady

state.
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