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Abstract

We analyse optimal stopping when the economic environment changes because

of learning. A primary application is optimal selling of an asset when demand is

uncertain. The seller learns about the arrival rate of buyers. As time passes without

a sale, the seller becomes more pessimistic about the arrival rate. When the arrival

of buyers is not observed, the rate at which the seller revises her beliefs is affected

by the price she sets. Learning leads to a higher posted price by the seller. When

the seller does observe the arrival of buyers, she sets an even higher price.
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1 Introduction

Models of optimal stopping capture the trade-off between known current payoffs and the

opportunity cost of future potentially superior possibilities. In many of their economic

applications, the environment in which the stopping decisions are taken is assumed to be

stationary. In the standard job search model, for example, a rejected offer is followed by

another draw from the same distribution of offers. See [19] for a survey. The predictions

of these models are at odds with empirical observations. Prices of houses decline as a

function of time on the market; see e.g., [17]. Reservation wages of unemployed workers

decline in the duration of the unemployment spell; see e.g., [14].

We propose a simple and tractable model of optimal stopping where the economic

environment changes as a result of learning. Rather than using the deterministic model

of optimal stopping typically used in optimal search models, we generalize the other

canonical model of stopping in economic theory, where stopping occurs probabilistically

(as in e.g., models of R&D).

We cast the model in the language of the classic problem of how to sell an asset ( [10]).

(In the concluding section, we discuss alternative interpretations of the model.) A seller

posts a take-it-or-leave-it price; potential buyers arrive according to a Poisson process

and observe the posted price. They buy if and only if their valuation exceeds the posted

price. The seller is uncertain about the arrival rate of buyers. The seller does not observe

whether a buyer is present: she sees only whether a sale occurs or not. The seller updates

her beliefs about the arrival rate in a Bayesian fashion, becoming more pessimistic about

future arrivals after each period when a sale does not occur. The rate at which beliefs

decline depends on the current posted price. Hence, when choosing the current price of

her asset, the seller controls her immediate expected profit, conditional on a sale, as well

as the beliefs about future demand if no sale occurs.

Even though our model is a standard Bayesian learning model, the belief dynamics are

a little unfamiliar. When we describe the evolution of beliefs over time, we are implicitly

conditioning on the event that no sale occurred in the current period. Since this event

is bad news about the prospect of a future sale, the seller becomes more pessimistic over

1



time. The seller can control the downward drift of her beliefs through her choice of price.

We identify two key effects. A more pessimistic future implies a lower current value

of being a seller and hence a lower current price. We call this feature the controlled

stopping effect. By setting a lower price, the seller can cause her beliefs to fall further in

the event of no sale occurring. A more pessimistic seller has a lower value than a more

optimistic seller—there is a capital loss from learning. Holding fixed the probability of

a sale occurring, the seller has an incentive to increase her price in order to reduce this

capital loss. We call this feature the controlled learning effect.

Which effect dominates? Does learning cause the seller to raise or lower her price,

relative to the case when no learning occurs? The benchmark is a model where the rate of

contact between the seller and buyers is fixed at her current expected level. We show that

in our model, the controlled learning effect dominates: the optimal posted price exceeds

the price posted in the equivalent model with no learning.

We gain further insight into the effect of learning by looking at the case where the

seller does observe the arrival of buyers. In this case, the updating of the seller’s beliefs

is independent of the price that she sets. We show that the seller optimally sets an even

higher price than when she cannot observe arrivals. The key difference when arrivals are

observed is that now the seller can raise her price after positive news i.e., after a buyer

arrival, even when there is no sale. We therefore obtain an upper bound for the price

increase resulting from controlled learning, when arrivals are not observed: it is no larger

than the price increase resulting from the observability of arrivals.

A number of papers have studied the problem of a monopolist who learns about the

demand it faces through its pricing experience: see [20], [16], [9], [1] and [18].1 The

general difficulty in analysing this type of situation is the updating that occurs when the

seller observes that the object has failed to sell at a particular price. There are certain

valuation distributions for which updating can be done analytically. Even for these cases,

the amount of progress that can be made is minimal.

1In these papers, the demand curve is fixed and the learning process narrows down the initial uncer-
tainty about it. In other papers, the object of the learning is not constant, but changes over time in some
random way. See, for example, [3], [21] and [12].
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A notable exception is [23], who provides a characterization of the expected value

of information and the direction of experimentation in several cases of learning by a

monopoly seller. There are two main differences between our work and Trefler’s. First,

we consider the sale of a single item; as a result, the monopolist faces a stopping problem

(albeit one where stopping occurs probabilistically). In Trefler’s model, the true (but

unknown) economic environment remains stationary across periods, and the model is

thus one of repeated sales. Secondly, in out set-up, the Bellman equations are first-order

differential equations; they are therefore particularly easy to analyse. This allows us to

give more characterization than Trefler of the seller’s optimal policy.

Our paper is also related to the literature on search with learning. [6], [24] and

[22] analyse an optimal stopping problem when wage offers come from exogenous sources.

[2] analyse a matching model where each match results in a current immediate payoff

and reveals new information about the productivity of the partners. In all these papers,

beliefs change i.e., the environment is non-stationary; but the change in beliefs is not

affected by the action chosen by the economic agent. We develop a tractable framework

in which agents affect their learning through their actions.

Finally, there are other papers, from a number of different fields, that involve learning

about a Poisson process. Amongst others, see [8], [15], [13], [4], and [5].

The paper is organised as follows. Section 2 presents the model. In section 3, we look

at a couple of benchmarks without learning, which are useful when assessing the effects

of learning in the model. Section 4 characterises the optimal pricing policy when learning

takes place. Section 5 looks at the case when the seller can observe the arrival of buyers

to the market. Section 6 discusses alternative interpretations of the model and concludes.

The appendix contains longer proofs.

2 The model

Consider a seller setting a sequence of take-it-or-leave-it prices over time for a single unit

of a good of known quality. Time is discrete. Time periods are denoted by t = 0, 1, . . . ,∞;
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each time interval is of length dt > 0, which we take to be arbitrarily short. It is commonly

known that the seller’s valuation is 0. The seller announces at the start of each period

the price for that period. If a buyer announces that she is willing to buy at that price,

then the seller sells and the problem stops. The seller is infinitely lived and discounts the

future at rate r.

The probability that the seller encounters a buyer in a given period depends on two

factors: whether a buyer is present during the period; and whether that buyer is willing

to pay the seller’s posted price.

Buyers arrive randomly to the market according to a Poisson process. With an arrival

rate λ, in any given time interval (t, t+ dt], there is a probability λdt that a buyer arrives

to the market; and a probability of O((dt)2) that more than one buyer arrives to the

market. Since we take the continuous-time limit, the realization of two buyers arriving is

ignored. There are two states. In the low state L, the Poisson arrival rate is λL > 0. In

the high state H , the Poisson arrival rate is λH > λL. Let ∆λ := λH − λL. Each buyer

is present (if at all) for one period, and then disappears.

Buyers’ valuations are drawn independently from a distribution F (·) with a density

function f(·). Given that the buyers are short-lived, they purchase the good immediately

if and only if their valuation exceeds the price. Conditional on a buyer being present, the

probability of this is 1− F (p). We assume that F (p) has an increasing hazard rate.2

The seller does not observe whether a buyer is present: it observes only when a sale

occurs. (We comment further on this below.) So in the seller’s view, the probability of a

sale in any given period, given an arrival rate λ ∈ {λL, λH}, is λdt(1− F (p)).

The state variable in this problem is the seller’s scalar belief π ∈ [0, 1] that the state

of the world is high. The only event that is relevant for updating the seller’s beliefs is

when no sale has occurred in a period. In the continuous time limit dt → 0,

dπ(t) := π(t+ dt)− π(t) = −π(t)(1− π(t))∆λ(1− F (p))dt ≤ 0. (1)

2We could allow the overall arrival rate of buyers to respond to the seller’s price, with little change
to the analysis.
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So the seller becomes more pessimistic about the state of the world when no sale occurs.

The seller affects the updating of beliefs through the price that it sets: a high price implies

a higher probability of no sale occurring, and a higher posterior.

One modelling assumption deserves further comment: the seller observes only sales

and not the arrivals of buyers. (For example, the seller places an advertisement in a

newspaper each period; the seller cannot tell if a buyer has seen the advertisement.) This

assumption ensures two things. First, the probability of stopping, λdt(1 − F (p)), is of

order dt. Secondly, the change in beliefs dπ also is of order dt. In the continuous-time

limit, as dt → 0, this ensures that the dynamic programming problem yields a differential,

rather than a difference equation; this makes the analysis much simpler. In Section 5, we

compare this model to the one where arrivals are observed.

3 A non-learning benchmark

We start with a benchmark intertemporal model where the seller’s belief π does not change

over time. Since the problem remains the same in all periods, the dynamic programming

problem of the seller is particularly easy to solve. This solution will serve as a natural point

of comparison to the model that incorporates learning i.e., with π changing over time.

We refer to this case as the repeated problem. (See also [11]; our repeated benchmark

corresponds to his “naive learner” case.)

For the repeated problem, the seller’s Bellman equation is

VR(π) = max
p

VR(p, π) (2)

where

VR(p, π) :=

{

λ(π)(1− F (p))p

r + λ(π)(1− F (p))

}

.

The first-order condition for the repeated problem is

p−
1− F (p)

f(p)
= VR(π). (3)
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For any π, eq. (3) has a unique solution, because F (·) has an increasing hazard rate.

Denote this solution as pR(π).

It will be helpful for later arguments to establish a couple of facts about pR(π). First,

denote the static price as pS; it solves pS − (1− F (pS))/f(pS) = 0. Since VR(·) ≥ 0, the

following result is immediate.

Proposition 1 The repeated price is greater than the static price: pR(π) ≥ pS for all

π ∈ [0, 1].

The intuition is straightforward: the prospect of continuation in the repeated problem

acts as an opportunity cost to a current sale; see eq. (3). This opportunity cost leads the

seller to set a higher price.

Next, we establish the monotonicity of the repeated price pR(π).

Proposition 2 The repeated price pR(π) is non-decreasing in the level of the seller’s

belief π for all π ∈ [0, 1].

Proof. Total differentiation of eq. (3) means that pR(π) is non-decreasing in π iff VR(π)

is non-decreasing in π. Since the value in any program is realized only at the stopping

moment, the value of any fixed policy must be increasing in the arrival rate and hence π.

Hence the optimal policy starting at π yields a higher value when started at state π′ > π

and as a consequence VR(π
′) > VR(π). �

The proof relies on two facts: the prospect of continuation acts as an opportunity cost

to a current sale; and the value of continuation increases with the belief π. Hence the

repeated price increases in π.

4 The effect of learning

Consider next the model with learning: the dynamic problem. The crucial difference

compared to the repeated problem is that now π evolves over time according to eq.

(1). The seller anticipates this and adjusts the optimal price to control both the current

probability of a sale occurring and the future value of sales.
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We show in the appendix (see Lemma 1) that VD(π) is convex; as a result, VD(π)

is differentiable almost everywhere. Hence we can use a Taylor series expansion for

VD(π+ dπ), and take the continuous-time limit dt → 0, to write the Bellman equation as

VD(π) = max
p

{

VR(p, π)−
∆λ(1− F (p))π(1− π)V ′

D(π)

r + λ(π)(1− F (p))

}

. (4)

(See the appendix for a derivation of this equation.) Eq. (4) shows that the dynamic value

function is equal to a repeated value, VR(pD, π) (evaluated at the optimal dynamic price,

pD), minus a term that arises due to learning. The learning term is the present value of

the infinite stream of the capital losses due to learning, using the effective discount rate

r + λ(π)(1− F (p)).

The capital loss from learning has two parts. π(1− π)V ′

D(π) represents the impact of

a unit of learning on future profits. It is unaffected by the current choice of p and hence

we ignore its effect for the moment. The term

−
∆λ(1− F (p))

r + λ(π)(1− F (p))

is affected by p in two ways. The first way measures the effect of p on the effective

discount rate r + λ(π)(1− F (p)):

−
∆λλ(π)f(p)(1− F (p))

(r + λ(π)(1− F (p)))2
≤ 0,

We call this effect the controlled stopping effect. It captures the increasing pessimism of

the seller. Since it has a negative sign, this effect on its own leads to a lower posted price

by the seller.

The second way is related to the change in the seller’s posterior, π(1 − π)∆λf(p),

resulting from a change in p, normalised by the effective discount rate r+λ(π)(1−F (p)):

∆λf(p)

r + λ(π)(1− F (p))
≥ 0.

We call this effect the controlled learning effect. This term is positive, and so on its own
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leads to a higher posted price by the seller.

In this model, the sum of these two effects is

r∆λf(p)

(r + λ(π)(1− F (p)))2
≤ 0.

That is, the controlled learning effect dominates the controlled stopping effect.3

Hence the first-order condition for the dynamic problem is

p−
1− F (p)

f(p)
= VR(p, π) +

∆λf(p)

r + λ(π)(1− F (p))
π(1− π)V ′

D(π). (5)

Eq. (5) can be contrasted with eq. (3). Since VD(π) is non-decreasing (from the same

argument used in the proof of Proposition 2), the price posted by the seller who learns

about the state of the world is above the price of the non-learning seller. As a result, the

probability that the learning seller makes a sale is below that of the non-learning seller.

We summarise this discussion in the following Theorem.

Theorem 1 In the case of learning about the arrival rate of buyers, the learning price

pD(π) is greater than the repeated price pR(π) for all π ∈ [0, 1].

We can compare this result to [23]’s. By Theorem 4 of Trefler, the seller moves her

price in the direction that is more informative, in the Blackwell sense, relative to the

static price pS. In our model, the expected continuation value of information, ( [7]) is

I(p, π) := E[VD(π + dπ)]− VD(π) = −λ(π)(1− F (p))

(

V (π) +
∆λ

λ(π)
π(1− π)V ′(π)

)

dt,

ignoring terms in (dt)2. Notice that this expression conditions on no sales in the period—

an event which is bad news for the seller. So, with this definition, the expected continu-

ation value of information is negative. Hence

∂I(p, π)

∂p
= λ(π)f(p)

(

V (π) +
∆λ

λ(π)
π(1− π)V ′(π)

)

dt ≥ 0.

3This will not be the case in all models. In an earlier version of this paper, we considered also the
case where the seller learns about the distribution from which buyers’ valuations are drawn. We showed
that either effect may then dominate.
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This means that a higher price is more informative, in the Blackwell sense. Trefler’s result

therefore implies that pD(π) ≥ pS. This is indeed what we find. We know from Propo-

sition 1 that the repeated price is greater than the static price: pR(π) ≥ pS; Theorem 1

tells us that the dynamic price is higher still. The comparison between the repeated and

dynamic price does not appear in Trefler, since he does not consider the sale of a single

asset.

The next two results give some intuitive properties of the seller’s optimal decision.

Property 1 (Monotonicity) The dynamic learning price, pD(π), and the probability of

sale, λ(π)(1− F (pD(π))), are non-decreasing in the seller’s belief π.

Proof. See the appendix. �

Property 2 (Discounting) The dynamic learning price pD(π) is decreasing in the dis-

count rate r.

Proof. Eq. (9) implies that pD(π) is decreasing in r iff rVD(π) is increasing in r. To

show the latter, differentiate the Bellman eq. (4), using the Envelope Theorem:

∂

∂r
(rVD(π)) = max

p

{

− λ(π)(1− F (p))
∂VD(π)

∂r
− π(1− π)∆λ(1− F (p))

∂2VD(π)

∂π∂r

}

.

Basic arguments establish that ∂VD(π)/∂r ≤ 0 and ∂2VD(π)/∂π∂r ≤ 0. The result

follows. �

An infinitely patient seller (r = 0) will set his price at the upper bound of the support of

the valuation distribution. In contrast, a myopic seller (r = ∞) will set his price at the

static level, which is clearly lower. The dynamic price moves between these two extremes

monotonically in r.4

4.1 Two-point example

We can illustrate these results in a simple case where buyers’ valuations can take two

values, v > v > 0, with probabilities β ∈ (0, 1) and 1 − β respectively. For the problem

4Perhaps surprisingly, the dynamic price is not monotonic in the arrival rate parameters λH and λL,
a fact confirmed in numerical examples.
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V (π)

b

π∗ π

Figure 1: The value function with a 2-point valuation distribution

to be interesting, assume that βv < v, so that in the static problem, the seller would set

a price equal to v. Also assume that if the seller knows that λ = λH , her optimal price is

v; but if the seller knows that λ = λL, her optimal price is v.

By standard arguments, the seller’s price strategy then takes a simple form: set the

price at v when the posterior is above some cut-off; and v for posteriors below this level.

Let the cut-off level of the posterior be π∗ ∈ (0, 1). We illustrate the seller’s value function

in figure 1; in the appendix, we show how to determine the seller’s value function and

the cut-off π∗. The value function is a strictly convex function of π in the region π ≥ π∗,

while for π < π∗, it is a linear function.

For a seller who is certain of the arrival rate, the optimal price is v for all λ ≥ λ0, and

v for λ < λ0, for some λ0. (See the appendix for a derivation of λ0.) Then define π0 to

be such that π0λH + (1 − π0)λL := λ0. We show in the appendix that π∗ ≤ π0: that is,

learning causes the seller to set a higher price, as Theorem 1 predicts.
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5 Observed arrivals

Now suppose that the state of the world i.e., λ is not known, but that the seller observes

when buyers arrive to the market. The seller’s beliefs are updated according to Bayes’

rule. Given an initial belief π, the posterior after an arrival is

π + dπ1 =
πλHdt

πλHdt+ (1− π)λLdt
=

λH

λ(π)
π. (6)

Notice that π + dπ1 > π: the seller becomes more optimistic after an arrival. In fact,

dπ1 = π(1− π)
∆λ

λ(π)
.

The posterior after no arrival is

π + dπ0 =
π(1− λHdt)

π(1− λHdt) + (1− π)(1− λLdt)
=

1− λHdt

1− λ(π)dt
π. (7)

Since π + ∆π0 < π in this case, the seller becomes more pessimistic in the event of no

arrival:

dπ0 = −π(1− π)
∆λdt

1− λ(π)dt
.

Note two things about the seller’s beliefs in this case. First, since beliefs must be a

martingale, the expected posterior equals the prior: λ(π)dt(π + dπ1) + (1 − λ(π)dt)(π +

dπ0) = π. Secondly, beliefs are unaffected by the price that the seller sets.

After ignoring higher order terms in dt, the seller’s Bellman equation can be written

as:

(1 + rdt)U(π) = max
p

{

λ(π)dt

(

p(1− F (p)) + F (p)U(π + dπ1)

)}

+ (1− λ(π)dt)U(π + dπ0).

where U(·) is the value function when the seller observes the arrivals of buyers.

Notice that the term in the second line of this expression does not depend on the
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seller’s price p. Hence the first-order condition (which is necessary and sufficient for an

interior optimum) is

p−
1− F (p)

f(p)
= U(π + dπ1). (8)

Denote the solution to this first-order condition pO(π). In the next Proposition, we

compare eq.s (5) and (8) to conclude that the seller’s price is higher when it can observe

the arrivals of buyers.

Proposition 3 pO(π) ≥ pD(π): the seller’s price is higher when it observes the arrival

of buyers.

Proof. First note that U(π) ≥ VD(π) for all π ∈ [0, 1] (with strict equality when π ∈

{0, 1}: the seller’s value when it observes buyers’ arrivals (i.e., has more information) is

never less than when it cannot. Secondly, recall that VD(π) is a convex function. The first

order condition for the dynamic problem with unobserved arrivals may be alternatively

written as:

pD −
1− F (pD)

f(pD)
= VD(π) + dπ1V

′

D(π),

where the expression for dπ1 has been substituted. Using the first two facts stated at

the start of the proof, it follows that VD(π) + ∆π1V
′

D(π) ≤ U(π + dπ1). This proves the

proposition. �

The proof of the Proposition is illustrated in figure 2. The first-order condition (8)

shows the intuitive fact that, when the seller observes arrivals, the price is based on the

opportunity cost of a sale when an arrival occurs. (The price when no arrival occurs is

irrelevant.) In contrast, when the seller does not observe arrivals, the price is based on

an opportunity cost conditional on no sale occurring. This involves a capital loss from

learning, dπ1V
′

D(π): the marginal change in the seller’s value arising from the change in

the seller’s beliefs. Bayes’ rule tells us that the downward drift in beliefs following no sale,

when arrivals are not observed, is proportional to the upward jump in beliefs when an
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π

U(π)

VD(π)

π + dπ1

U(π + dπ1)

VD(π) + dπ1V
′

D(π)

Figure 2: The proof of proposition 3

arrival is observed. The factor relating the two is the probability of a sale λ(π)dt(1−F (p))

with unobserved arrivals.

This result establishes an upper bound for the price that the seller charges when

arrivals are unobserved. The extent to which learning is controlled when arrivals are

not observed is bounded above by the price increase resulting from full observability of

arrivals.

6 Conclusion

We have written the model in terms of a seller learning about demand for her good.

The model can easily be generalized to accommodate other standard economic models.

For example, we can interpret the model as a job search problem when an unemployed

worker sets his reservation wage while learning about employment opportunities. By

introducing a flow cost for actions, it is possible to transform the model of learning about

arrival rates into a model of R&D where the true success probability is initially unknown.

Furthermore, there is no particularly compelling reason to concentrate only on Bayesian
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learning models. The change in posteriors could equally well reflect accumulation of past

accumulated actions. Hence this model can be used as a basis for a non-Poisson model

of R&D.5

The paper is written in terms of ever more pessimistic continuation beliefs. Obviously

we could have taken an application where continuation beliefs drift upwards conditional

on no stopping. As an example, consider the maintenance problem of a machine whose

durability is uncertain. (Or the problem of finding the optimal effort level to demand

from an agent or seller.) As long as the machine does not break down, beliefs about its

longevity become more optimistic. Apart from the obvious change in signs, the controlled

stopping and learning effects are present in such models as well.

Appendix

Lemma 1 VD(π) is convex in π.

Proof. Consider two points, π and π′ and let πα := απ + (1 − α)π′. We want to show

that for all π, π′ and πα, we have VD(π
α) ≤ αVD(π) + (1 − α)VD(π

′). Denote by pα the

path of optimal prices starting from πα. Denote by WH(p) the expected profit from an

arbitrary path of prices p conditional on the true state being λ = λH and similarly for

WL(p). Then we have VD(π
α) = παWH(pα) + (1− πα)WL(pα). We also know that

VD(π) ≥ πWH(pα) + (1− π)WL(pα),

VD(π
′) ≥ π′WH(pα) + (1− π′)WL(pα)

since pα is a feasible price path.

5A previous version of this paper includes such an application and is available from the authors upon
request.
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Hence

αVD(π) + (1− α)VD(π
′) ≥ α(πWH(pα) + (1− π)WL(pα))

+ (1− α)(π′WH(pα) + (1− π′)WL(pα))

= (απ + (1− α)π′)WH(pα) + (1− απ − (1− α)π′)WL(pα)

= παWH(pα) + (1− πα)WL(pα) = VD(π
α).

This proves the claim. �

The continuous-time Bellman equation

In section 4, we state the continuous-time Bellman eq. (4). We now show how this

Bellman equation arises as the limit of a discrete-time Bellman equation. In discrete

time, the Bellman equation is

VD(π) = max
p

{

λ(π)dt(1− F (p))p+ (1− rdt)
(

1− λ(π)dt(1− F (p))
)

VD(π + dπ)
}

.

Noting that VD(·) is differentiable, write

VD(π + dπ) = VD(π) + dπV ′

D(π) + (dπ)2V ′′

D(π) + . . .

Next note that dπ is of order dt. Since we take the limit dt → 0, ignore terms in (dt)2 or

higher. The Bellman equation is then

VD(π) = max
p

{

λ(π)dt(1− F (p))p+
(

1− rdt− λ(π)dt(1− F (p))
)

VD(π) + dπV ′

D(π)
)

.

Substituting from eq. (1) for dπ and re-arranging, we arrive at eq. (4).
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Proof of Property 1

To prove the first part, rewrite the first-order condition (5) as

(1− F (p))2

f(p)
=

rVD(π)

λ(π)
(9)

Eq. (9) implies that pD(π) is non-decreasing in π iff rVD(π)/λ(π) is non-decreasing in π.

But

∂

∂π

(

rVD(π)

λ(π)

)

=
r

λ(π)2

(

π∆λ

(

V ′

D(π)−
VD(π)

π

)

+ λLV
′(π)

)

;

by the facts that VD is increasing and convex in π, this is non-negative and the result

follows.

To prove the second part, consider the Bellman equation:

rVD(π) = max
p

{

λ(π)(1− F (p))
(

p− VD(π)− π(1− π)
∆λ

λ(π)
V ′

D(π)
)

}

≡ P (π)Λ(π)

where P (π) ≡ λ(π)(1− F (pD(π))), Λ(π) ≡ pD(π)− VD(π)− π(1− π)
∆λ

λ(π)
V ′

D(π).

Then P ′

D(π) = (rV ′

D(π)− PD(π)Λ
′(π))/Λ(π), assuming that Λ 6= 0. From the first-order

condition, Λ(π) = (1−F (pD(π)))/f(pD(π)). By assumption, (1−F (p))/f(p) is decreasing

in p. From the first part of the Property, p′D(π) ≥ 0. This implies that Λ′(π) ≤ 0. �

The numerical example in section 4.1

We assume that if the seller knows that λ = λH , its optimal price is v; but if the seller

knows that λ = λL, its optimal price is v. This is equivalent to

βλHv

r + βλH

≥
λHv

r + λH

>
λLv

r + λL

≥
βλLv

r + βλL

. (10)
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For π ≥ π∗, the seller’s value function is the solution to the ODE

π(1− π)∆λV ′(π) +

(

r

β
+ λ(π)

)

V (π)− vλ(π) = 0.

The general solution to this ODE is of the form

V (π) = k1

(

1− π

π

)

r+βλH
β∆λ

π +
βλLv

r + βλL

+
rβ∆λv

(r + βλL)(r + βλH)
π

for π ≥ π∗ > 0. The first term represents the option value from learning to the seller. (k1

is a constant of integration that will be determined below.) It is a convex function of π.

For π < π∗, the seller sets its price at v; its value function is then given by the solution

to a second ODE: π(1− π)∆λV ′(π) + (r + λ(π))V (π)− vλ(π) = 0. The general solution

to this ODE is of the form

V (π) = k2

(

1− π

π

)

r+λH
∆λ

π +
λLv

r + λL

+
r∆λv

(r + λL)(r + λH)
π.

The first term represents the option value from learning to the seller. It is unbounded

as π approaches zero; hence the constant of integration k2 must equal zero. In words,

the seller has no option value when π ≤ π∗. The reason is that there is no prospect of

the seller’s posterior increasing above π∗; hence the seller’s price is constant (equal to v)

once the posterior falls below π∗. There is then no option for the seller to value. So, for

π < π∗,

V (π) =
λLv

r + λL

+
r∆λv

(r + λL)(r + λH)
π.

There are two remaining parameters to determine: k1 and the optimal boundary π∗. Since

π∗ is chosen optimally, value matching and smooth pasting apply; these two boundary

conditions are sufficient to determine the remaining parameters. In particular,

π∗ =

(

− (v − βb̄)r2 + (β(v − v)λL − (v − βv)λH)r + β(v − v)λLλH

)

λL
(

− (v − βv)r2 + β(v − v)(λL + λH)r + β(v − v)λLλH

)

∆λ
.
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Let λ0 be such that

βλ0v

r + βλ0

=
λ0v

r + λ0

, i.e., λ0 =
r(v − βv)

β(v − v)
.

For a seller who is certain of the arrival rate, the optimal price is v for all λ ≥ λ0, and

v for λ < λ0. Then define π0 to be such that π0λH + (1 − π0)λL = λ0. If π∗ ≤ π0, then

uncertainty causes the seller to set a higher price in this case with a two-point valuation

distribution. Lengthy but straightforward calculation shows that this inequality holds if

v

r + λH

<
βv

r + βλH

which was assumed at the outset: see the inequalities in (10). In summary: learning

about an unknown arrival rate causes the seller to set a higher price.
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