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Abstract

We consider equilibrium timing decisions in a model with infor-
mational externalities. A number of players have private information
about a common payoff parameter that determines the optimal time to
invest. The players learn from each other in a continuous-time multi-
stage game by observing the past investment decisions. We charac-
terize the symmetric equilibria of the game and we show that even in
large games where pooled information is sufficiently accurate for first
best decisions, aggregate randomness in outcomes persists. Further-
more, the best symmetric equilibrium induces delay relative to the
first best.

1 Introduction

This paper analyzes a game of timing where the players are privately informed
about a common payoff parameter that determines the optimal time to stop
the game. Information is transmitted across the players through observed

actions, i.e. realized individual stopping decisions. In other words, our model
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is one of observational learning, where communication between the players
is not considered. For concreteness, we sometimes interpret the stopping
decision as an irreversible investment decision as in the literature on real
options.

The key question in our paper is how the individual players balance the
benefits from observing other players’ actions with the costs of delay. Obser-
vational learning is potentially socially valuable because it allows informa-
tion to spread across players. When timing their own decisions, however, the
players disregard the informational benefits to the other players. This infor-
mational externality leads to delays when contrasted with socially efficient
information transmission. As a result, much of the potential value of social
learning is dissipated.

Our main findings are: i) The most informative symmetric equilibrium
results in delays. ii) The most informative symmetric equilibrium displays
herding in the sense that when the number of players is large, almost all
players stop at the same time. iii) Even in large games with accurate pooled
information, aggregate uncertainty persists.

In our model, the first-best time to invest is common to all players and
depends on a single state variable w. Without loss of generality, we identify
w directly as the first-best optimal time to invest. Since all the players have
information on w, the observed actions contain valuable information as long
as the actions depend on the players’ private information. The informational
setting of the game is otherwise standard for social learning models: The
players’ private signals are assumed to be conditionally i.i.d. given w and to
satisfy the monotone likelihood ratio property. The payoffs are assumed to
be either supermodular or logsupermodular in w and the stopping time t.

We show that the game has symmetric equilibria in monotone strategies.
Our main characterization result describes a simple method for calculat-
ing the optimal stopping moment for each player in the most informative
symmetric equilibrium of the game. In this equilibrium, a player always cal-

culates her stopping time as if her own signal were the most extreme (that



is, favoring early investment) amongst those players that have not yet in-
vested. The game has also less informative equilibria where all the players
stop immediately regardless of their signals.

We allow the players to react quickly to each other’s stopping decisions.
In order to avoid complicated limiting procedures, we model the dynamic
game as a multi-stage game with continuous action spaces. At the beginning
of each stage, all the remaining players choose their stopping time from the
real line. The stage ends at the minimum of these stopping times. This
minimum stopping time and the identity of the player(s) that chose it are
publicly observed. The remaining players update their beliefs with this new
information and start immediately the next stage. This gives us a dynamic
recursive game with finitely many stages (since the number of players is
finite). Since the stage game strategies are simply functions from the type
space to non-negative real numbers, the game and its payoffs are well defined.
Immediate reactions to stopping decisions are captured by allowing stopping
time 0 in the next stage. We believe that this formulation can be useful in
some other dynamic settings as well to simplify the definition of admissible
strategies.

To understand the source of delay in our model, it is useful to point out
an inherent asymmetry in learning in stopping games. While the players can
decide at time t to delay their actions in response to new information, they
cannot decide to go backward in time and stop at ¢’ < t. Hence, it is possible
to learn that stopping is taking place too late. By contrast, since waiting
is always an option, it is not possible to become convinced that stopping is
taking place too early.

We obtain the sharpest results for games with a large number of players.
First, almost all the players stop too late relative to the first-best stopping
time (except in the case where the state is the highest possible). Second, we
show that almost all the players stop at the same instant of real time (even
though they may stop in different stages) where the game also ends. Finally,

we show that even if we condition on the true state, the time at which the



players stop remains stochastic.

To understand how the model works, consider the simplest case where
the players observe a binary signal on the true state of the world. If player
1 is the only player in the game, she simply stops at the optimal moment
given her posterior. Given that the signals satisfy MLRP and the payoff is
supermodular in w and t, then she stops earlier, say at t; if her signal is
low. Suppose next that there are N > 1 players and consider the incentives
of the players that have received a low signal. If the other players with a
low signal were to stop at 7, then it would be in the best interest of player
1 to wait a bit longer to observe the decisions at ¢; and hence to find out
the number of low signals amongst the other players. This rules out an
equilibrium where all players with low signals stop at ;. On the other hand,
it is also impossible that in a symmetric equilibrium no player stops with
a positive probability at t;. If this were the case, then the first player to
stop after t; would act upon the information contained in her own signal
only. But with this information, the optimal stopping time is ¢, Hence in
equilibrium, the benefits from learning from others must be balanced with
the costs of delay.

Our main results characterize the speed of observational learning that
achieves this balance. When the number of players is large, we show that
the statistical informativeness of observational learning depends only on the
conditional densities of the lowest possible signals. Because of the infor-
mational externalities, players stop too late relative to the full information
benchmark. At the same time, most players gain significantly relative to
stopping in isolation from the other players.

RELATED LITERATURE

Our paper is related to the literature on herding. Early papers such as
Banerjee (1992) and Bikhchandani, Hirshleifer & Welch (1992) assumed an
exogenous order of moves for the players. Like us, Grenadier (1999) relaxes
this assumption in order to address observational learning in a model of

investment. However, in his model players are exogenously ranked in terms



of the informativeness of their signals, and this ranking is common knowledge.
This assumption plays a role similar to the assumption of exogenous order
of moves, and as a result, the model features information cascades through a
mechanism similar to Banerjee (1992) and Bikhchandani, Hirshleifer & Welch
(1992). By contrast, we assume that the players are ex-ante similar, and this
leads to qualitatively different pattern of information revelation. Our model
has no information cascades, but information is revealed inefficiently late.
The paper that is closest to ours is the model of entry by Chamley &
Gale (1994)." The key difference to our paper is that in their model it is
optimal to invest either immediately or never. We allow a more general payoff
structure that allows the state of nature to determine the optimal timing to
invest, but which also captures Chamley & Gale (1994) as a special case.
In other words, Chamley & Gale (1994) models uncertainty over whether
it is optimal to invest or not, while we model uncertainty over when it is
optimal to invest. This turns out to have important implications for the
model’s predictions. With the payoff structure used in Chamley & Gale
(1994), uncertainty is resolved immediately but incompletely at the start of
the game. In contrast, our model features gradual information aggregation
over time.?2 The information revelation in our model is closely related to our
previous paper Murto & Viiliméki (2011). In that paper, private learning over
time generates dispersed information about the optimal stopping point, and
information aggregates in sudden bursts of action. Moscarini & Squintani
(2010) analyze a two-firm R&D race where the inference on common values
information is similar to our model. The results and the analysis in the two
papers are quite different since our main focus is on information aggregation
in a general class of stopping models with pure informational externalities.
It is also instructive to contrast the information aggregation results in

our context with those in the auctions literature. In a k" price auction

ISee also Chamley (2004) for a more general model. Levin & Peck (2008) extends this
type of a model to allow private information on the stopping cost. In contrast to our

model, information is of the private values type in their model.
2Section 6 discusses in more detail the relationship between these papers.



with common values, Pesendorfer & Swinkels (1997) show that information
aggregates efficiently as the number of objects grows with the number of
bidders. Kremer (2002) further analyzes informational properties of large
common values auctions of various forms. In our model, in contrast, the
only link between the players is through the informational externality, and
that is not enough to eliminate the inefficiencies. The persistent delay in our
model indicates a failure of information aggregation even for large economies.
On the other hand, Bulow & Klemperer (1994) analyzes an auction model
that features "frenzies" that resemble equilibrium stopping behavior in our
model. In Bulow & Klemperer (1994) those are generated by direct payoff
externalities arising from scarcity, whereas our equilibrium dynamics relies
on a purely informational mechanism.

The paper is structured as follows. Section 2 introduces the basic model.
Section 3 establishes the existence of a symmetric monotonic equilibrium.
Section 4 discusses the properties of the game with a large number of players.
Section 5 presents a quadratic example of the model. Section 6 compares our

results to the most closely related literature. Section 7 concludes.

2 Model

2.1 Payoffs and signals

N players consider investing in a project. The payoff for player ¢ from an
investment at time ¢; depends on the state w € €2, and is given by a continuous
function

v (t;,w).

The state space is a compact set 2 C [0, 1], and can be either finite or

infinite.®> The players share a common prior p° (w) on Q. The players choose

3We can transform the state space to the extended real line by a monotone transfor-

mation x = $#~. With this transformation, the state w = 1 corresponds to the case where

it is never optimal to stop.



their investment time ¢ from the set 7' = [0, 00).

The players face uncertainty over w and choose the timing of their in-
vestment in order to maximize their expectation of v. We assume that the
payoff function v is twice differentiable in ¢ almost everywhere and either

supermodular or log-supermodular in (¢;, w):
Assumption 1 FEither,
v(t, w) +o(t;,w) > vt w) +o(t;,w) for all t; >t and all w > &',

or
v(t;, w)v(t;, w') > v(t;, w)v(t;,w') for all t; >t and all w > W'

This assumption is satisfied by all concave functions and all exponentially
discounted concave functions.

We also assume that for each w, there is a unique ¢ that maximizes v(¢, w).
By our assumption of strict (log-)supermodularity, this maximizer must be
strictly increasing in w. Therefore, without further loss of generality, we
associate the state value directly with the first-best optimal investment time.
In other words, we assume that v takes a form where the optimal stopping

time for each state is equal to the state:
W = argmax v (t,w).

The players are initially privately informed about w. Player ¢ observes
a signal 6; € © = [0,0) for some § < co. G (f,w) is the joint probability
distribution on © x 2. We assume that the distribution is symmetric across
7, and that signals are conditionally i.i.d. Furthermore, we assume that the
conditional distributions G(f | w) and corresponding densities g(6 | w) are
well defined and have full support for all w. We also assume that for all w,
G(0 | w) is continuous (i.e., there are no mass points) and ¢g(f | w) has at
most a finite number of points of discontinuity and is continuous at 6 = 0.

We assume that the signals in the support of the signal distribution satisfy
monotone likelihood property (MLRP):

7



Assumption 2 For alli, 0' > 0, and o' > w,

g(0" o) _ gt |w)
g(0 [w) — g(0 [w)

This assumption, together with Assumption 1, allows us to conclude that

>

(1)

the optimal stopping time conditional on a signal is monotonic in the signal
realization. That is, player ¢’s optimal stopping time is increasing in her own
type as well as in the type of any other player j.

Finally, we make an assumption for the signal densities at the lower end of
the signal distribution. This assumption has two purposes. First, we want to
make sure that the signals can distinguish different states. This is guaranteed
by requiring ¢ (0 |w) # ¢ (0|w') whenever w # ' (note that assumption 2
alone allows conditional signal densities that are identical in two different
states). Second, we want to rule out the case where some players can infer the
true state from observing their own signal. This is guaranteed by requiring
g(0|w) < oo for all w € Q. While none of the players can infer the true
state based on their own signal, the assumption of conditionally independent
signals and MLRP together guarantee that the pooled information held by
the players becomes arbitrarily informative as the number of players tends

to infinity.
Assumption 3 For all w, o' € Q, W' > w,

0<g(0w)<g(0]w) < 0.

2.2 Strategies and information

We assume that at ¢, the players know their own signals and the past de-
cisions of the other players. We do not want our results to depend on any
exogenously set observation lag. Therefore, we allow the players to react
immediately to new information that they obtain by observing that other
players stop the game. To deal with this issue in the simplest manner, we

model the game as a multi-stage stopping game as follows.

8



The game consists of a random number of stages with partially observable
actions. In stage 0, all players choose their investment time 7; (h°,6;) €
[0, 00) depending on their signal ;. The stage ends at t° = min; 7; (h°,6;) .
At that point, the set of players that invest at t°, i.e. S = {i : 7;(h°,60;) =
t°} is announced. The actions of the other players are not observed. The
public history after stage 0 and at the beginning of stage 1 is then h! =
(%, 8Y) . The vector of signals § and the stage game strategy profile 7 (h°, ) =
(11 (h°,01),...,7n (h°,0y)) induce a probability distribution on the set of
histories H!.The public posterior on € (conditional on the public history
only) at the end of stage 0 is given by Bayes’ rule:

P (w‘hl): p° (W) Pr (A |w) .
Jo 1° (w) Pr (A |w) dw

As soon as stage 0 ends, the game moves to stage 1, which is identical
to stage 0 except that the set of active players excludes those players that
have already stopped. Once stage 1 ends, the game moves to stage 2, and so
forth. In general, in each stage k, players that have not yet invested choose
an investment time 7;(h*,6;) > 0. We let A’ denote the set of players that
are still active at the beginning of stage k (i.e., players that have not yet
stopped in stages k' < k). The public history available to the players is

hk — hk—l U (tk_l,Sk_l) )

The set of stage k histories is denoted by H*, and the set of all histories
by H := U,H*. We denote the number of players that invest in stage & by
S* and the cumulative number of players that have invested in stage k or
earlier by QF := Zf:o Sk,

A pure strategy in the game is a function

T, H xR, —[0,00).
The duration of stage k is given by

E— min 7:(h* 6,
t —irél/%/’IiTZ(h ,0;).
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Throughout the paper, we use the term real time to refer to the elapse of
time from the beginning of the game. If player ¢ is among those who stop in
stage k, i.e. if 7; (hk, 91-) — t*, then the realized payoff of i is v (Tk +tF, w),

where T* records the real time at the beginning of stage k:

k-1

The players maximize their expected payoff. A strategy profile 7 =
(Tiy...,7n) is a Perfect Bayesian Equilibrium of the game if for all i and

all §; and h*, 7;(h*,0;) is a best response to 7_;.

3 Monotonic Symmetric Equilibrium
In this section, we analyze symmetric equilibria in monotonic pure strategies.

Definition 1 A strategy T; is monotonic if for all k and h*, T (h’“,@) 1

(weakly) increasing in 6.

With a monotonic symmetric strategy profile, the players stop the game
in the increasing order of their signal realizations. Therefore, at the beginning
of stage k, it is common knowledge that all the remaining players have signals
within (Qk, 1), where:

0" := max {0 [T(W*0) =1} (2)

3.1 Informative Equilibrium

In this section, we characterize the symmetric equilibrium that maximizes
information transmission in the set of symmetric monotone pure strategy
equilibria. Theorem 1 states that there is a symmetric equilibrium, where
a player with the signal 6 stops at the optimal time conditional on all the

other active players having a signal at least as high as . The monotonicity of
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this strategy profile follows from MLRP. We call this profile the informative
equilibrium of the game.

To state the result, we define the smallest signal among the active players
at the beginning of stage k:

0% . = min 6.
ieNF
Theorem 1 (Informative equilibrium) The game has a symmetric equi-
librium profile T in monotonic strategies, where the stopping time for a
player with signal 0 at stage k is given by:

7 (h*,0) := min (argr&ang [v(t+T" w) |n", 0%, = 9]) . (3)

The proof is in the appendix, and it utilizes the key properties of 7* (hk, 6)

stated in the following Proposition:

Proposition 1 (Properties of informative equilibrium) The stopping time
T* (hk,ﬁ) defined in (3) is increasing in 6. Furthermore, for k > 1 , there

1s some € > 0 such that along equilibrium path, T* (hk,Q) = 0 for all
0c[0"0"+¢).

Proof. Proposition 1 is proved in the Appendix. =
The equilibrium stopping strategy 7* (hk,G) defines a time-dependent
cutoff signal 0** (¢) for all t > 0:

0** (t) := max {0

™ (h*,0) <t}. (4)

In words, 0% (t) is the highest type that stops at time t in equilibrium.
Proposition 1 implies that along the informative equilibrium path, 6* (0) > 0"
for all stages except possibly the first one. This means that all the players
with a signal in the interval (Qk N (O)) stop immediately at the beginning
of the stage, and there is therefore a strictly positive probability that many
players stop simultaneously.

11



To understand the equilibrium dynamics in stage k, note that as real
time moves forward, the cutoff #** (t) truncates the interval within which the
signals of the remaining players lie. By MLRP and the (log)supermodularity
of v, this new information delays the optimal stopping time for all the re-
maining players. At the same time, the passage of time increases the relative
payoff from stopping the game for each signal #. In equilibrium, 6** (¢) in-
creases at a rate that balances these two effects and keeps the marginal type
indifferent. As soon as the stage ends at t* > 0, the players learn that one of
the other active players has a lower than expected signal. By MLRP and the
(log)supermodularity of v, the expected value from staying in the game falls
by a discrete amount for the remaining players. This means that the marginal
cutoff moves discretely upwards and explains why 0***' (0) > 6" (t5) = """
As a result, each new stage begins with a positive probability of immediate

tht1 = 0, the game moves

further exits. If at least one player stops so that
immediately to stage k + 2. The preceding argument can be repeated until
there is a stage with no further immediate exits. Thus, the equilibrium path
alternates between stopping phases, i.e. consecutive stages k' that end at
t* = 0 and that result in multiple simultaneous exits, and waiting phases
where all players stay in the game for time intervals of positive length.

Note that the random time at which stage k& ends,

th =1~ (hk, min 92-) )
ieNF
is directly linked to the first order statistic of the player types remaining in
the game at the beginning of stage k. If we had a result stating that for all
k, 7*(h*,0;) is strictly increasing in 6;, then the description of the equilib-
rium path would be equivalent to characterizing the sequence of lowest order
statistics where the realizations of all previous statistics is known. Unfortu-
nately this is not the case since for all k£ > 1, there is a strictly positive mass
of types that stop immediately at t* = 0. This implies that the signals of
those players that stop immediately are imperfectly revealed in equilibrium.

However, in Section 4.1 we show that in the limit as the number of players
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is increased towards infinity, payoff relevant information in equilibrium con-
verges to the payoff relevant information contained in the order statistics of
the signals.

3.2 Uninformative equilibria

Some stage games also have an additional symmetric equilibrium. In these
equilibria, players use strategies that do not depend on their signals. We
call these equilibria uninformative. They are similar to rush equilibria in
Chamley (2004).

To understand when such uninformative equilibria exist, consider the
optimal stopping problem of a player who conditions her decision on history
h¥ and her private signal #;, but not on the other players having signals
higher than hers. If ¢ = 0 solves that problem for all signal types remaining

in the game, i.e., if
0 € argmax [E [v (t + Tk,w) |hk,9i = 9] for all § > 6",
>0

then an uninformative equilibrium may exist. If all players stop at ¢ = 0 then
they learn nothing from each other. If they learn nothing from each other,
then ¢ = 0 is their optimal action.

It should be noted that some equilibria where all the players stop im-
mediately satisfy our criteria for informative equilibrium. If 7*(h*,8) = 0
for all #, then the continuation equilibrium is informative in our terminology
even though all players stop at once. At any such history h*, the players
find it optimal to exit even if all the remaining players had the highest pos-
sible signal. Similarly, with some payoft specifications there are informative
equilibria where all the players stop at t = 1 even if their beliefs have not
converged (which, in such a case, is to be interpreted as delaying infinitely).
See discussion of such a case in Section 6.

In the least informative equilibrium, uninformative equilibrium is played

in all stages where the above criterion is satisfied. There are also intermediate
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equilibria where after some h*, players use 7* (hk, 0) defined in (3), and after
other h*, they play uninformatively.

It is easy to rank the symmetric equilibria of the game. The informative
equilibrium is payoff dominant in the class of all symmetric equilibria of the
game. This follows from the fact that every player can always ensure the
outcome of the uninformative equilibrium after all h* regardless of the other

players’ strategy choices.

4 Informative Equilibrium in Large Games

In this section, we study the limiting properties of the model as we increase
the number of players towards infinity. We will see that those properties
can be described by means of the order statistics of the players’ signals. We
start with a simple statistical observation regarding the distribution of order

statistics in large samples.

4.1 Information in equilibrium

Denote the n'™® order statistic in the game with N players by

~N

0, =min{6 € [0,0] | #{i e N'|0; <0} =n}. (5)
It is clear that if we increase N towards infinity while keeping n fixed, 571 con-
verges to the lower bound 0 of the signal distribution in probability. There-
fore, we scale the order statistics by the number of players:

ZN =9, - N. (6)
~N
0

Since ZY is a deterministic function of it has the same information

n
“N

content as 6, . Nevertheless, it is a well known statistical fact that Z
converge in distribution to a non-degenerate random variable. This limit

~N
distribution, therefore, captures the information content of 4, in the limit.
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We define also

VY= 2 = 2N = (0, =0 - N, (7)
where by convention we let 0) = Z = 0. Let [YV;,...,Y.>®] be a vector

of n independent exponentially distributed random variables with parameter
9(0]w):

Pr(Y° <umz,... Y, <uz,) = e~ 90wz o=g(0w) e,

Proposition 2 Fiz n € N, Consider the sequence of random wvariables
{[YlN, e YnN] }?Vozn , where for each N the random variables Y, are defined
by (5) - (7). As N — oo, we have:

D

DEAREES Sl I ) S Gl

n

D e
where — denotes convergence in distribution.

Proof. In the Appendix. =

Proposition 2 states that in the limit N — oo, learning from the order
statistics is equivalent to sampling independent random variables from an ex-
ponential distribution with an unknown state-dependent parameter ¢ (0 | w).
The intuition is straight-forward. As N is increased, the n lowest order sta-
tistics converge towards 0. Therefore, the signal densities matter for the
learning only in the limit § | 0. One can think of g (0 | w) as the inten-
sity of the order statistics in the large game limit. This explains why we
have adopted the assumption that the signal density ¢ (0 | w) is continuous
at 0 = 0.

Note that Z¥ = ¥ | V'V converges to a sum of independent exponentially
distributed random variables, which means that the limiting distribution of

ZN is Gamma distribution:

Corollary 1 For all n,
7)) =Y YN 27y,
i=1
where Z° ~T'(n,g(0 | w)).
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By Proposition 2, observing the n lowest order statistics is equivalent to
observing n independent exponentially distributed random variables when N
is large. By the memoryless property of the exponential distribution, observ-
ing only the n'® order statistic EHN is informationally equivalent to observing
all order statistics up to n. To see this formally, denote by 7 (w | (y1, .-, Yn))
the posterior probability of an arbitrary element w € €2 based on an indepen-
dent sample Y*° =y, ..., Y, =y, and let 7 (w | z,) denote the correspond-
ing posterior probability based on the sample that contains only the sum of
the previous sample, z, = z; + ... + 2,. Bayesian rule and simple algebra

show that these posteriors are equal:
7T0 ((JJ) . Hg (O ’ w) @_9(0|W)(yi—yi—1)
7@ ] (Groesgn) = =
Jom® (@) - [L9(@]w)g(0]w)es0L)m—s-1dy

i=1

/ (W) - (g (0 w))" e O ol
o T (W) (g(0]w))" e 90w)zndy - n)-

In the finite model, the posterior 7 (w | (y1, ..., ¥n)) based on a sample
YN =y, ..., YN =y, generally differs from the posterior 7V (w | 2,) that is
based only on z, = y; +...+y,. Nevertheless, the Bayes’ rule is continuous in
the limit as N — oo in (y1, ..., yn) since we assume g(- | w) to be continuous at
Mw | (1, )

and 7 (w | 2,,) converge to the posterior 7(w | 2,) for all w and (y1, ..., y»)

0 = 0 for all w. Therefore, Proposition 2 implies that both m

as N — oo. We summarize this discussion in the following Corollary.

Corollary 2 For a fixred sample of normalized order statistics (Y1, ..., Yn),

lim 7 (w | (Y1, .., yn)) = lim 7V (w | 2,) = 7(w | 2,) for all w,

N—o0 N—o00

where 2z, =y1 + ... + Yn.

This corollary plays a key role in our analysis. Suppose that player ¢

has a signal ¢ and that she observes all the signals below 6. By Theorem 3,
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she would choose the optimal stopping time conditional on the values of the
lower signals and conditional on the assumption that all other players have
signals above 6 (and of course subject to the restriction that stopping before
the current instant of real time is impossible). Corollary 2 implies that the
number of players n with signals below 6 summarizes the relevant part of the
history in the limit as N — oo. Hence even if all signals were observable, the

relevant conditioning event is Z2 = N when N — oo.

4.2 Timing in Large Games

So far, we have discussed the properties of the order statistics without link-
ing them to the optimal timing decisions. In this section we consider the
properties of the informative equilibrium, and show that when N — oo, the
equilibrium path of the game can be approximated by a simple algorithm
that samples sequentially the order statistics.

We consider first the hypothetical case, where a decision maker chooses
the optimal timing based on the information contained in the order statistics
of the limit model. Let U(t | z,) denote the expected utility from stopping
at time ¢, given information that Z,, = z, with Z,, ~ I'(n,¢(0 | w)):

Ut z,) == /Qv (t,w)m(w | zn)dw.

As a preliminary result, we prove the uniqueness of the optimal solution to

this problem for almost every realization z, of Z,.
Lemma 1 Let Z,, ~T'(n,g(0 | w)) and define
tn (2n) = argmax U(t | z,).

Then t, (z,) is a singleton for almost every z, in the measure induced by the

random variable Z,, on R,.

Proof. In the Appendix. =
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We turn next to the finite model with NV players. Consider a sample of

normalized order statistics
(}/lN =Y, "'7YnN = yn) )

and let UN(t | (y1,...,y,)) and UN(¢ | z,) denote the expected utilities from
stopping at time t, based on the whole sample (y1, ..., y,) and sample z, =

Y1 + ... + Yn, respectively:
UN@E | (g1, o)) = / v(t,w) ™ (W | (Y1, ..., Yn))dw,
Q
UN@E | zn) = / v (t,w) T (W | 2,)dw.
Q

The corresponding optimal stopping time are:

tnN (yla"'ayn) : :argmaXUN(t | (y17"'7yn))7

tN (z,) : =argmaxUY(t] 2,).

Note that tY (y1,...,y,) and Y (2,) could in principle be sets. However,
the next lemma says that they both converge to ¢, (z,), which is singleton

for almost every z, by Lemma, 1.4
Lemma 2 For almost every (y1,...;Yn); 2n = Y1 + oo + Yn,

im Y (2,) = t, (2,).

. N o
b (g ) = lim

N

Proof. In the Appendix. m

With this Lemma, we can prove that the equilibrium stopping times con-
verge to the stopping times of the limit model for almost all z,. Notice
that the unconstrained optimal times tj (z;) could be decreasing in k. Since

the players cannot go backwards in time, the relevant (constrained) stopping

4Clearly, since Y (y1,...,yn) and tYY (z,) converge to the same value for almost every
(y1, .-y Yn), no partial information on yi, ...,y, could change the optimal timing decision

of a Bayesian decision maker who has observed z, (in the limit N — c0).
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time in the limit model for the player with n'* lowest signal is the maximum

of 129, (Zn/), n' = 1, ceey T

T (s c) = max o (z0). ®)

n'=1,...n
The main result of this section is that the stopping times in the informative
equilibrium of the game converge to the stopping times defined in (8). We
denote by T (y1, ..., y,) the real time at which the player with the n'" lowest

signal stops in the informative equilibrium.
Proposition 3 For all n, and for almost every (y1,...,yn) ,

lim T,JLV (Y15 Yn) = To (Y1, ooy Yn) -

N—o0

Proof. In the Appendix. m

We end this section with a corollary that relates the distribution of re-
alized stopping times in the symmetric equilibrium to the realized stopping
times in the limit model. Let TV denote the random stopping time of the n'!
player in the symmetric equilibrium and let 7}, denote the optimal stopping

time based on the n' lowest order statistic in the limit model as defined in

(8).

Corollary 3 The realized stopping times in the symmetric equilibrium con-

verge in distribution to the stopping times in the limit model:

TV (Y, YN) BT, (v, ., V).

Proof. Direct consequence of Propositions 2 and 3. =

4.3 Delay in Equilibrium

In this section, we characterize the real time behavior of the players in the
informative equilibrium in the limit as N — oo. Let T (0, w) denote the

random exit time (in real time) in the informative equilibrium of a player
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with signal 6 when the state is w and the number of players at the beginning
of the game is N. We will be particularly interested in the behavior of

Tn(0,w) as N grows and we define

T(w,0) := lim TV (w,0),

N—oo
where the convergence is to be understood in the sense of convergence in
distribution.
The real time instant at which the last player invests is denoted by T (w)

and we let

T(w) := lim TV (w).

N—oo

We let F(t | w) denote the distribution of T'(w), or in other words,

F(t | w) = Pr{T(w) < t},

and use f(t | w) to refer to the corresponding probability density function.
The following Theorem characterizes the asymptotic behavior of the informa-
tive equilibrium as the number of players becomes large. By t(0), we denote
the optimal investment time of a player that decides based on signal § = 0

only.

Theorem 2 [In the informative equilibrium of the game, we have for all w <

max (2,
1. supp f(t | w) = [max{t(0),w}, max ).
2. For all 0,0 >0,

lim Pr{|T"(w,0) — T"(w,0)| <e} =1 for all e > 0.

N—oo

Proof. In the Appendix. m
Theorem 2 confirms the main properties of our model. Almost all the

players stop (almost) simultaneously (by Part 2 of the theorem), and this
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stopping moment is inefficiently late and random (by Part 1 of the theorem).
Since all the players with signals strictly above zero stop at the same time,
the informational properties of the model are driven by the lowest signals.
All the relevant information is transmitted by the lowest order statistics,
and it is irrelevant how good information might be available at higher signal

values.

5 Example with quadratic payoffs

In this section, we compute analytically the statistical properties of the in-
formative equilibrium in the large-game limit for a special case of our model.
As in much of the literature on observational learning, we assume that both
the states and the signals are essentially binary. There are N ex ante identi-
cal players. We let w € {0,1} and we map the binary signal setting into our

model by assuming the following signal densities:

=c for all 0 <6 < 6%, 9
g0 =0 o
=c for all 0" < 0 < 0. 10
GO (10)

Hence all the signals below (above) 0 have the same informational content
defined by parameter ¢; (c,). Sometimes we call signals below (above) §* low

(high) and write § = [(= h). For simplicity, we assume that

G0°,0) = 1— G(6°,1) = a > %

which implies that ¢, = a/ (1 — a) and ¢, = (1 — @) /a. Hence, a measures
the precision of the signals. We also assume that the prior probability p° =
Pr{w=1} =1.

The payoffs in the model are given by

u(t,w) = —(t —w)?
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Hence the optimal action for a player with posterior p on {w = 1} is to invest
at t = p.
We start the analysis by calculating the payoffs of a player that decides

the timing of her investment in isolation of other players. At the prior stage,

1/ 1\ 1/ 1 1
0_ —(_— )= =
V_2(4>+2(4) 4’

After observing her signal, her posterior becomes more informative. If

her payoff is

she observes a signal # < 0", her posterior becomes p =1 — «. If > 6%, her

posterior is p = a. Hence her payoff after observing her own signal is

Vi = —a(l-a)’—(1—-a)ad?

Notice that the loss from the decisions vanishes as the signals get accurate,
ie. VI 7 0asa 1 1. On the other hand, as o | 1/2, signals become
uninformative and V! | V0. 1/2.

Consider next the case with a large N. If all the players were able to pool
their information, then the posterior would be very informative of the true
state, and all the players would stop together at the efficient stopping time.
This follows from the fact that the number of players with a signal below
6* is a binomial random variable X°(N) (or X!(N)) with parameter a (or
1 —a)ifw=0 (or w=1). We next investigate how well the players do if
they can only observe each others’ investment decisions but not their signals.
That is, we consider the payoffs of the players in the informative equilibrium
of the game.

From Theorem 3, we know that there is an informative equilibrium that
is symmetric and in monotonic pure strategies. We denote this strategy
profile by 7* and the corresponding ex-ante payoff by V* (this is the expected

equilibrium payoff prior to observing the private signal 6).
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When a player with signal §* invests, she behaves at every stage as if she
knew that all other players have signals (strictly) above 8" with probability
1 (again, this follows from Theorem 3). In order to compute V*, we compute
first the payoff of a player with signal # that deviates to the strategy 7 =
7*(h,0") for all h € H. In other words, the deviating player just follows the
strategy of the highest possible low signal player. We denote the ex ante
expected payoff to the deviating player by V when all other players use their
equilibrium strategies. Clearly this gives us a lower bound for V*.

Denote by T the random real time at which the deviating player invests
when using strategy 7. Suppose that w = 1. Then w = max €2, and Part 1 of
Theorem 2 states that in the large game limit the last player stops at time

= 1. Part 2 of the same Theorem says that the stopping times of all signal
types converge in probability to the same real time, hence we must have
T — 1 in probability. Therefore, denoting the expected payoff conditional

on state w by V,,, we have:

f/l — 0
(in probability) as N — oc.

We turn next to the computation of Vy. To do this, we define first the
expected payoff Vy_; of the deviating player when her signal is low, i.e. when
0 < 0*. Since the informational content of each such signal is the same and
since the signals across players are conditionally independent, we know that
this expected payoff is the same as the payoff to the player with the lowest
possible signal # = 0. Since the player with the lowest signal is the first to
invest in the informative equilibrium, her payoff is the same as the payoff

based on her own signal only, and thus

Vi, =VIi=—a(1-a). (11)

On the other hand, the probability of state w = 0 conditional on a low signal

is a, and therefore
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Vo = aVo+ (1 —a) V. (12)

Combining (11) and (12), and solving for Vo gives:

Vo=—(1—a) <1+%>.

Therefore,
- 1~ 1~
V = ZVo+ =V
0t gh
11—« 1 1—a)\ ~
= — - — Vi
(35w
1_
— - 2aasN—>oo

The final step is to observe that as N — 0o, we have V' — V* in probabil-
ity. This follows from part 2 of Theorem 2, which says that the real stopping
time of all signal types (expect zero-probability case # = 0) converge to the
same time, and therefore, the deviation that we have considered will not

affect the realized payoff in the large game limit. Therefore, as N — oo,

1—-a
2
Note that we have 0 > V* > V! whenever a € (%, 1). This means that the

players benefit from the observational learning in equilibrium (V* > V1), but

Ve — —

their payoff is nevertheless below efficient information sharing benchmark due
to the informational externality (V* < 0). Furthermore, it should be noted
that V* — 0 and Vj — — (1 — «). That is, observational learning benefits
the players when w = 1, but hurts them when w = 0. Figure 1 draws the

payofts as functions of a.
< Figure 1 here >

To complete the analysis of the quadratic case, we analyze the distribution

of T. As long as t > 1 — «, but some of the uninformed players stay in the
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game, they must be indifferent between staying and investing. Therefore, we

must have

po=i(t) =t forallt > 1 — a,

where py—;(t) denotes probability that a player with a low signal assigns on
the event {w = 1} at real time t. We already concluded that T — 1 in
probability if w = 1, and therefore, if it turns out that 7 < 1, then know
that pg—;(t) = 0 for all t > T. Therefore, we can compute the hazard rate
x(t) for the investment of the last player with a low signal in the limit as

N — oo from the martingale property of beliefs:

t = po=(t) = (1 — xz(t)dt)po=i(t + dt) + xpdt - O,
or )
(1) = =
X7 (1) n
Since Pr{T <1 —¢|lw=1} — 0 as N — oo, we can write the conditional
probabilities of the event {1 € [t,t +dt) | T >t} as

0 fort<1l—«

X7(t | w:o):{
t(ll_t) forl—a<t<l1

X7t | w=1)=0fort<1.

By Theorem 2, the probability distribution that we have derived for T is
also the probability distribution for the stopping time of the last player in
the game, which we have denoted F(t | w). Figure 2 draws F(¢ | 0) with
different values of a.

< Figure 2 here >

To summarize, this quadratic binary example has demonstrated the fol-
lowing properties of our model: i) Observational learning is beneficial in high
states and harmful in low states. ii) Inefficient delays persist for all but the

highest state. iii) Almost all players invest at the same time as N — oo.

25



iv) The instant at which almost all players invest arrives with a well defined

hazard rate.

6 Comparison to related literature

Our results are quite different from related models in Chamley & Gale (1994)
and Chamley (2004). To understand why this is the case, it is useful to note
that we can embed the main features of those models as a special case of our

model. For this purpose, assume that w € {0,1}, and
v(t,0)=e v (t1)=—ce .

If it is optimal to invest at all in this version of the model, then the
investment time is insensitive to the information of the players. In other
words, investment is good either immediately or never.” Private signals affect
only the relative likelihood of these two cases. This implies that no player
ever wants to stop at any stage at some t > 0 conditional on no other
investments within (¢ — ¢, t), since otherwise it would have been optimal to
invest immediately. As a result, a given stage k ends either immediately if
at least one player stops at time ¢ = 0 and the play moves to stage k£ + 1,
or the stage continues forever and the game never moves to stage k + 1.
This means that all investment must take place at real time zero, and with a
positive probability investment stops forever even when w = 0. The models
in Chamley & Gale (1994) and Chamley (2004) are formulated in discrete
time, but their limiting properties as the period length is reduced corresponds

exactly to this description.

5We interprete here w = 1 to denote the case were it is never optimal to invest and t = 1
corresponds to the decision to never stop. To make the correspondence between the papers
exact, postponing investment forever should actually give payoff zero in both states. This
could be easily achieved by letting payoff be v (¢,0) = eiTﬁ, v(t,1) = fcefrﬁ, and

t

interpreting the choice ¢ as stopping at time = = .
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7 Conclusions

There are a number of directions where the analysis in this paper should
be extended. First, considering our leading application, investment under
uncertainty, one may view as quite extreme the modeling approach where
nothing is learnt about the optimal investment time during the game from
other sources than the behavior of the other players. Indeed, exogenous and
gradually resolving uncertainty on the payoff of investment plays an impor-
tant role in the literature on real options. The only reason why we have not
included this element in our model is that we believe it would distract atten-
tion away from our main focus. Our paper can easily be extended to cover
the case where the profitability of the investment depends on an exogenous
(and stochastic) state variable p in addition to the private information about
common market state w. In this formulation, the stage game is a stochas-
tic stopping game, where the players pick a Markovian strategy for optimal
stopping. With our modeling assumptions this is equivalent to selecting a
threshold value p; (6;) for the exogenous state variable at which to stop, con-
ditional on the signal. The stage ends at the first moment when the threshold
value of some player is hit. With our monotonicity assumptions, there is an
equlibrium with stopping thresholds that are monotonic in signals, hence a
player with a low signal stops earlier than a player with a high signal. The
substance of our results would carry over as such to this extended model.
The analytical simplicity of the model also makes it worthwhile to con-
sider some other formulations. First, it could be that the optimal time to
stop for an individual player ¢ depends on the common parameter w as well
as her own signal #;. The reason for considering this extension would be to
demonstrate that the form of information aggregation discovered in this pa-
per is not sensitive to the assumption of pure common values. Second, by
including the possibility of payoff externalities in the game we can bring the
current paper closer to the auction literature. We plan to investigate these

questions in future work.
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8 Appendix

Proof of Proposition 1. The monotonicity of 7* (hk, 9) follows directly
from MLRP and the (log-)supermodularity of v.

Denote by 7 (h*;6) the optimal (unconstrained) stopping time based on
the public history h* and the knowledge that the lowest signal amongst the

players remaining in the game after history h* is 6:
= (k. RN k gk _
7 (h*;0) := min (argr?%(]E [0 (t,w) |h*, b5 = 0] ) (13)

The difference between 7 (h*;6) and 7* (h*,0) defined in (3) is that the
former measures real time from the beginning of the game and the latter
measures time from the beginning of stage k. The relationship between the

two is:
T (hk, 0) = max (0,? (hk; 0) — Tk) . (14)

Consider an arbitrary stage £k — 1. The highest type that stops during
that stage is #*, and therefore by (3) the duration of stage k — 1 is given by

(W00 =TF — T (15)
It follows from (14) that
T(RMh0) < T4 (W), (16)
and combining (15) and (16), we have
7 (10 < T,

Consider next stage k. We have h* = h¥~1U(t*, S¥1), where S¥~! consists
o fplayers with signals in (Qk_l, Qk). Therefore, it follows from MLRP and
the (log-)supermodularity of v that

T (hk;Qk) <7 (hk_l;Qk) < Tk
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By the continuity of signal densities, we then have
?(hk;Qk—i—e) <T*
for some € > 0. But then from (14), we have
™ (W5 0" +¢) =0,

and the result follows from the monotonicity of 7* (hk; 9). ]

Proof of Theorem 1. The proof is done by using the one-shot deviation
principle. We assume that all players j # ¢ use the strategy 7* (hk, 9) after all
histories h¥. We also assume that player i uses 7 (hk,, 9) for all &' > k. We
show that under this assumption, 7* (hk, 9) is optimal for i after all histories
hk.

We show this in two steps. In the first step, we consider the optimal
stopping problem of player i with signal 6 after history stage h* in an auxiliary
problem where we require that 7(h**1 0) = 0 after all h**! where i remains
active. We show that in this auxiliary problem, 7* (hk,e) is an optimal
stopping time. In the second step, we show that 7* (hk , 0) is optimal also
when i chooses 7* (h**!,6) in stage k + 1.

We define the auxiliary problem as follows. The expected payoff of player

1 with signal § when she chooses t > 0 in stage k is given by:

VE(t,0) = E[v (t_—i—Tk,w) ‘hk,Gi:&t_] , where
t” = min <t,1}17517* (hk,ﬁj)) )

The problem is to choose a t that maximizes V* (,0). Since v (t,w) is
continuous in ¢, it follows that also V¥ (-,0) : [0, 00) Uco — R is a continuous
function.

Let T* the set of all ¢ at which 7* (hk, 9) =t for some 6.

k . . n . * kE o\ _ 1 * k o\ _
T* = {tzo.ﬂee 0.6) st e (1,0) =l (1 ,9)—15}.
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Define also
T :=T"n [O,T* (hk,ﬁ)) and ’]I‘]_i =T¢nN (7’* (hk,Q) ,oo] .

We show first that
oVE(t,0)
ot
oV (t,0)
ot
The time derivative of V¥ (,0) at t € T* can be written as:

> 0forteT! and

k
< 0fort€']1‘+.

F(t 0 : OE [v (t,w) |[hF, 0™ > 6*% (t) 0, = 0
8V(7 >IPT(9T;H>9*k(t)) [U< w)| % () ]7
ot ot
(17)
where Qrf,;‘-n is the smallest signal amongst players other than ¢:
O™ .= min 6.
JENFN

Note that when t € T*, ¢ is the optimal stopping time for type 0** (¢).
Therefore, by optimality,

OVE (t,0° (1)) OE [v (t,w) |hF, 0™ > 0** (t), 0, = 6" (t)]

= Pr (0™ > 0% (1))

ot ot

=Pr (0™ > 0" (t)) - 0=0. (18)
Consider next an arbitrary posterior belief p (w), and define V., (,0) as

the expected value of stopping at ¢, when posterior is calculated based upon

p (w) and signal 6:
Vo) (1,0) := Blo(t,w) [p(w),0; = 0].

Since we have assumed that v (¢,w) is differentiable in ¢ for all w € €,
Vi) (t,0) must also be continuously differentiable. Moreover, it is straight-
forward to show that the supermodularity (or logsupermodularity) of v (¢,w)
and MLRP together imply that

V() (t,0) Wpw) (t,0)

> ! 0

5 0= 5t >0 for all ¢ € (6,6) , (19)
OV (T, 0 OV (1,6

% < 0:%§Oforaﬂ€’€[0,0). (20)
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We apply these two equations to determine the sign of (17). If ¢ <
(>)7* (h*,6), then we have § > (<) 0** (t). Combining (18) and (19) gives
w oVE(t,0)

t
—— 2 > ()0.
ot Z (<)

Next, consider the case where t ¢ T*. Then, we must have
T <t <77,
where
7= lim 7 (0) <77 := lim 7*(h"6).
070*%(¢) 010*F(t)

If t < 7°%(0), then 6 > 6** (t), and MLRP implies that

VF(t,0) < VE (77.0) .
Similarly, if ¢ > 7* (h*,6), then 6 < §** (¢), and MLRP implies that

VE(,0) <VF(77,0).

We have now shown the following. First, V¥ (¢,0) is increasing in ¢ in the
set T* and decreasing in ']I‘i. Second, when t < 7* (hk,e) and t ¢ T*, we

have
VE(t,0) < V¥ (inf {¢' > t]|t' € T" },9),

and when t > 7* (hk, 9) and 7 ¢ T* | we have
VE@,0) < V¥ (sup {t' < t|t' €T },0).
Since V* (¢, 0) is continuous in ¢, these results imply that:
™ (h*,0) € arg max VE(t,0).

We argue next that 7* (hk , 9) remains optimal in stage £ when ¢ plays
T* (hk“,Q) in stage k£ 4+ 1. To see this, note that relaxing the constraint

7 =0 in stage k + 1 can only increase the optimal stopping time in stage k

31



(since it makes the continuation value in stage k + 1 larger). Therefore, it is
immediate that our conclusion according to which 7* (hk, (9) is preferred to
all t < 7% (h’“, 9) continues to hold when we let i play 7* (hk“, 9) in stage
k+1.

On the other hand, we know from Proposition 1 that 7* (hk“,g) =0
for all § < "', In particular, this means that if stage k ends at time
th > 77 (h*,0), we have 6 < 0" and i will in any case choose 7* (hF+,0) =
0. Therefore, for t* > 7* (hk , 0) the restriction 7(h**1,60;) = 0 is irrelevant
because it is optimal to choose 7* (th, 0) = 0.

We have now shown that if all players j # i play 7*(h*',6_;) in all stages
k' =0,1,..., and if 7* (#) is optimal for 4 in all stages k' > k, then 7*(h*', (0)
is optimal for 7 in stage k. Since 7* (h’“ , 9) is clearly also optimal for 7 in a
stage where she is the only player left in the game, the proof is complete by
backward induction.

Proof of Proposition 2. For n = 1, this result is implied by Theorem 5
of Gnedenko (1943). m
To extend the result to n > 1, assume that [V{V, ..., V"] KA [Yre, ..., Y&

for some k£ > 1. Consider ijffl. Since the signals are statistically indepen-

dent, 5V, N1! has the same distribution as {V;¥ | V¥ > YN}, Since
YN A Y, by assumption, we know from the properties of the exponen-
tial distribution that also Yk]f{l converges to an independent exponentially
distributed variable. Therefore, Y;, 2 Y;>1. The result now follows from
induction. m

Proof of Lemma 1. Note first that U(- | 2,,) is a continuous function on
a compact set and therefore by Weierstrass’ theorem ¢, (z,) is non-empty.
For the uniqueness, we use Theorem 1 in Araujo & Mas-Colell (1978). To
this effect, we note that v (¢, w) is continuously differentiable in ¢ for almost
every (t,w) and m(w | 2,) is continuously differentiable in z,. Therefore U(t |
zp) is continuously differentiable in (¢, z,). Furthermore, MLRP and the
(log)supermodularity of v (¢,w) imply that for ¢ and ¢ # t such that U(¢ |
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zn) =U(t' | z,), we have:

OWU ] 2) —UE | 20))
0z

£ 0.

Hence the conditions for Theorem 1 in Araujo & Mas-Colell (1978) are sat-
isfied and the claim is proved. =

Proof of Lemma 2. Consider the sequence {tflv (Y1 ey yn)}?zl. Since

/WN(U) | (Y1, -y Yn))dw =1 for all N,
)
and v (t,w) is bounded in w, Corollary 2 implies that for every t,
dim UN(E| (g1, 90)) = Ut | ). (21)

Moreover, since v (t,w) is differentiable in ¢ and this derivative is bounded

for all w, we have

li =
N ot ot ’

and therefore the convergence in equation (21) is uniform. Since UM (¢ |
(Y1, .., Yn)) is a continuous function on a compact set for all NV, it has a
maximum value. Uniform convergence then implies that

lim (mtax (UMt (v, ,yn)))> = Hl?XU(t | Yn) -

N—oo

Take any sequence {t3}7  such that t} € argmaxUN(t | (y1,..., yn))
for every N. Since UN(t | (y1, ..., yn)) converges uniformly to U (¢ | y,), and

the latter has a unique maximizer ¢, (z,) by Lemma 1, we have
=ty (2n) -

The proof is identical for the sequence {¢& (Zn)}(;\,ozl- n
Proof of Proposition 3. Fixn and (yi, ..., y,). Call the player with the i

lowest signal player . Her normalized signal is y;. Consider her information
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at the time of stopping. By (3), she conditions on all the other remaining
players having a signal higher than hers. Since the informative equilibrium
is monotonic, all the players that have signals above her signal are active.
Therefore, i conditions on her signal being the k' lowest, where we must
have k < 1. It then follows from Lemma 2 that when N — oo, the optimal
stopping time of ¢ conditional on her information at the time of stopping
converges to t (z;), where k < i. By MLRP and (log)supermodularity of v,

we have ty (z;) > t; (z), and therefore,
A}E{l)o TN (yu, - yi) > i (2) - (22)
Assume next that
]\P_I};oﬂN (Y15 41) >]\P_1207g1 (Y1, s i) - (23)

This is the case, where player i stops at time t* > 0 in some stage k (for
N high enough). This means that i has the lowest signal among the active
players at the time of stopping so that she correctly conditions on having the

i'" lowest signal. Since her conditioning is correct, Lemma 2 implies that
Aim TN (g1, oo i) = ti (2) - (24)
Combining equations (22) - (24), we have
Aim TN (g, y) = max | lim T (g1, mi) i (21) ] -
By the same arguments, we have

lim T (y1) =t (z1) = T1 (1) -

N—oo

Therefore, it follows by induction that for all i =1,....n
Nli_f)nooﬂN (Y1, - yi) = max [Ty (Y1, .., vi) 1 (25)]
which is equivalent to

A}im TN (g1, .. ys) = max ty (zn) .

n'=1,...,n
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|
Proof of Theorem 2. In a symmetric equilibrium, no information is
transmitted before the first exit. By the monotonicity of the equilibrium
strategies, a lower bound for all exit times and hence also for T (w) for all
N is t(0). The fact that Y; has full support on the positive real line implies
immediately that the distribution of the first exit time has support [t (0),@] .
By Corollary 3, we know that TV A T,. Therefore it is sufficient to
consider the optimal decisions when players know their position in the or-

dering of the signals. Suppose a signal § > 0 is the a(N)™ lowest amongst

a(N)
N

implies that the true state w can be found from the equation

N signals. Let a = . Then as N — oo the weak law of large numbers

GO,w) = a.

By our MLRP assumption, this is sufficient to identify w. Therefore all
players with signals § > 0 know the state when they invest (in the limit as
N — o0). Therefore imPr{T" (w) > w} = 1. This establishes part 1. of the
theorem.

The same logic yields immediately

lim Pr{|T"(w,0) — T"(w,0')] <e} =1 forall e >0,

N—oo

as claimed in part 2 of the Theorem. m
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Figure 1: Payoffs as functions of signal precision in the quadratic binary example.
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Figure 2: Probability distribution of the stopping time of the last player with various signal
precisions.
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