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Abstract

We analyze an affiliated common values auction with costly participation with an unknown

number of competing bidders. We call such auctions informal auctions. We contrast the sym-

metric equilibria of informal first-price auctions with the well-understood symmetric equilibria

of formal auctions where the number of entrants is common knowledge at the bidding stage.

With endogenous entry, the informal first-price auction often yields a higher expected payoff

than any of the standard formal auctions. JEL Classification: D44

1 Introduction

Entering an auction often entails significant costs. In addition to the opportunity cost of time and

effort spent on being physically present at an auction site, acquiring information about one’s own

valuation for the good is often costly. On top of this, the preparation of bids may be costly as a

result of concerns for due diligence. If entry costs are sunk at a stage where the eventual number of

participants in the auction is unknown, it is natural to consider the performance of various auction

formats with a random number of bidders. We call such auctions informal auctions.

In this paper, we show that accounting for this uncertainty leads to new types of bidding

equilibria and to new revenue results in single object auctions with affiliated common values. In

particular, we demonstrate the superior performance of first-price auctions in common value auctions

with an undisclosed number of bidders when entry costs are significant.

The previous literature on auctions with costly participation has focused on sequential decisions

by the bidders. Entry decisions are taken in the first stage. In the second stage, all entering bidders

see the realized number of participants and bid optimally in the ensuing auction. In this paper,
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we relax the assumption that the set of bidders is common knowledge at the bidding stage. In

an informal auction, each individual bidder knows only the equilibrium entry strategy, but not the

realized number of participating bidders at the time of choosing her bid. This auction format is

meant to capture open selling procedures where interested bidders are invited to submit bids and

the highest bidder wins and pays her own bid.

With correlated values, different types of bidders perceive the value of the good and their

competitive environment differently. By affiliation, bidders with higher signals are intrinsically more

optimistic about the value of the good. Similarly by affiliation, they believe that other bidders are

more likely to be optimistic. If bids are increasing in signal, this means that bidders with high

signals face more aggressive bidding from other bidders. Of course, these two different effects are

present in auctions without entry costs. The second effect gains in importance once we add the

entry costs to the model. If the cost is sunk before the auction takes place, losing to competing

bidders becomes a more important consideration. We show that in any symmetric equilibrium of

the auction models that we consider bidders with higher signals pay the entry cost with a higher

probability than the lower types but in many cases lower types also enter. We show that uncertainty

and more importantly different beliefs about the number of opponents give rise to non-monotonic

bidding in the sense that participating bidders with high types sometimes lose to lower types at the

auction stage.

We concentrate on symmetric equilibria of such models. By this solution concept, we emphasize

settings where the set of potential bidders is not well known in advance. Examples of such cases

include internet auctions and takeover bid contests. If the set of truly interested potential bidders

is not known in advance, any mechanism based on eliciting all bidders’ types fails if there are costs

for contacting the potential bidders.

We consider two different types of entry costs. In our main model, potential bidders have already

observed a signal on the value of the object when deciding whether to pay the entry cost. We call

this the interim entry model. In the appendix, we also discuss the ex ante entry case where the cost

is paid at an initial stage where all potential bidders are symmetrically informed. In both of these

formats, bids are decided before the uncertainty on other potential bidders’ participation decisions

is resolved.

The analysis of such auctions is hard because in contrast to the case of formal auctions, it is

possible that the game has no symmetric equilibria in monotone strategies.1 Without monotonicity,

it is not clear how one should proceed in the standard affiliated model with a continuum of signals

for each bidder as in Milgrom and Weber (1982).

1Landsberger (2007) is an early paper showing that existence of monotone equilibria often fails in auctions with

participation costs.
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In order to make progress, we consider a finite mineral rights model where the unknown common

value of the object is a binary random variable. The signals are drawn from a finite set and they are

assumed to be independent across the potential bidders conditional on the true value of the object.

In an informal auction, each bidder is uncertain about the number of competing bidders. With

correlated signals, different types of bidders have different beliefs on the type profiles and realized

numbers of their competitors. Two types of non-monotonicities emerge. Entry decisions may be

non-monotonic in the sense that multiple types of bidders may enter with positive probability, and

the bidding strategies may be non-monotone in the sense that a bid from a lower type wins over a

bid of a higher type with positive probability.

One key feature of our equilibrium construction is that only a limited number of bidder types

enter the auction in equilibrium. With a binary underlying state of the world, we can base our

analysis on the bidders’ expected payoffs conditional on the state. With affiliated types, the beliefs

of the potential bidders on the state of the world are monotone in their types. Since we assume a

large number of potential bidders, expected winnings at the auction stage must equal the entry cost

in any equilibrium of the game. Suppose that the expected payoff at a fixed bid in the support of

the equilibrium bid functions differs across the two states. Without loss of generality, assume that

the bid generates a strictly higher payoff in state 1 than in state 0. In equilibrium, this bid can only

be made by those bidders whose private signal assigns the highest probability to state 1. To see

this, notice that if another bidder makes this bid, then her payoff must be at least equal to her entry

cost. But by affiliation, the most optimistic bidder in her assessment on the probability of state

1 makes then a strictly positive profit contradicting our requirement of zero profits in equilibrium.

We show that all the bid distributions that can emerge in a symmetric equilibrium of our model

can be generated in a model where we consider only the most extreme types in the set of potential

bidders, i.e. the two bidders with the most extreme beliefs on the two states.

For this reason, the main analysis in this paper is concentrated on the two-type case. We

characterize the bidding equilibria of the informal first-price auction in this case. In the appendix,

we show that our main results remain valid for the ex ante entry case as well. In that case, we

must restrict our attention to a model with binary types since all bidder types are now present at

the bidding stage of the game. Since we do not have analytical results on the bidding stage with

multiple bidder types, this restriction on types is not without loss of generality, in contrast to the

case with interim entry.

We start our analysis by solving the model with only two potential bidders. In this case, we show

that the expected revenue to the seller from an informal first-price auction exceeds (at least weakly)

the expected revenue from standard formal auction formats in the affiliated common values auction.

This implies that in contrast to the linkage principle, the seller may be better off by withholding
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information from the bidders.2

Milgrom and Weber (1982) demonstrate the revenue superiority of the formal second-price auc-

tion over formal first-price auction for affiliated common value auctions. This result together with

a set of results demonstrating the good revenue properties of public information disclosure are also

known as the linkage principle. The key idea is that for a fixed own bid, any auction format that in-

creases the linkage between own information and the perception of other players’ bids increases the

expected payment. To see how this principle fails in our informal auctions, consider an equilibrium

in the second-price auction where low type bidders bid below the bid of the high types. By placing

a bid between these two bids, a deviating bidder wins if and only if no high bidders participate in

the auction. In this case, the payment is either the low bid if there is competition, or zero if the

other bidder did not participate. By affiliation, it is more likely that no bidders with a low signal

participate if the value of the object is high. But this means that the expected payment of the high

type bidder is lower than the expected payment of the low bidder.

With more than two bidders, informal auctions may potentially possess multiple equilibria. If

the winner of an auction is tied with other bidders with positive probability, information conditional

on winning the object reflects the rationing amongst the highest bidders. This is not accounted

for in the standard conditioning events of auctions with atomless bid distributions.3 We show that

in the informal first-price auction, symmetric equilibrium bidding strategies cannot have atoms in

the interim entry case. This leads to a unique symmetric equilibrium outcome in terms of bid

distributions in the overall game determining both entry and bids.

We model the game with many bidders as a Poisson game where the type of each potential

player is positively correlated with the value of the object. The number of entrants of each type is

drawn from a Poisson distribution with a parameter that depends on the true binary value of the

object. An equilibrium of this game is a distribution of bids such that all entrants can cover their

cost by their expected profit and no potential bidder of either type can make a positive profit by

entering.

When comparing informal auctions to formal auctions, a second consideration emerges. The

price paid in the formal auction is determined by the realized number of participating bidders.

Whenever a bidder is the sole participant, she gets the object for free. For a formal auction with

n− 1 other participants, the equilibrium bid by the low bidders is equal to the value of the object

conditional on n low signals. Due to affiliation, this payment is decreasing in n. For low values of

2With binary signals, formal first-price and second-price auctions result in the same expected revenue, the same

expected bidder rents and hence the same entry decisions.
3Pesendorfer and Swinkels (1997) point out this possibility in the case of formal auctions and Lauermann and

Wolinsky (2015) discuss this issue in a first-price auction with an unknown number of bidders.
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the entry cost, the probability of the event that no other bidders are present vanishes. Since a high

type bidder assigns a higher probability to lower n, we see that the expected payment of the bidder

is positively linked with the type and the usual linkage principle applies. This explains our finding

that formal second-price auction dominates informal first-price auction if the entry cost is very low.

But when the entry costs are not too small, we show that the expected revenue ranking from the

two-bidder case carries over to the Poisson game with endogenous entry.

We get our strongest results when the entry cost is relatively high (and the expected number

of entrants is relatively low), and the affiliation in the signals is strong. In this case, zero bid is

in the support of the equilibrium bidding strategies of both types of players in the informal first

price auction. With atomless bidding strategies this means that the payoff of each type of bidder

coincides with the value of the good conditional on being the only entrant. This private benefit

is also the maximum social benefit from inducing additional entry when restricted to symmetric

strategies. We conclude that the symmetric equilibrium entry rates maximize social welfare in the

class of symmetric entry strategies. Since we have large numbers of potential bidders, the expected

payoff to bidders net of entry costs must be zero and as a result the seller receives the maximal

symmetric surplus as her expected revenue in this class of auctions. For these parameter values we

see then that the informal first price auction is the revenue maximizing mechanism in the class of

symmetric mechanisms.

1.1 Related Literature

Endogenous entry into auctions has been modeled in two separate frameworks. In the first, entry

decisions are taken at an ex ante stage where all bidders are identical. Potential bidders learn their

private information only upon paying the entry cost. Hence these models can be though of as games

with endogenous information acquisition.4 French and McCormick (1984) gives the first analysis of

an auction with an entry fee in the IPV case. Harstad (1990) and Levin and Smith (1994) analyze

the affiliated interdependent values case. These papers show that due to business stealing, entry

is excessive relative to social optimum. They also show that second-price auctions dominate the

first-price auction in terms of expected revenue. All of these papers proceed under the assumption

that the number of entering bidders is known at the moment when bids are submitted. Our informal

auctions are thus not covered at all in these papers.

In the other strand, bidders decide on entry only after knowing their own signals. Samuleson

4The equilibrium determination of information accuracy in common values auctions started with Matthews (1977)

and Matthews (1984) and Persico (2000) extended this line of research to revenue comparisons for different auction

formats. Since the number of bidders and equilibrium information acquisition decisions are deterministic, equilibrium

bidding in these papers is still as in standard affiliated auctions models.
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(1985) and Stegeman (1996) are early papers in the independent private values setting where this

question has been taken up. Due to revenue equivalence, comparisons across auction formats are

not very interesting. To the best of our knowledge, common values auctions have not been analyzed

in this setting.5

Finally some recent papers have analyzed common values auctions with some similarities to our

paper. Pekec and Tsetlin (2008) provides an example where informal first-price auction results in a

higher expected revenue than an informal second-price auction. The distribution of the bidders in

that paper is somewhat extreme and not derived from entry decisions. Lauermann and Wolinsky

(2017) and Lauermann and Wolinsky (2019) analyze first-price auctions where an informed seller

chooses the number of bidders to invite to an auction. The bidders do not observe how many others

were invited and hence the bidding stage analysis is as in our model with an exogenous entry rate.

These papers do not compare revenues across different auction formats and since the distribution

of entering bidders results from an optimal invitation decision by the seller, the analysis is quite

different from our paper. Atakan and Ekmekci (2014) consider a common value auction where the

winner in the auction has to take an additional action after winning the auction. This leads to

a non-monotonicity in the value of winning the auction that has some resemblance to the forces

in our model that lead to non-monotonic entry (i.e. bidders with both types of signals enter with

positive probability).

Since we concentrate on symmetric equilibria of a game with a large number of potential entrants,

our model has some similarities to the urn-ball models of matching. Similar to those models, our

insistence on symmetric equilibria can be seen as a way of capturing a friction in the market that

precludes coordinated asymmetric decisions. A recent example of such models is Kim and Kircher

(2015) that studies matching with private values uncertainty. This approach has also been used

in Jehiel and Lamy (2015) a procurement auction setting with private (asymmetric) values. These

models have not covered the case of common values to the best of our knowledge.

The paper is structured as follows. In Section 2, we introduce the main ideas of the paper

in the simplest possible setting with only two potential bidders. Section 3 presents the informal

first-price auction and shows that in equilibrium at most two types enter. The section also analyzes

equilibrium bidding in a model with an exogenous random number of bidders with binary types.

Section 4 analyzes equilibrium entry decisions and shows that equilibrium outcomes are essentially

unique. Section 5 compares the expected revenues across different auction formats and Section 6

discusses the modeling assumptions in this paper. All proofs of the results are in Appendix B.

5Bhattacharya, Roberts, and Sweeting (2014) and Sweeting and Bhattacharya (2015) analyze IPV models with

selective entry where entry decisions are conditioned on private information on the true valuation.
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2 Two-Player Model

We start with the analysis of the model with two types of bidders and only two potential bidders.

By doing this, we can introduce the main ideas in the paper with minimal notation and without

analytical complications that are unavoidable with many bidders.

Two potential bidders with a signal θ̃ ∈ {l, h} must decide whether to pay an entry cost c

to participate in an auction for a single indivisible good. The value of the good v (ω) is binary

ω̃ ∈ {0, 1} with v (1) > v (0) > c and the signals are i.i.d. conditional on v. By affiliation, let

α := Pr{θ̃ = h |ω̃ = 1} > Pr{θ̃ = h |ω̃ = 0} =: β.

Let q = Pr{ω̃ = 1} be the prior probability on the value of the object.

The bidders are risk-neutral and they maximize their payoff at the auction stage net of the entry

cost.

2.1 Symmetric Social Optimum

In this subsection, we analyze a social planner’s problem to obtain a useful benchmark for symmetric

equilibria of various auction formats. Hence, we restrict the planners’ feasible strategies to be

also symmetric. The planner chooses entry probabilities (πl, πh) for players with signals l and h

respectively to

max
0≤π,,πh≤1

q[
(
1− (1− απh − (1− α) πl)

2) v (1)− 2c (απh + (1− α) πl)] (1)

+ (1− q) [
(
1− (1− βπh − (1− β) πl)

2) v (0)− 2c (βπh + (1− β) πl)].

The two first-order conditions for an interior solution to this concave quadratic problem can be

written as:

qh (1− απh − (1− α) πl) v (1) + (1− qh) (1− βπh − (1− β) πl) v (0) = c, (2)

ql (1− απh − (1− α) πl) v (1) + (1− ql) (1− βπh − (1− β) πl) v (0) = c, (3)

where qθ is the posterior of type θ bidder:

qh =
αq

αq + β (1− q)
>

ql =
(1− α) q

(1− α) q + (1− β) (1− q)
.
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The two lines state that the cost of adding a player of each type must equal the benefit. The benefit

is realized only if the other bidder did not participate. Notice also that an immediate implication

of this first-order condition is that the benefits be equalized also across states (since qh > ql). Since

v (0) < v (1) , we see from this that πopth > πoptl in the solutions to these equations.

For completeness, let us note that the first order condition is valid only for 0 < πoptl < πopth < 1.

The first inequality 0 < πoptl holds if

α

β
>

(v (1)− c)/v (1)

(v (0)− c)/v (0)
.

The second inequality πopth < 1 holds if
α

β
>
v (1)

v (0)
.

Finally, note that if πoptl = 0, then πopth > 0 if qhv (1) + (1− qh)v (0) > c.

We see that we get interior solutions if entry costs are small and if the ratio of the valuations

is not too large. The reason why the planner wants both types of players to participate is that

the types of the players are correlated with the state of the world. Ideally the planner would tailor

the entry probabilities to the state of the world, but this information is not available to her at the

beginning of the game. By inducing entry from both types of players, the planner can balance the

benefits of entry across the two states.

In the case with a large number of potential bidders, the equivalent of the second inequality is

not binding since expected number of entrants is always bounded by v1
c

in any solution (optimal or

equilibrium) of the model.

2.2 Informal First-Price Auction

We analyze next the symmetric Bayes-Nash equilibria of the game where each potential bidder

decides simultaneously whether to enter and what to bid conditional on entry. Formally, the strategy

of player each player maps her type θ to a probability of participating πθ and a bid distribution

Fθ (·) . We use λω,θ to denote the probability with which a player of type θ enters in state ω if the

players use the symmetric entry strategies (πl, πh) :

λ1,h = απh, λ0,h = βπh,

λ1,l = (1− α) πl, λ0,l = (1− β) πl .

With this notation, we can write the expected payoff Uθ (p) at the bidding stage to type θ from
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bidding p (when other players use strategy (πl, πh) , (Fl (·) , Fh (·))) as:

Uθ (p) : = qθ (1− λ1,h (1− Fh (p))− λ1,l (1− Fl (p))) (v (1)− p)
+ (1− qθ) (1− λ0,h (1− Fh (p))− λ0,l (1− Fl (p))) (v (0)− p)

= : qθR1 (p) + (1− qθ)R0 (p) ,

where Rω (p) denote the expected rent in state ω from bid p. In a symmetric Bayes-Nash equilibrium,

for all p in the support of Fθ (·), p maximizes Uθ (p) .

We denote the highest bid in the union of the supports of the two bid distributions by pmax. Our

next proposition provides a characterization of the unique bidding equilibrium for the bidding stage

of the informal first-price auctions with 0 < πl ≤ πh < 1.6 We stress here that this characterization

does not hinge on (πl, πh) being an equilibrium entry pair. This is important for our discussion of

the alternative ex ante entry model in Appendix A where πh = πl by construction since players do

not know their types when choosing entry.

Proposition 1 Assume exogenous entry probabilities 0 < πl ≤ πh < 1.The informal first-price

auction with two potential bidders has a unique symmetric equilibrium, where both types of bidders

use atomless mixed strategies. The supports of the two bid distributions Fθ (·) for θ ∈ {l, h} satisfy

1. 0 ∈suppFl (·) , pmax ∈suppFh (·) , suppFl (·)∪suppFh (·) = [0, pmax],

2. Either 0 ∈suppFh (·) or there exists a p′ > 0 such that suppFl (·) = [0, p′] and suppFh (·) =

[p′, pmax].

The first property to notice is that the bid distributions contain no atoms. While this is a

standard feature of auction models with a known number of bidders, the result is not true in

general in models with a random number of participating bidders. With only two bidders, there

is a single event that can result in a tied winning bid: both bidders submit the same bid. In this

case, winning the object conveys no additional information and because of this, the usual argument

that implies atomless distributions holds. In the next section, we show that with many potential

bidders, the interim entry model has a unique equilibrium and it is in atomless strategies. For the

case with ex ante entry, this is not true.

The second key feature is that the supports of the distribution take very specific forms. Low

type bidders always have the zero bid in their equilibrium bid support. This means that they earn a

positive payoff only if the other bidder does not participate. But the expected payoff from this bid

is exactly the player’s contribution to the social surplus. If zero bids are also in the support of the

6We deal with the corner solutions separeately in the subsection on revenue comparisons.
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high type bidder, then both types of players earn as their equilibrium payoffs exactly their marginal

contribution. In the other possible case, we know that we can compute the expected payoff to the

high type bidder by calculating her payoff at the highest bid that the low type bidders make in

equilibrium. These observations turn out to be useful for the revenue comparisons below.

2.3 Formal Auctions

As a benchmark for comparison, consider formal (standard) auctions, where the bidders know the

number of other bidders at the time of placing their bids. We have shown in Chi, Murto, and

Välimäki (2019) that both first- and second-price auctions have a unique symmetric equilibrium in

the current environment.

In formal auctions, it is naturally optimal for any bidder to bid zero if there are no other bidders.

Whenever there are at least two bidders present, the unique equilibrium in the first-price auction

results in the bid

bl = E (v |θ1 = θ2 = l )

for the low type.High type bidders mix on an interval [bl, p
′], p′ > bl. The low type bidder gets

a strictly positive payoff equal to her expected value of the object only if she is the only bidder

present. Notice that this is also the social value of entry. The high type bidder earns an information

rent on top of this social value since at bid bl she wins with positive probability and earns a strictly

positive expected payoff equal to the difference between the expected value of the object based on

her high signal and that based on a low signal.

The formal second price auction has also a unique symmetric equilibrium where θ ∈ {l, h}
submits the bid

bθ = E
(
v
∣∣∣θ̃1 = θ̃2 = θ

)
.

The high type gets in this case exactly the same information rent as in the first-price auction. We

can then conclude that formal first-price auction and formal second-price auction result in the same

payoffs to both types. Furthermore we see that the expected payoff would be the same also in the

informal second-price auction since the tying event is uniquely determined. Hence it is sufficient to

compare the expected revenues between the informal first-price auction and the formal second-price

auction.

2.4 Revenue Comparisons with Exogenous Entry

With two potential bidders, we get an unambiguous revenue ranking for the auction formats that

we consider: the informal first-price auction is superior in terms of expected revenue to the other
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formats. Note that in a model with common values, allocation is always efficient so that an increase

in revenue is at the expense of rents to the bidders. Hence, higher expected revenue is equivalent

to lower bidder rents.

Proposition 2 With two potential bidders and exogenous entry probabilities 0 < πl ≤ πh < 1, the

informal first-price auction generates a higher expected revenue than the formal auctions. Equiv-

alently, the expected rents to the bidders are lower in the informal first-price auction than in the

formal auctions.

The key step in the proof of the proposition compares the expected payments of the high type

bidders across the informal first-price auction and the formal second-price auction. Even though

the types themselves are affiliated in the usual sense, the fact that low types enter with a lower

probability in a high state generates a different type of dependence between the types of participating

bidders resulting in different expected payments. If the model had more signals, then affiliation

in the types would add a counteracting effect improving the revenue performance of the formal

second-price auction relative to the first-price auction.

2.5 Interim Entry Equilibrium with Two Potential Bidders

We conclude this section with the analysis of entry decisions. This specification is particularly

relevant for cases where differential selection of the bidders plays a key role. The interesting situation

is the one where both types enter with positive probability. Any such equilibrium trades off two

forces in a way that makes entry viable for both types. High types are more optimistic about the

value of the object. Low types on the other hand, find a low level of competition more likely. The

differences in the equilibrium outcomes of different auction formats result from the different ways

in which they balance this trade-off. This feeds directly into different revenue properties of the

auctions as we show in this section.

Our first observation relates equilibrium social surplus to the expected revenue of the seller.

If both types are indifferent between entering or not, i.e. is entry is with interior probabilities

0 < πl ≤ πh < 1, then the bidders earn no expected rent in the game. In other words, their

expected payoff in equilibrium is fully dissipated by the entry cost c. In our model with quasilinear

payoffs, this implies that the seller’s expected revenue coincides with the social surplus generated.

With this observation, we can conduct our revenue comparisons in terms of the social surplus

generated in the symmetric equilibrium of the game, as in Levin and Smith (1994).

We can view the first order conditions (2) and (3) as the planner’s reaction curves. For each

fixed value of πl, (2) gives the socially optimal level π∗h (πl) and for each level of πh, (3) gives the

socially optimal level π∗l (πh).
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The private costs of a potential entrant coincide with the social cost. Since the private benefit is

at least equal to the social benefit, we see that our auction formats generate excessive entry relative

to social optimum.7 By the characterization result in the previous subsection, low types always have

the zero bid in the support of their bid distribution. This means that their entry is conditionally

efficient given the entry rate of the high types. This implies, in particular, that symmetric entry

equilibria in all of the auction formats that we consider lie on the planner’s reaction curve π∗l (πh) .

Equilibrium entry π∗l (πh) probability of the low types is decreasing and linear in πh. This

observation together with the concavity of the social objective function implies that the auction

format that generates less entry by high types generates a higher social surplus. Whenever we have

interior entry probabilities, a comparison of the entry rates of the high types then also gives us a

revenue ranking for the auction formats.

Consider next the equilibrium payoff to the high types at the bidding stage of the informal

first-price auction. We can show that for each level of πl, there is a unique level of πIFh (πl) such

that

Vh
(
πIFh (πl) , πl

)
:= max

p
Uλ
h (p) = c,

where Uλ
h (p) is the equilibrium payoff to the high type in the informal first-price auction parametrized

by entry probabilities

λ1,h = απIFh (πl) , λ0,h = βπIFh (πl) ,

λ1,l = (1− α) πl, λ0,l = (1− β) πl .

Furthermore, we can show that πIFh (πl) is continuous in πl and that for all πl, π
IF
h (πl) ≥ π∗h (πl) .

Let
(
πIFh , πIFl

)
solve

πIFh
(
πIFl
)

= πIFh ,

π∗l
(
πIFh
)

= πIFl .

By continuity and πIFh (πl) ≥ π∗h (πl) , we know that at any equilibrium solution, πIFh ≥ πopth and

πIFl ≤ πoptl . Using the properties of the bidding equilibrium, we can also show that
(
πIFh , πIFl

)
is

unique. We omit the details here since the reasoning is completely analogoue to the case with

Poisson entry proved in full in Proposition 10.

Recall from Proposition 1 that it is possible that zero is also in the support of the bids made

by the high type in the bidding equilibrium. In this case, the bidders earn exactly by their social

contribution at the auction stage and πIFh (πl) = π∗h (πl). As a result, the entry rates then socially

7By bidding zero in either of the auction formats, both types of bidders can secure at least the social value (i.e.

the value of the object in the event that there are no other bidders).

12



optimal, πIFh = πopth , πIFl = πoptl , and the revenue coincides with the optimal social surplus in the

planner’s problem. This implies that there can be no other symmetric game forms with higher

revenues where entry decisions are taken based on own types only. Of course in a correlated model,

one could improve on the performance of the auction if entry could be conditioned on the vector

of reported types. In the spirit of costly participation, any communication prior to deciding entry

should also have an associated cost, which we take here to be prohibitively high.

We can derive a similar equilibrium reaction curve for the rate of entry πFh (πl) in the formal

auctions that keeps high types indifferent between entering and not entering. Proposition 2 shows

that with fixed entry rates, the high types earn more in formal auctions than in the informal first-

price auction. When entry rates are endogenous, this must be compensated by a higher entry rate

in the formal auction so that πFh (πl) ≥ πIFh (πl) ≥ π∗h (πl) .

We can summarize our discussion in the following proposition showing that the revenue ranking

from the model with exogenous entry holds also with equilibrium entry.

Proposition 3 With interim entry decisions, informal first-price auction generates a higher ex-

pected revenue than the formal auctions.

We end this section with a few words regarding the model with ex ante entry. We defer the

formal analysis of that model to Appendix A. With two potential entrants, very little changes

relative to the model with interim entry. Since bidders do not know their types at the moment of

choosing entry, there is a single entry rate π = πl = πh. Since Propositions 1 and 2 cover this case

as well, we conclude that the informal first-price auction results in smaller expected equilibrium

payoffs to the bidders than formal auctions. These payoffs always exceed (weakly) the players’

marginal contribution to social surplus, and as a result, entry rate is distorted upwards relative to

the symmetric planner optimum in the concave planner’s problem. Since the informal first-price

auction results in smaller distortions in the entry rate, the conclusion from the interim case remains

valid and the informal first-price auction dominates in terms of expected revenue.

3 Informal First-Price Auction with Poisson Entry

In our main model, we assume that the number of entrants is a Poisson random variable with

an endogenously given parameter. Since the seminal work of Myerson on games with uncertain

numbers of participants, the Poisson game model has been widely used in models of information

economics.8 It is a tractable model that allows the random number of participating bidders to be

8For a discussion of the Poisson entry model in the context of a procurement auction with private values, see

Jehiel and Lamy (2015).
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correlated with the state of the world (the true value of the object). As in the previous section with

two potential participants, this correlation can be rationalized by entry decisions based on affiliated

signals.

To see how one arrives naturally at the Poisson model, assume for the moment that there are

N potential entrants that observe signals θ̃ ∈ {1, ...,M} with a conditional distribution

αω,m =: Pr{θ̃ = m |ω̃ = ω} for m ∈ {1, ...,M},

where state is ω ∈ {0, 1}. We label the signals so that they satisfy strict monotone likelihood ratio

property: α1,m

α0,m
is increasing in m. If each entrant with signal m enters with probability πm,N , then

the number of high type entrants is a binomial random variable with parameters (α1,mπm,N , N) and

(α0,mπm,N , N) in states ω = 1 and ω = 0, respectively. Keeping the expected number of entrants

αω,mπm,N ·N → αω,mπm constant, let N increase towards infinity and consider the binomial variables

Bin(αω,mπm,N , N) . The limiting random number Nm
ω of entrants of type m in state ω has then a

Poisson distribution with parameter λω,m := αω,mπm. The random variables Nm
ω are furthermore

independent. As before, we use the notation Nm to denote the total random number of participating

bidders of type m.

Motivated by this limiting argument, we model the entry game directly as a Poisson game where

πm are endogenously determined parameters. Each potential bidder perceives the number of other

participants of type m to be given by a Poisson random variable Nm
ω with parameter λω,m = αω,mπm

that depends on πm and the distribution of the signal θ̃. By a symmetric equilibrium, we mean

a pair (b, π) where b : {1, ...,M} → ∆ (R+) is the equilibrium bidding strategy for participating

bidders and π : {1, ...,M} → R+ is the equilibrium entry rate. The equilibrium condition for entry

rate π = (π1, ..., πM) is that given (b, π), no potential bidder has a higher expected payoff than c at

the auction stage and if p ∈suppFm (·) for some m, then her expected payoff in the auction is c.

3.1 Symmetric Planner’s Optimum

We start again with the symmetric surplus maximizing benchmark where a social planner chooses

π = (π1, ..., πM) to maximize the expected gain from allocating the object net of the expected entry

cost. The planner’s objective is to

max
π≥0

W (π) ,

where W (π) is the expected total surplus with a given entry profile:

W (π) = q[v (1)
(
1− e−Σmα1,mπm

)
− cΣmα1,mπm]

+ (1− q) [v (0)
(
1− e−Σmα0,mπm

)
− cΣmα0,mπm].
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The first order conditions for interior solutions to this concave problem are given by:

qmv (1) e−Σmα1,mπm + (1− qm) v (0) e−Σmα0,mπm = c,

for all m. Its unique solution is given by:

v (1) e−Σmα1,mπm = c, (4)

v (0) e−Σmα0,mπm = c.

Taking logarithms, we have

Σmα1,mπm = log

(
v (1)

c

)
,

Σmα0,mπm = log

(
v (0)

c

)
.

Since we have two linear equations in M variables, the solutions to this pair of equations are

not unique. By affiliation, we have
α1,M

α0,M
≥ α1,m

α0,m
≥ α1,1

α0,1
. Hence we have a positive solution for

π = (π1, ..., πM) only if

α1,1π1 + α1,MπM = log

(
v (1)

c

)
,

α0,1π1 + α0,MπM = log

(
v (0)

c

)
,

has a positive solution. Again by affiliation, we see that this is the case only if

α0,M log

(
v (1)

c

)
< α1,M log

(
v (0)

c

)
.

If this condition is satisfied, a solution (π1, 0, ..., 0, πM) with πM > π1 > 0 to this system exists.

Obviously other solutions to this problem exist, but the aggregate amount of entry is determinate

for both states across all such solutions.

We can compute a threshold c such that positive entry by multiple types takes place if the entry

cost is below c:

c = e
α1,M log(v(0))−α0,M log(v(1))

α1,M−α0,M > 0.

For c ∈ (0, c) we have an interior solution with πoptM > πopt1 > 0.

When c ≥ c, we have a corner solution where πoptm = 0 for all m < M . In that case, the optimal

entry rate for the θM types is solved from

qMv (1) e−α1,MπM + (1− qM) v (0) e−α0,MπM = c.
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This gives an interior solution πoptM > 0 as long as c < c, where

c = qhv (1) + (1− qh) v (0) .

To summarize, for low entry cost c < c the socially optimal entry profile features the two extreme

types entering with positive rate, for intermediate entry cost c ∈
[
c, c
)

only highest type enters

with positive rate, and for high entry cost c ≥ c there is no entry. Note that the threshold c is the

expected value of the object for a player that has observed the highest signal. This is intuitive:

as long as entry cost c is below the expected value of the object for the most optimistic potential

entrant, it is socially optimal to have at least some entry.

3.2 No Pooling with Interim Entry

In any interim entry equilibrium, entrants earn an expected profit of c in the bidding stage. Hence

for all bids p in the union of the bid supports of all bidders, the equilibrium payoff of any bidder

submitting p must be c and the payoff for any other type cannot exceed c. Otherwise we would have

a contradiction to interior entry probabilities.

With a random number of bidders, the analysis of pooling bids (i.e. bids that at least one of

the types chooses with a strictly positive probability) is more delicate than in the case of a fixed

number of bidders (or with two potential participants). With uniform tie-breaking for highest bids,

a bidder submitting a pooling bid is more likely to win if the number of tying bids is small. The

number of tying bids contains information on the realization of
(
Nh, N l

)
. Since N θ

0 and N θ
1 have

different distributions, this information is in turn informative on the state of the world and hence on

the value of the object. The additional information contained in the event of winning the auction

must be accounted for when calculating the optimal bid. We call this effect the rationing effect of

winning.

As observed by Pesendorfer and Swinkels (1997), it is not possible to have pooling bids that are

made only by the highest types. If they were the only bidders to pool on a bid p, then the rationing

effect would be negative: by bidding p, a win is more likely when there are few tied bidders. But

if only high type bidders bid p, then winning with a tied bid decreases the posterior on {ω = 1}
and the value of the object conditional on winning is lower than the value conditional on the event

that the bidder is tied for the highest bid. By bidding p+ ε, for a small enough ε, the bidder wins

in the event of a tied bid without any rationing and makes a positive gain from the deviation. As

a result, pooling by high types only is not possible.

To rule out other types of pooling bids, we note first that there cannot be pooling at any

p < v (0). This is because for such a low bid, winning is profitable in both states and hence a

small upward deviation would be strictly profitable. On the other hand, with interim entry only
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the highest type M can bid above v (0). Winning with a bid p ≥ v (0) is profitable only if ω = 1.

By affiliation, Pr{ω = 1 |m} is increasing in m. Therefore, if m gets in expectation c by bidding

p ≥ v (0), then type M gets strictly more than c by bidding p, which is not compatible with interim

entry equilibrium. Since it is not possible to have pooling bids that are made only by high types,

pooling is not possible for any p ≥ v (0) either. We have hence proved:

Proposition 4 There are no atoms in the bidding distribution b of a symmetric interim entry

equilibrium (b, π).

3.3 Entry by Extreme Types

We consider next the types of bidders that can enter in eqilibria with atomless bidding strategies

at the auction stage. As in Section 2, denote by Rω (p) the expected rent at the auction stage in

state ω from bid p:

Rω (p) = (v (ω)− p)
M∏
m=1

e−λω,m(1−Fm(p)).

For each p, there are three possibilities: either i) R1 (p) = R0 (p), ii) R1 (p) > R0 (p) , or iii)

R1 (p) < R0 (p). All types of bidders are indifferent beween entering and submitting a bid p in

case i). In case ii), only type θM can make bid p in equilibrium with interior entry probabilities. If

m < M makes the bid, she must earn at least c. Since her expected payoff at the bidding stage is

R0 (p) + qm(R1 (p)−R0 (p)), we see that type is not indifferent contradicting interior entry. In case

iii), we have similarly that only type 1 can enter in such an equilibrium.

The equilibrium construction in Proposition 6 shows that the bid distribution is fully pinned

down by the parameters of the bidders that bid in cases ii) and iii). The only remaining indeter-

minacy concerns the exact composition of bidders that make bids where case i) holds. But the

requirement that the expected payoffs be equalized across the two states determines the aggregate

distributions of bids for each state in a manner completely analogous to the payoff equalization in

the planner’s problem across the two states. As in the planner’s case, these aggregate distributions

can be generated with positive entry by types 1 and M . We formalize this discussion in the following

proposition,

Proposition 5 Let
(
b, (π1, πM)

)
denote an equilibrium of a reduced model, where only types {1,M}

exist. Then
(
b, (π1, 0, ..., 0, πM)

)
remains an equilibrium of the full model that allows entry by all

types {1, ...,M}. Moreover, if there is another equilibrium (b, π) in the full model, this equilibrium

is equivalent to an equilibrium of the reduced model in terms of induced probability distribution of

bids and revenues.

17



Based on these two results, we restrict our attention for the rest of this section to atomless

bidding equilibria of a model with binary bidder types θ ∈ {l, h}, where l corresponds to type 1

and h corresponds to type M .

3.4 Bidding Equilibrium with Exogenous Entry by Extreme Types

We start by analyzing the bidding stage in the case where the number of entrants is determined by

exogenously given entry rates πh and πl. A bidder with signal θ ∈ {l, h} chooses her optimal bid in

informal auctions depending on her updated probability on the state qθ := Pr {ω = 1 |θ} and her

conditional distribution on the realized number of (other) bidders with signal θ. The number of

bidders with signal θ in state ω is a Poisson random variable N θ
ω, where the parameter λω,θ depends

on πθ through:

λ1,h = απh, λ0,h = βπh,

λ1,l = (1− α) πl, λ0,l = (1− β) πl ,

where α > β implies that λ1,h > λ0,h and λ1,l < λ0,l. While the entry probabilities πh and πl are

treated here as exogenous, they will be endogenized in the next section. Since we consider here the

bidding behavior of an individual bidder, we use N θ
ω to denote the number of bidders excluding the

bidder under consideration.9

3.4.1 Symmetric Equilibrium in Atomless Strategies

Consider equilibrium bidding in the informal first price auction with an exogenously given distri-

bution of bidders. The bidder submitting the highest bid p ≥ 0 wins the object and pays her bid,

any ties are broken symmetrically between highest bidders, and bidders that do not win make no

payments. We show in this section that this model has a unique symmetric equilibrium in atomless

strategies.

Based on qθ and the entry rates λ = {λω,θ}, each bidder of type θ computes her posterior beliefs

on the numbers of other participants and forms expectations about their bids. As in the Section 2,

we denote by Fθ (p) the (continuous) c.d.f. of bids below level p by any bidder with signal θ. Since

the nubers of participating bidders are drawn from independent Poisson distributions and since the

randomizations over bids are independent across bidders, the probability of winning in state ω at

9Note that in a Poisson model, an individual bidder perceives the number of other bidders distributed according

to the same distribution as an outsider sees the number of all bidders in the game (conditional on state).
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bid p is given by: ∑
nh≥0

∑
nl≥0

Pr
(
Nh = nh |ω

)
Fh (p)n

h

Pr
(
N l = nl |ω

)
Fl (p)

nl

=
∑
nh≥0

(λω,l)
nh e−λω,h

nh!
Fh (p)n

h ∑
nl≥0

(λω,l)
nl e−λω,l

nl!
Fl (p)

nl

= e−λω,h(1−Fh(p))e−λω,l(1−Fl(p)).

Using this winning probability, we can compute the expected payoff from bid p to a bidder of

type θ when the other players bid according to the profile F = (Fh (·) , Fl (·)) as follows:

Uλ
θ (p) = qθe

−λ1,h(1−Fh(p))e−λ1,l(1−Fl(p)) (v (1)− p)
+ (1− qθ) e−λ0,h(1−Fh(p))e−λ0,l(1−Fl(p)) (v (0)− p) .

A symmetric bidding equilibrium for entry rates λ is a bid profile Fλ such that for all p ∈suppFλ
θ (·) ,

p maximizes Uλ
θ (p) . For the remainder of this section, we fix λ and omit it in the notation for the

bid distributions.

The main result of this section characterizes atomless symmetric equilibrium bid distributions.

This characterization is remarkably similar to Proposition 1 in the two-bidder case. If anything, the

proof of the result is simpler than in the two-bidder case and the result is sharper in the sense that

it gives a necessary and sufficient condition for the two qualitatively different types of equilibria.

Proposition 6 The informal first-price auction has a unique symmetric equilibrium in atomless

bidding strategies. The support of the bid distributiobn of the low types contains 0. If

1− e−λ0,l
1− e−λ1,l

<
v (1)

v (0)
,

then the bid supports are non-overlapping intervals with a single point in common. If

1− e−λ0,l
1− e−λ1,l

>
v (1)

v (0)
,

then the bid supports intersect and 0 is contained in the support of both types.

3.4.2 Symmetric bidding equilibria in formal auctions

For completeness, we record here the following characterization of the unique symmetric equilibria

in formal auctions from Chi, Murto, and Välimäki (2019).
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Proposition 7 In the formal first-price auction with two bidder types, there is a unique symmetric

equilibrium. Given that there are n ≥ 2 participants, low type bidders pool at bid

p (n) = E
[
v
∣∣θ = l, N l = n− 1, Nh = 0

]
for n ≥ 2

and high types have an atomless bidding support
[
p (n) , p (n)

]
with some p (n) > p (n). With n = 1,

the only participant bids zero.

In the formal second-price auction, there is a unique symmetric equilibrium. In this equilibrium,

low types pool at bid

p (n) = E
[
v
∣∣θ = l, N l = n− 1, Nh = 0

]
and high types have an atomless bidding support [p′ (n) , p′′ (n)], where

p′ (n) = E
[
v
∣∣θ = l, N l = n− 2, Nh = 1

]
,

p′′ (n) = E
[
v
∣∣θ = l, N l ≤ n− 2, Nh ≥ 1

]
.

With n = 1, the only participant bids zero.

It is thus easy to compute the expected payoff at the entry stage if the bidding stage is in a

formal auction. In the next two sections, we compare the overall revenues in the games where we

account for both the bidding stage and the costly entry stage.

4 Endogenous Entry

In this section, we endogenize the entry decisions. By Proposition 5, we can pin down the expected

equilibrium rents from all possible bids by considering models with binary types θ ∈ {l, h}.We

follow the same strategy as in Section 2 and analyze the properties of the interim entry equilibria

through a comparison with the planner’s solution.

4.1 Private and Social Incentives for Entry

We consider first a hypothetical game where the object is given for free to the entrant if there is

a single entrant. With two or more entrants, the object is withdrawn from the market and the

entrants just pay the entry cost. Denote by V 0
θ (πh, πl) the expected value of a bidder with signal

θ at the auction stage when the symmetric entry profile is (πh, πl):

V 0
h (πh, πl) = qhe

−απh−(1−α)πlv (1) + (1− qh) e−βπh−(1−β)πlv (0) ,

V 0
l (πh, πl) = qle

−απh−(1−α)πlv (1) + (1− ql) e−βπh−(1−β)πlv (0) .
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Any (πh, πl) such that V 0
h (πh, πl) = V 0

l (πh, πl) = c in the above equations guarantees that every

potential entrant is indifferent between entering and staying out. By inspection, we see that this is

the same condition as in (4), and hence private entry incentives coincide with social incentives. To

understand why this is the case, note that in this hypothetical situation each entrant gets exactly her

marginal contribution to the social welfare as her payoff. Since the value of the object is common to

all the players, an entrant contributes to the total surplus if and only if she is the only entrant. Since

the object is given for free in such a situation her private benefit equals her marginal contribution.

Therefore, entry incentives coincide exactly with the social value of entry. As we show below, all

the different auction mechanisms give (at least weakly) too high entry incentives for the high types.

As in the two-bidder case, quantifying this excess incentive across different auction formats gives

us our revenue comparisons.

In Figure 1, we illustrate the social optimum in the case with interior entry probabilities by

drawing the planner’s reaction curves

π∗l (πh) : = arg max
πl≥0

W (πl, πh) ,

π∗h (πl) : = arg max
πh≥0

W (πl, πh) ,

in the (πh, πl)−plane. The social optimum is at the intersection of these curves. As shown above,

these curves are also the indifference contours V 0
h (πh, πl) = c and V 0

l (πh, πl) = c for a potential

entrant of type h and l, respectively, who gets her marginal contribution as expected payoff.

We will see that many of the auctions considered here give an additional reward to potential

entrants on top of their social contribution. This distorts the entry rates from socially optimal levels.

Since bidding zero is in the support of the low type bidders in the informal first-price auction, their

equilibrium entry incentives coincide with the planner’s incentives conditional on the entry rate of

the high types. As a result, their equilibrium reaction curve coincides with the planner’s reaction

curve. For our revenue comparisons it is useful to analyze how distortions to the high types’ entry

rate change the total surplus. We denote by W ∗ (πh) the total surplus as a function of the high

types’ entry rate, when low types adjust entry optimally:

W ∗ (πh) := max
πl≥0

W (πl, πh) .

The following Lemma shows that W ∗ (πh) is single peaked in πh with its peak at πopth . This is

illustrated in Figure 1 by arrows along π∗l (πh) that point towards increasing social surplus.

Lemma 8 Let πopth > 0 denote the socially optimal high type entry rate. We have

dW ∗ (πh)

dπh


> 0 for πh < πopth

= 0 for πh = πopth

< 0 for πh > πopth

. (5)
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4.2 Interim Entry Equilibrium

Consider first the case where c ≥ c and the planner’s solution has πoptl = 0. Suppose that this is the

case also in equilibrium. Since all the entering bidders have observed a high signal, it is easy to see

that in all the auction formats that we consider, the expected payoff to the entering bidders is given

by the probability that no other bidder entered times the expected value of the object conditional

on that event. Since the updated belief of a high type bidder on {ω = 1} is given by qh = qα
qα+(1−q)β ,

equating the expected benefit from entry to the cost of entry gives:

qhe
−απhv (1) + (1− qh) e−βπhv (0) = c.

This coincides with the planner’s optimality condition. Hence the symmetric equilibrium entry

profile in all of the auction formats that we consider coincides with the planner’s optimal solution.

The key reason for this is the lack of heterogeneity in the bidders’ information.

In equilibrium the bidders are indifferent between entering and not entering. Hence their ex-

pected payoff must be at their outside option of 0. Since the auctions generate maximal social

surplus (under the restriction to symmetric entry profiles) in this case and since bidders expected

payoff is at zero, the seller collects the entire expected social surplus in expected revenues. Hence

all these auction formats are also revenue maximizing within the class of symmetric mechanisms

(where we require symmetry at the entry stage as well as at the bidding stage).

Proposition 9 If c ≤ c < c, then only the high type enters and all the auction formats are efficient

and hence revenue equivalent. If c ≥ c, then there is no entry in the planner’s solution nor in any

auction format.

We move next to the more interesting case where the planner’s solution induces entry by both

types. In this case we see immediately that the second-price auction leads to suboptimal entry

decisions. This conclusion follows from a very simple argument showing that a bidder with a high

signal earns a higher private benefit in the auction stage than their social contribution. In a model

with common values, additional entry is socially valuable only if no other bidder participates in

the auction. In a second price auction, the bidder with a high type gets the social benefit, but she

also receives an extra information rent when bidding against bidders with low signals. This is an

immediate consequence of the usual logic in models with affiliated values. As a result, entry models

with a second price auction in the bidding stage feature excessive entry by the high types relative

to the planner’s solution.

Our main result is that the game with interim entry decisions followed by an informal first-price

auction for the object has a unique symmetric equilibrium. This narrows down the set of possible
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equilibria in two ways. First, as we already showed in Proposition 4, there are no symmetric

equilibria with pooling in the bidding stage. Given this, the atomless bidding equilibrium given in

Proposition 6 is the unique candidate for the symmetric equilibrium in the bidding stage.

Second, we show the existence and uniqueness of equilibria for the entry stage. We denote by

V IF
θ (πh, πl) the expected payoff of a bidder with type θ at the bidding stage of the informal first-

price auction for given entry rates πh, πl. We show that there is a unique pair
(
πIFh , πIFl

)
such that

V IF
h

(
πIFh , πIFl

)
= V IF

l

(
πIFh , πIFl

)
= c.

In addition to the uniqueness, the proposition also contains a qualitative statement about the

equilibrium. A low type entrant gets a payoff in the bidding stage that is exactly her social contri-

bution:

V IF
l (πh, πl) = V 0

l (πh, πl) ,

which means that equilibrium entry point
(
πIFh , πIFl

)
must be along the planner’s reaction curve

πIFl = π∗l
(
πIFh
)
. A high type may get more, so that to dissipate excess rent of the high type, we

must have πIFh ≥ π∗l
(
πIFl
)
. As a result, the equilibrium entry rate must be (weakly) too high for

the high type and (weakly) too low for the low type:

Proposition 10 The informal first-price auction with interim entry has a unique symmetric equi-

librium with entry rates πIFh ≥ πopth and πIFl = π∗l
(
πIFh
)
≤ πoptl . All entering bidder types use

atomless bidding strategies. Zero bids are always in the support of the low type bidders and the

upper bound of the high type bidder support is given by

bmax := qhv (1) + qlv (0)− c.

5 Revenue comparisons

We compare here the expected revenue across auction formats. We assume throughout this section

that c < c. If c ≥ c, then all the auction formats are revenue equivalent as already stated in

Proposition 9.

We showed in Proposition 5 above that in the case of informal first-price auction we can restrict

our analysis to the two type model. The same is true for the formal auctions. In fact, we can show

that the bidding equilibria of formal auctions are simpler than in the informal first-price auction in

the sense that for all bid levels, either the lowest or the highest type has a strict advantage over any

intermediate type. This implies that the intermediate types can never break even in equilibrium

and so there cannot be any equilibria where intermediate types enter with positive rate.
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Proposition 11 Let π = (π1, ..., πM) denote the vector of entry rates by different types in an

equilibrium of the formal first-price auction or the formal second-price auction with interim entry.

Then π2 = ... = πM−1 = 0, i.e. only types 1 and M may enter with a strictly positive rate.

Our first revenue comparison result shows that for some parameter values, the informal first

price auction gives the entire (symmetric) social surplus to the seller in expected revenues. Hence

the informal first price auction maximizes the seller’s expected revenue in the class of all symmetric

mechanisms. Since both types of formal auctions fall short of this revenue, we establish the strict

superiority of the informal first price auction for this case.

Proposition 12 If
1− β
1− α

>
v (1)

v (0)
, (6)

then there is a c′ < c such that for c ∈ (c′, c), entry is efficient in the informal first-price auction

and the expected revenue is strictly higher than in any other symmetric auction format.

When (6) does not hold, the revenue comparison is less straightforward as also the informal

first-price auction induces too much entry by the high types. We show below that the basic insight

of Proposition 12 continues to hold even if a more elaborate argument is needed.

As shown in Chi, Murto, and Välimäki (2019), first-price auction and second-price auction with

two types generate the same expected revenue when the number of players is observed at the bidding

stage. Together with Proposition 11 this implies that with interim entry, the two formal auctions

are equivalent even when more than two types are allowed to enter. We show in the proof of

Proposition 13 that if entry rates are not very high, then the insight that we obtained in the model

with two potential bidders continues to hold: informal first-price auction leaves a lower rent to the

bidders than the formal second-price auction (hence also the formal first-price auction). This in

turn means that entry is less severely distorted in the informal first-price auction. Translated into

the exogenous parameters of the model, this means that whenever entry cost is sufficiently high,

informal first-price auction raises more revenue than the formal auctions:

Proposition 13 There is some c′′ < c such that for c ∈ (c′′, c), informal first-price auction gener-

ates a strictly higher expected revenue than formal auctions.

6 Discussion

6.1 Affiliated Private Values and Independent Common Values

Even though we have restricted analysis to affiliated common values auctions, we should point out

that a similar (and simpler) characterization for the informal first-price auction is available for
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the affiliated private values case. In some cases, the bid distributions of the two types overlap,

and in these cases, equilibria are inefficient. If the bid supports do not overlap, then the informal

auction is efficient and in this case, the expected payoff to all bidders coincides with their marginal

contribution.

Revenue rankings in this case are not very surprising since formal second-price auctions result in

the VCG -payoffs to all bidders (and with binary signals this is true for formal first-price auctions

too).

If we assume common values but independent signals, then the bid distributions are non-

overlapping and all the auction formats that we have discussed result in the same expected revenues.

6.2 Informal Second-Price Auctions

In our previous working paper, we also analyzed the informal second-price auction. The main

difficulty for that analysis arises from the multiplicity of symmetric bidding equilibria. In contrast

to informal first-price auctions, this multiplicity cannot be ruled out even in the case of interim entry

decisions. However, it is clear that no matter how we select the equilibrium, the high type bidders

always get a positive information rent on top of their social contribution, and hence entry rates

are distorted. This means that the informal first-price auction dominates the informal second-price

auction in expected revenue whenever the former has no distortions, that is, Proposition 12 holds

as such.

We can further show the informal second-price auction has a bidder optimal equilibrium, i.e.

there is a single Pareto efficient equilibrium for the bidders. If we select this equilibrium for the

bidding stage, then we get unambiguous revenue ranking results between the two informal auction

formats: the informal first-price auction raises a higher revenue than the informal second price

auction.

6.3 Ex Ante Entry

In Appendix A, we discuss the results from the Poisson model with ex ante entry. As discussed

above, the main complication for the analysis in this case is that also the informal first-price auction

may have multiple symmetric equilibria. As long as we restrict to the comparison of the atomless

symmetric equilibrium of the informal first-price auction with ex ante entry, our revenue ranking

results are still valid: the informal first-price auction dominates the formal auctions for sufficiently

high entry cost. For some parameter values, the atomless symmetric equilibrium of the informal

first-price auction induces socially optimal entry and hence dominates all other auction formats

with ex ante entry as well.
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7 Appendix A: Ex Ante Entry Decisions with Two Types

In this appendix, we comment briefly on the alternative model specification where the probability

of entry is determined prior to observing the type. In short, our results carry over with two caveats.

The first one is that we cannot rule out alternative bidding equilibria with pooling, and hence the

results are conditional on selecting the unique atomless bidding equilibrium. The second one is that

the restriction to the case of only two types is not without loss. This is because if there are more

types, ex-ante entry implies that they are all potentially present also in the bidding stage.

7.1 Two Bidders and Ex Ante Entry

The planner’s problem is

max
0≤π≤1

(
1− (1− π)2) v − 2πc,

where v = qv (1) + (1− q) v (0) is the ex ante expected value of the good. The interior solution to

this problem is given by:

(1− π) v = c or π =
v − c
v

.

In other words, the planner equates the gain from adding a player to the cost. and notice that in

this case, the solution is always interior if v > c.

Recalling that our characterization result for the equilibrium bid distributions was derived under

arbitrary (not necessarily equilibrium) entry rates, the same comments regarding the equilibrium

revenue comparisons remain true in this case. The bidders can always secure their marginal contri-

bution to the social surplus by making a zero bid at the bidding stage. Hence the equilibrium that

minimizes the equilibrium payoffs in the bidding stage also results in the highest revenue.

We write the planner’s expected gain from adding a player as:

(1− π) v = Eθ(qθ (1− π) v (1) + (1− qθ) (1− π) v (0))

Since the expected payoff to the low type bidder is ql (1− π) v (1)+(1− ql) (1− π) v (0) in any of the

auction formats that we consider, we see that the size of the distortion at the entry stage depends

only on the equilibrium payoff to the high type bidder at entry rate π. Since formal auctions induce

a higher payoff to high type bidders, we see that the informal first-price auction dominates formal

auctions in terms of expected revenue.

7.2 Poisson Entry: Planner’s problem

When entry decisions are taken at the ex ante stage, the equilibrium determination of entry rates is

straightforward. Since all the players are ex ante symmetric, only a single entry rate π needs to be
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determined. As in the main text, we start with the socially optimal choice of π. Since the expected

number of entrants is equal to the Poisson parameter π, the planner’s problem is then to

max
π≥0

v
(
1− e−π

)
− πc,

where v = qv (1) + (1− q) v (0) . Note that the marginal benefit from increasing the entry intensity

is the probability that there are no entrants times the value of the object.

This problem has a strictly concave objective function and since we are assuming v (0) > c, it

has an interior solution

π∗ = ln

(
v

c

)
.

It is also clear that the entry stage for any of our four auction formats will have a unique interior

entry rate that balances the cost and benefit of entry and keeps the potential entrants indifferent

between entering and not entering. This means that we can rank the expected revenue of our

auction formats by computing the social surplus induced equilibrium entry rates as before. By the

concavity we know that if πFA > πIF ≥ π∗, then the informal first-price auction dominates the

formal auctions in terms of expected revenue.

7.3 Bidding Equilibrium and Ex-Ante Entry

Since entry decisions are taken at a stage where all potential entrants are symmetrically informed

about the value of the product, the realized number of entrants conveys no information. This

distinguishes the current ex ante entry model from the interim entry model of the main text.

Nevertheless if the two types of bidders use different strategies at the bidding stage, then winning

the auction conveys information about the realized types of the other bidders and hence about the

true value of the object.

In the proof of Proposition 4, we ruled out pooling equilibria by using the fact that both types

of bidders are indifferent between entering and not entering. Unfortunately this condition is not

available in the case of ex ante entry and we have not been able to rule out pooling equilibria

generally. Nevertheless the steps in the proof of Proposition 6 demonstrating the uniqueness in

symmetric atomless equilibria applies equally well for the special case where πh = πl.

Concentrating on this unique atomless bidding equilibrium of the informal first-price auction

gives us revenue comparisons very similar to the case of interim entry. It is easy to show that there

is an equilibrium (b, π) to the full model with ex-ante entry, where b defines an atomless bidding

distribution Fθ (·) for θ = l, h, and the entry rate π keeps all the entrants indifferent between

entering and not. Proposition 6 says that 0 is in the support of Fl (·) and implies that the low
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type bidders’ expected payoff coincides with the value of the object conditional on being the only

participating bidder in the auction. Further, it remains true that 0 is also in the support of Fh (·)
whenever

1− β
1− α

>
v (1)

v (0)

and c is sufficiently high. It follows that under this condition, informal first-price auction gives the

maximal surplus to the seller and hence the conclusion of Proposition 12 holds for ex-ante entry as

well. We can also show that the proof of Proposition 13 carries over to the case of ex-ante entry,

and hence even when entry is distorted in informal first-price auction, that format gives a higher

revenue than the formal auctions if c is sufficiently high.

7.4 Appendix B: Proofs

Proof of Proposition 1. We can rule out atoms and gaps in the union of the bidding distributions

by standard arguments. If there was an atom, then a slight deviation up from the atom would

increase the winning probability by a discrete amount and hence improve expected payoff (unless

the atom is so high that expected payoff is negative, in which case deviation to zero would naturally

be profitable). Similarly, we can rule out gaps in the union of the supports as follows. Suppose

(p1, p2) /∈suppFl (·)∪suppFh (·) and p2 ∈suppFl (·)∪suppFh (·). Then the type bidding p2 benefits

strictly by lowering bid to p1. It follows than in equilibrium both bidders use atomless mixed

strategies with distributions that satisfy suppFl (·)∪suppFh (·) = [0, pmax]. Note that we have not

ruled out gaps in the supports of individual types, suppFl or suppFh.

We proceed by analyzing the properties of equilibrium payoff functions

Uθ (p) = qθR1 (p) + (1− qθ)R0 (p) ,

where Rω (p) is the expected payoff from bidding p conditional on state ω:

R1 (p) = (1− απh (1− Fh (p))− (1− α) πl (1− Fl (p))) (v (1)− p) ,
R0 (p) = (1− βπh (1− Fh (p))− (1− β) πl (1− Fl (p))) (v (0)− p) .

We say that type θ is active at p when p ∈suppFθ. In equilibrium we must have

Uθ (p)

{
= Vθ for p ∈ suppFθ

≤ Vθ for p /∈ suppFθ
(7)

where Vθ is the equilibrium payoff of type θ. A player can always guarantee payoff Uθ (0) > 0 by

bidding zero (since πθ < 1 for θ ∈ {l, h}), which gives a lower bound for equilibrium payoffs:

Vθ ≥ Uθ (0) = qθ (1− απh − (1− α) πl) v (1)

+ (1− qθ) (1− βπh − (1− β) πl) v (0) .
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As a first step, we determine the curvature of Uθ (p) for regions where type θ is not active. In

particular, we show that Uh (p) is convex and Ul (p) is concave in any inactive region.

Differentiating Uθ (p) once and twice gives

U ′θ (p) = qθR
′
1 (p) + (1− qθ)R′0 (p) =

qθ[(απhF
′
h (p) + (1− α) πlF

′
l (p)) (v (1)− p)− (1− απh (1− Fh (p))− (1− α) πl (1− Fl (p)))]

+ (1− qθ) [(βπhF
′
h (p) + (1− β)πlF

′
l (p)) (v (0)− p)− (1− βπh (1− Fh (p))− (1− β) πl (1− Fl (p)))](8)

and

U ′′θ (p) = qθR
′′
1 (p) + (1− qθ)R′′0 (p) =

= qθ[απh (F ′′h (p) (v (1)− p)− 2F ′h (p)) + (1− α) πl (F
′′
l (p) (v (1)− p)− 2F ′l (p))]

+ (1− qθ) [βπh (F ′′h (p) (v (0)− p)− 2F ′h (p)) + (1− β) πl (F
′′
l (p) (v (0)− p)− 2F ′l (p))].(9)

Suppose first that type h is inactive for some p, 0 ≤ p ≤ pmax. Then F
′

h (p) = F ′′h (p) = 0. Since

the union of the two bid supports is connected, l must be active at p and we have F ′l (p) > 0 and

U ′′l (p) = 0. This implies that one of the terms R′′1 (p) and R′′0 (p) must be positive, and the other

must be negative. Since 1 − β > 1 − α and v (1) > v (0), it follows from (9) that R′′1 (p) > R′′0 (p)

in this case. Since qh > ql, this implies that U ′′h (p) > 0. Going through the same steps we see that

whenever F ′l (p) = F ′′l (p) = 0 and F ′h (p) > 0, we have U ′′l (p) < 0. To summarize: if there is an

interval where type h is inactive, the value of that type is convex: U ′′h (p) > 0 for p /∈suppFh. If there

is an interval where type l is inactive, the value of that type is concave: U ′′l (p) < 0 for p /∈suppFl.

This has an immediate implication for the types of equilibria that are possible. The strict concavity

of Ul (p) on all intervals where l is inactive rules out gaps in suppFl since the expected payoffs at the

endpoints of such a gap are equal in any equilibrium. In contrast, there may be a gap in suppFh.

We show next that 0 ∈suppFl. Suppose to the contrary that 0 /∈suppFl. Let p̃ := minsuppFl > 0

denote the lowest bid by the low type. Then for p ∈ [0, p̃] we must have Uh (p) = Vh and U ′h (p) = 0.

Noting that α > β and F ′l (p) = 0 for p ∈ [0, p̃], we see from (8) that R′1 (p) > R′0 (p) for p

small enough. Since qh > ql and U ′h (p) = 0, this implies that U ′l (p) < 0 for p small enough. We

have also shown above that U ′′l (p) < 0 when l is inactive, in particular for p ∈ [0, p̃], and therefore

Ul (p̃) < Ul (0). This means that the low type gets a strict benefit by deviating to zero, contradicting

p̃ := minsuppFl. We can conclude that in equilibrium suppFl is an interval containing zero.

The remaining task is to determine the shape of the support of the high types’ bid distribution in

equilibrium. We first attempt to construct an equilibrium where suppFl (·) = [0, p′] and suppFh (·) =

[p′, pmax] for some p′ > 0. By standard analysis, solving (8) for F ′l (p) while keeping Fh (p) = F ′h (p) =

0, we can find a p′ > 0 and F ′l (p) > 0 for all p ∈ [0, p′] in such a way that U ′l (p) = 0 for p ∈ [0, p′]
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and where Fl (p
′) = 1. Similarly, we can find a pmax > p′ and F ′h (p) for p ∈ [0, pmax] such that

U ′h (p) = 0 for p ∈ [0, pmax].

In this construction it is evident that Ul (p) < U (0) for all p > p′ and hence the low type has

no profitable deviation. Since Uh (p) is convex in [0, p′], we have to check that the high type does

not want to deviate to zero, i.e. Uh (p′) ≥ Uh (0). To do this, we can pin down p′ by requiring the

low type to be indifferent between 0 and p′:

ql (1− απh − (1− α) πl) v (1) + (1− ql) (1− βπh − (1− β) πl) v (0)

= ql (1− απh) (v (1)− p′) + (1− ql) (1− βπh) (v (0)− p′) .

Solving this for p′ gives

p′ = πl
ql (1− α) v (1) + (1− ql) (1− β) v (0)

ql (1− απh) + (1− ql) (1− βπh)
. (10)

The values of the high type for p = 0 and p = p′ are then, respectively:

Uh (0) = qh (1− απh − (1− α) πl) v (1) + (1− qh) (1− βπh − (1− β) πl) v (0) ,

Uh (p′) = qh (1− απh) (v (1)− p′) + (1− qh) (1− βπh) (v (0)− p′) .

Substituting in p′ from (10) and using straightforward algebra, we then see that Uh (p′) ≥ Uh (0)

whenever:
(1− α) v (1)

1− απh
≥ (1− β) v (0)

1− βπh
, (11)

and Uh (p) is convex in [0, p′], we have Uh (p) ≤ Uh (p′) for all p ∈ [0, p′]. If (11) holds, our

constructed strategy profile is then an equilibrium with suppFl = [0, p′] and suppFh = [p′, pmax].

Using the properties (7) of Uθ that must hold in equilibrium it is straight-forward to also show that

there cannot be any other equilibrium.

If (11) does not hold, then Uh (0) > Uh (p′) in the strategy profile that we constructed above, and

the high types have a profitable deviation. In that case, equilibrium must satisfy 0 ∈suppFh. To see

this, note that by convexity of Uh (p) in the inaction region of h, we have necessarily Uh (0) > Uh (p̃)

for any potential p̃ := minsuppFh ∈ (0, p′] (since there cannot be a gap in the union of supports,

obviously we cannot have p̃ > p′ either). When (11) does not hold, we can construct a unique

equilibrium where either 1) suppFl = [0, p′] and suppFh = [0, pmax], 0 < p′ < pmax, or 2) suppFl =

[0, p′] and suppFh = [0, p′′]∪ [p′, pmax], 0 < p′′ < p′ < pmax. The construction of such an equilibrium

follows exactly the lines of the proof of Proposition 6 and we skip the details here.

Proof of Proposition 2. We contrast the expected revenue in the informal first-price auction to

the formal second-price auction. Since the expected revenue is the same in both formal auctions,

the proof extends to the formal first-price auction as well.
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By Proposition 1, there are two cases to consider. If 0 ∈suppFl (·)∩suppFh (·) in the equilibrium

of the informal first-price auction, both type of bidders get expected payoff Uθ (0), i.e. probability

that the other bidder does not enter time the expected value of the object conditional on that. In

the formal second price auction, a high type bidder gets a strictly higher expected payoff, because

even when both bidders enter, the high type pays less than the expected value if the other bidder

has type θ = l. It follows that the expected rent to the high type is higher in the formal second-

price auction than the informal first-price auction and hence the expected revenue is higher in the

informal first-price auction.

Consider next the case where suppFl (·) = [0, p′] and suppFh (·) = [p′, pmax] for some p′ > 0 in

the informal first-price auction. We want to contrast the equilibrium payoff of the high type bidder

in the informal first-price auction to the formal second-price auction. We introduce the notation

N θ ∈ {0, 1} for the random number of participating other bidders of type θ.

Notice first that by bidding 0 in the informal first-price auction, the low type bidder wins if and

only if no other bidders enter. By bidding p′, she wins if and only if no high type bidder enters.

Since both of these bids are in her bid support, they must yield the same expected payoff:

Ul (0) = Pr
(
N l = 0

∣∣∣θ̃ = l, Nh = 0
)
E
(
v
∣∣∣θ̃ = l, Nh = 0, N l = 0

)
− 0 =

Ul (p
′) = Pr

(
N l = 0

∣∣∣θ̃ = l, Nh = 0
)
E
(
v
∣∣v = l, Nh = 0, N l = 0

)
+ Pr

(
N l = 1

∣∣∣θ̃ = l, Nh = 0
)
E
(
v
∣∣∣θ̃ = l, Nh = 0, N l > 0

)
− p′

so that

p′ = Pr
(
N l = 1

∣∣∣θ̃ = l, Nh = 0
)
E
(
v
∣∣∣θ̃ = l, Nh = 0, N l = 1

)
.

The bid p′ is also in the support of the high type bidder.

Consider then the formal second-price auction, where type θ bids bθ in equilibrium. Observe that

by deviating to some bid between bl and bh, the high type bidder does not change her equilibrium

payoff (as long as ε is small enough). At this deviating bid, the allocation of the deviating bidder

is exactly the same as allocation from the equilibrium bid of p′ in the informal first-price auction.

To compare the expected payoff to the high type bidder across the two auction formats, we then

only need to compare the expected payment in these formats.

The expected payment of the deviating high type bidder in the formal second-price auction is

E (p) = Pr
(
N l = 0

∣∣∣θ̃ = h,Nh = 0
)
· 0 + Pr

(
N l = 1

∣∣∣θ̃ = h,Nh = 0
)
bl

= Pr
(
N l = 1

∣∣∣θ̃ = h,Nh = 0
)
E
(
v
∣∣∣θ̃ = l, Nh = 0, N l = 1

)
,

where we have used the fact that bid of a low type in the formal second-price auction is

bl = E
(
v
∣∣∣θ̃ = l, Nh = 0, N l = 1

)
.
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Observe that

Pr
(
N l = 1

∣∣∣θ̃ = h,Nh = 0
)
< Pr

(
N l = 1

∣∣∣θ̃ = l, Nh = 0
)

because the bidder with signal θ̃ = h considers state ω̃ = 1 more likely than the bidder with signal

θ̃ = l and (1− α) < (1− β) . By comparing the expressions above, we then note that E (p) < p′.

Since the expected payment of a high type is lower in the formal second-price auction, it follows

that expected rents to the bidders are lower in the informal first-price auction, or equivalently,

the informal first-price auction generates a higher expected revenue than the formal second-price

auction.

Proof of Proposition 3. Let
(
πIFh , πIFl

)
and

(
πFh , π

F
l

)
denote the equilibrium entry probabilities

in informal first-price auction and formal second-price auction, respectively. Let V IF
θ (πh, πl) and

V F
θ (πh, πl) denote the equilibrium value of type θ in the informal first-price and formal second-price

auction, respectively, when entry rates are exogenously given by (πh, πl). Fix the entry probabilities

to those given by the entry equilibrium of the informal first-price auction,
(
πIFh , πIFl

)
, but change

the auction format to the formal second-price auction. By Proposition 2, the rent of the higher

bidder exceeds that in the informal first-price auction, and hence V F
h

(
πIFh , πIFl

)
> c. If πIFh < 1,

then in the entry equilibrium of the formal second-price auction we must have πFh > πIFh . Since

πFl = π∗l
(
πFh
)
, the result follows. If πIFh = 1, then the equilibrium entry rates are the same across the

two auction formats (and therefore the realized social surplus is also the same across the formats),

but the rent going to the high type bidders is higher in the informal second-price auction.

Proof of Proposition 5. If
(
b, (π1, πM)

)
is an equilibrium of the reduced model (i.e. the model

with θ ∈ {1,M}), then types θ = 1 and θ = M get the same payoff in the full model under

strategy profile
(
b, (π1, 0, ..., 0, πM)

)
and hence their behavior remains consistent with equilibrium.

We have to prove that no other type m ∈ {2, ...,M − 1} has a strict incentive to enter against(
b, (π1, 0, ..., 0, πM)

)
. Denote by R0 (p) and R1 (p) the expected payoff of a bidder who bids p

against
(
b, (π1, 0, ..., 0, πM)

)
, conditional on state ω = 0 and ω = 1, respectively. Suppose that

there is a type m ∈ {2, ...,M − 1} and a bid pm such that m gets strictly more than c when the

others follow
(
b, (π1, 0, ..., 0, πM)

)
. This means that qmR1 (pm) + (1− qm)R0 (pm) > c. But since

q0 < qm < qM , then either q1R1 (pm) + (1− q0)R0 (pm) > c or qMR1 (pm) + (1− qM)R0 (pm) > c,

implying that either type θ = 0 or θ = M would get a payoff strictly greater than c by following

bidding strategy pm. This contradicts the fact that
(
b, (π1, πM)

)
is an equilibrium of the reduced

model.

To prove the second part of the proposition, suppose that there is an equilibrium (b, π) in the

full model such that πm > 0 for some m ∈ {2, ...,M − 1}. Let Rω (p) denote the expected payoff of
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bidding p conditional on state ω:

R1 (p) = e
−

M∑
m=1

α1,mπm(1−Fm(p))

(v (1)− p) ,

R0 (p) = e
−

M∑
m=1

α0,mπm(1−Fm(p))

(v (0)− p) .

Since (b, π) is an equilibrium, we must have for every p ≥ 0,

qmR1 (p) + (1− qm)R0 (p) ≤ c, for m = 1, ...,M

and for any p ∈suppFm, we have

qmR1 (p) + (1− qm)R0 (p) = c.

These equations imply that if p ∈suppFm, m ∈ {2, ...,M − 1}, then

R1 (p) = R0 (p) = c,

and hence any type will be indifferent between entering and bidding p and staying out. It follows

that if there is a strategy profile
(
b, (π1, πM)

)
in the reduced model that induces the same state-

by-state payoffs R1 (p) and R0 (p) than (b, π), then
(
b, (π1, πM)

)
is an equilibrium of the reduced

model. It remains to show that we can construct such a strategy profile.

Since α1,1

α0,1
< ... <

α1,M

α0,M
, we can always choose π̂1 > 0 and π̂M > 0 such that

α1,1π̂1 + α1,M π̂M =
M∑
m=1

α1,mπm,

α0,1π̂1 + α0,M π̂M =
M∑
m=1

α0,mπm.

Similarly, we choose c.d.f.:s F̂1 (p) and F̂M (p) such that for all p ≥ 0, we have

α1,1π̂1

(
1− F̂1 (p)

)
+ α1,M π̂M

(
1− F̂M (p)

)
=

M∑
m=1

α1,mπm (1− Fm (p)) ,

α0,1π̂1

(
1− F̂1 (p)

)
+ α0,M π̂M

(
1− F̂M (p)

)
=

M∑
m=1

α0,mπm (1− Fm (p)) .

We now have a strategy profile of the reduced model,
({
F̂1 (·) , F̂M (·)

}
, {π̂1, π̂M}

)
, with the same

state-by-state payoffs as the original equilibrium of the full model:

R̂1 (p) : = e−α1,1π̂1(1−F̂1(p))−α1,M π̂M(1−F̂M (p)) (v (1)− p) = R1 (p) ,

R̂0 (p) : = e−α0,1π̂1(1−F̂1(p))−α0,M π̂M(1−F̂M (p)) (v (0)− p) = R0 (p) .
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Proof of Proposition 6. We prove the proposition by constructing the equilibrium bidding

functions by requiring indifference over intervals of bids. Since the equations determining this

indifference have a unique solution, we get the uniqueness of atomless bidding equilibria as a by-

product of this procedure.

To begin, we specify the range of bids where both types can potentially be indifferent simulta-

neously. Let us denote by Uθ (p) the payoff of type θ who bids p, when bidding distributions are

given by Fθ (p):

Uθ (p) = qθe
−λ1,h(1−Fh(p))−λ1,l(1−Fl(p)) (v (1)− p)

+ (1− qθ) e−λ0,h(1−Fh(p))−λ0,l(1−Fl(p)) (v (0)− p) .

Differentiating with respect to p, we have:

U ′θ (p) = qθe
−λ1,h(1−Fh(p))−λ1,l(1−Fl(p)) [(F ′h (p)λ1,h + F ′l (p)λ1,l) (v (1)− p)− 1]

+ (1− qθ) e−λ0,h(1−Fh(p))−λ0,l(1−Fl(p)) [(F ′h (p)λ0,h + F ′l (p)λ0,l) (v (0)− p)− 1] (12)

In equilibrium, F ′θ (p) > 0 requires U ′θ (p) = 0 to maintain indifference within bidding support.

To analyze when this can hold, we denote the two terms in square brackets by B (1) and B (0):

B (1) = (F ′h (p)λ1,h + F ′l (p)λ1,l) (v (1)− p)− 1,

B (0) = (F ′h (p)λ0,h + F ′l (p)λ0,l) (v (0)− p)− 1.

These terms are weighted in (12) by positive terms that depend on θ only through qθ. Since qh > ql,

we note that U ′h (p) puts more weight on term B (1) than B (0), relative to U ′l (p).

It is immediate that for U ′h (p) and U ′l (p) to be zero simultaneously, it must be that B (1) =

B (0) = 0. Since λ1,h > λ0,h and λ0,l > λ1,l, this is possible only if

λ0,l (v (0)− p) > λ1,l (v (0)− p) .

This can hold only for low values of p. Let us define p̃ as the cutoff value such that the above

inequality holds for p < p̃:

p̃ = max

(
0,
v (0)λ0,l − v (1)λ1,l

λ0,l − λ1,l

)
.

(Note that we define p̃ = 0 if indifference is never possible). We summarize the implications of

this reasoning in the following Lemma. Part 1 says that the overlap of bidding supports is possible

only for p < p̃. Part 2 says that in a range where only low type randomizes, value of high type is

U-shaped with minimum at p = p̃. Part 3 says that in a range where only high type randomizes,

value of low type is decreasing and hence the low type prefers lower bids.
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Lemma 14 Let λ1,h > λ0,h and λ0,l > λ1,l be given, and let Fθ (p), θ = h, l, be an atomless

equilibrium bidding distribution. Then:

1. If F ′θ (p) > 0 for θ = h, l, then p < p̃.

2. If F ′l (p) > 0 and F ′h (p) = 0, then

U ′h (p)

{
< 0 for p < p̃

> 0 for p > p̃
.

3. If F ′h (p) > 0 and F ′l (p) = 0, then U ′l (p) < 0.

Proof. Part 1: F ′θ (p) > 0 for θ = h, l requires that B (1) = B (0) = 0, which is only possible

if p < p̃. Part 2: If F ′l (p) > 0, then U ′l (p) = 0. If F ′h (p) = 0, then U ′l (p) = 0 implies that

B (1) < 0 < B (0) for p < p̃, and B (0) < 0 < B (1) for p > p̃. Since qh > ql, the result follows. Part

3: If F ′h (p) > 0, then U ′h (p) = 0. If F ′l (p) = 0, then U ′h (p) = 0 implies that B (0) < 0 < B (1).

Since ql < qh, the result follows.

With this preliminary result in place, we can construct the equilibrium in the two cases sepa-

rately. Assume first that (
1− e−λ1,l

)
v (1) >

(
1− e−λ0,l

)
v (0) .

Starting from p = 0, assume that only low types bid for low p and define the low type bidding

distribution Fl (p) over some interval [0, p′] in such a way that a low type bidder is indifferent

throughout, and Fl (p
′) = 1. In particular, a low type bidder must be indifferent between bidding 0

and p′, which gives the following condition:

qle
−λ1,h−λ1,lv (1) + (1− ql) e−λ0,h−λ0,lv (0)

= qle
−λ1,h (v (1)− p′) + (1− ql) e−λ0,h (v (0)− p′) ,

which can be rewritten as

qle
−λ1,h

[(
1− e−λ1,l

)
v (1)− p′

]
+ (1− ql) e−λ0,h

[(
1− e−λ0,l

)
v (0)− p′

]
= 0.

For this to hold, one of the terms in square-brackets must be positive and the other one

must be negative. Since we assume
(
1− e−λ1,l

)
v (1) >

(
1− e−λ0,l

)
v (0), it must be the term[(

1− e−λ1,l
)
v (1)− p′

]
that is positive. But then, since qh > ql, this implies that

qhe
−λ1,h

[(
1− e−λ1,l

)
v (1)− p′

]
+ (1− qh) e−λ0,h

[(
1− e−λ0,l

)
v (0)− p′

]
> 0
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or

qhe
−λ1,h−λ1,lv (1) + (1− qh) e−λ0,h−λ0,lv (0)

< qhe
−λ1,h (v (1)− p′) + (1− qh) e−λ0,h (v (0)− p′) ,

so that high types prefer strictly the bid of p′ to the bid 0. Combining this with part 2 of Lemma

14, we note that

Uh (p′) > Uh (p) for all p ∈ [0, p′)

and so the high type does not have an incentive to deviate to any p < p′.

To finish the construction of the equilibrium, we define pmax so that the high type is indifferent

between winning for sure by bidding pmax and winning if and only there are no other high types by

bidding p′:

qh (v (1)− pmax) + (1− qh) (v (0)− pmax)

= qhe
−λ1,h (v (1)− p′) + (1− qh) e−λ0,h (v (0)− p′) .

It is then clear that there is a unique distribution Fh (p) such that Fh (p′) = 0, Fh (pmax) = 1,

and for which high type is indifferent between any p ∈ [p′, pmax]:

Uh (p) = Uh (p′) for all p ∈ (p′, pmax] .

We have hence constructed an equilibrium where low type bidding support is [0, p′] and high type

bidding support is [p′, pmax].

Assume next that (
1− e−λ1,l

)
v (1) <

(
1− e−λ0,l

)
v (0) .

If we now try to construct an equilibrium as above, high type bidders have an incentive to deviate

and bid zero. In particular, take any p′ > 0 and assume that only low types bid on interval [0, p′]

and Ul (p) = Ul (0) for all p ≤ p′. Then by part 1 of Lemma 14 we have Uh (p) < Uh (0) for

all p ≤ p′, and high types will deviate to zero. It follows that in any equilibrium with atomless

distributions, 0 must be contained in the bidding distributions of both types. We can now construct

the equilibrium bidding distributions as follows. First, we define p′′ such that a high type bidder

is indifferent between winning for sure by bidding p′′ and winning if and only if there are no other

bidders by bidding 0:

qh (v (1)− p′′) + (1− qh) (v (0)− p′′)
= qhe

−λ1,he−λ1,lv (1) + (1− qh) e−λ0,he−λ0,lv (0) ,
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so that

p′′ = qh
(
1− e−λ1,h−λ1,l

)
v (1) + (1− qh)

(
1− e−λ0,h−λ0,l

)
v (0) .

Then we can proceed downwards from p′′ by defining Fh (p) in such a way that

Uh (p) = Uh (p′′) for p < p′′,

where Uh (p) is given by (??) with Fl (p) = 1. At the same time, by part 3 of Lemma 14, we have

U ′l (p) < 0 over this range, and at some point p will reach a point −→p where low types want to

become active. This point is pinned down by the condition that low type is indifferent between

bidding −→p and zero:

−→p =
{
p : Ul (p) = qle

−λ1,he−λ1,lv (1) + (1− ql) e−λ0,he−λ0,lv (0)
}
,

where Ul (p) is given by (??). We have then two different cases depending on whether −→p is below

or above p̃.

Case 1: −→p ≤ p̃. We can define Fl (p) and Fh (p) below −→p so that both types are indifferent for all

p ≤ −→p , that is, Ul (p) = Ul (
−→p ) and Uh (p) = Uh (−→p ). As a result, we end up with an equilibrium,

where the low type bidding support is [0,−→p ] and high type bidding support is [0, p′′].

Case 2: −→p > p̃. By part 1 of Lemma 14, we cannot have indifference simultaneously for both

types above p̃, and hence the same structure as in Case 1 is not possible. Instead, we will construct

an interval [←−p ,−→p ] containing p̃, where only low type is active: define Fl (p) within [←−p ,−→p ] such

that Ul (p) = Ul (
−→p ) for p ∈ (←−p ,−→p ), where Ul (p) is given by (??) with Fh (p) = Fh (−→p ). By part

2 of Lemma 14, U ′h (p) > 0 for p > p̃ and U ′h (p) < 0 for p < p̃. We then define ←−p as the point

where Uh (←−p ) = Uh (−→p ). Since ←−p < p̃, we can define Fl (p) and Fh (p) below ←−p so that both

types are indifferent, that is Ul (p) = Ul (
←−p ) and Uh (p) = Uh (←−p ) for all p ≤ ←−p . As a result we

have an equilibrium, where the low type bidding support is [0,−→p ] and high type bidding support

is disconnected and given by [0,←−p ] ∪ [−→p , p′′].
Proof of Lemma 8. If π∗l (πh) = 0, it is easy to check that (5) holds since W (0, πh) is concave

in πh. If π∗l (πh) > 0, the first order condition for πl must hold:

0 = (1− α) q
(
v (1) e−απh−(1−α)π∗l (πh) − c

)
(13)

+ (1− β) (1− q)
(
v (0) e−βπh−(1−β)π∗l (πh) − c

)
. (14)

If πh = πopth , then π∗l (πh) = πoptl and (14) is satisfied since

v (1) e−απ
opt
h −(1−α)πoptl (πh) − c = v (0) e−βπ

opt
h −(1−β)πoptl − c = 0.

If πh > (<) πopth , we note that since α > β, (14) can only hold if

v (1) e−απh−(1−α)π∗l (πh) − c < (>) 0 < (>) v (0) e−βπh−(1−β)π∗l (πh) − c.
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But then, since α > (1− α) and β < (1− β), we have

∂W (π∗l (πh) , πh)

∂πh
= αq

(
v (1) e−απh−(1−α)π∗l (πh) − c

)
+ β (1− q)

(
v (0) e−βπh−(1−β)π∗l (πh) − c

)
< (>) 0.

The result then follows from the envelope theorem.

Proof of Proposition 9. Let c ≥ c and assume that entry rates are given by πh = πopth > 0 and

πl = πoptl = 0. It is easy to check that in all the auction forms, the payoffs to the high and low

type bidders are given by V 0
h

(
πopth , 0

)
= c and V 0

l

(
πopth , 0

)
< c, respectively. Hence, socially optimal

entry profile is an equilibrium. It is straight-forward to show that no other equilibria exist.

Proof of Proposition 10. We have already shown in Proposition 4 that there cannot be atoms

in the bidding distribution of an equilibrium with interim entry and hence the atomless equilibrium

of Proposition 6 is the only candidate for the bidding stage. As stated in Proposition 6, zero is in

the support of the low type. The upper bound bh follows from the break-even condition of a high

type bidder who by bidding the highest bid in the support wins with probability 1. For an arbitrary

entry profile (πh, πl), denote the expected payoff of a player with signal θ in the atomless bidding

equilibrium by V IF
θ (πh, πl), θ ∈ {h, l}.

Consider next the entry stage. We want to show that for each c ∈ (0, c) there is a unique (πh, πl)

such that V IF
h (πl, πh) = V IF

l (πl, πh) = c. To do that, we will show that the following properties

hold:

P1. V IF
h (πl, πh) and V IF

l (πl, πh) are continuous in (πl, πh)

P2. V IF
h (πl, πh) and V IF

l (πl, πh) are strictly decreasing in πl

P3. There are unique points πh∗l > πl∗l > 0 and πl∗h > πh∗h > 0 such that

V IF
h

(
πh∗l , 0

)
= V IF

l

(
πl∗l , 0

)
= c,

V IF
h

(
0, πh∗h

)
= V IF

l

(
0, πl∗h

)
= c.

P4. For every (πl, πh) such that V IF
h (πl, πh) = V IF

l (πl, πh) = c, we have

∂V IF
l (πl, πh)

∂πl

∂V IF
h (πl, πh)

∂πh
>
∂V IF

h (πl, πh)

∂πl

∂V IF
l (πl, πh)

∂πh
. (15)

Before proving these properties, we show that they imply the existence of a unique (πh, πl) with

V IF
h (πl, πh) = V IF

l (πl, πh) = c. Observe first that P1 - P3 imply that there are continuous and

decreasing curves πh∗l (πh) and πl∗l (πh) such that

πh∗l (0) = πh∗l , πl∗l (0) = πl∗l , πh∗l
(
πh∗h
)

= 0, πl∗l
(
πl∗h
)

= 0
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and

V IF
l

(
πl∗l (πh) , πh

)
= c for all πh ∈

[
0, πl∗h

]
,

V IF
h

(
πh∗l (πh) , πh

)
= c for all πh ∈

[
0, πh∗h

]
.

These curves must cross each other at least once at some (πh, πl) where V IF
h (πl, πh) = V IF

l (πl, πh) =

c. We show next that they cannot cross more than once if P4 holds. Suppose that the curves cross

at (πh, πl). Totally differentiate V IF
h (πl, πh) and consider an infinitesimal movement along πh∗l (πh)

in the direction where dπh > 0. Along that curve

∂V IF
h (πl, πh)

∂πh
dπh +

∂V IF
h (πl, πh)

∂πl
dπl = 0

so that
∂V IF

h (πl, πh)

∂πh
/
∂V IF

h (πl, πh)

∂πl
= − dπl

dπh
. (16)

By Property P4, we have

∂V IF
l (πl, πh)

∂πl

∂V IF
h (πl, πh)

∂πh
>
∂V IF

h (πl, πh)

∂πl

∂V IF
l (πl, πh)

∂πh
.

Since by Property P2 we have
∂V IFl (πl,πh)

∂πl
< 0 and

∂V IFh (πl,πh)

∂πl
< 0, this is equivalent to

∂V IF
h (πl, πh)

∂πh
/
∂V IF

h (πl, πh)

∂πl
>
∂V IF

l (πl, πh)

∂πh
/
∂V IF

l (πl, πh)

∂πl

so that combining with (16) we have

∂V IF
l (πl, πh)

∂πh
/
∂V IF

l (πl, πh)

∂πl
< − dπl

dπh
.

Since
∂V IFl (πl,πh)

∂πl
< 0 and dπh > 0, this means that

∂Vl
∂πh

dπh +
∂Vl
∂πl

dπl > 0,

and hence at any crossing point πh∗l (πh) crosses πl∗l (πh) from above when going in the direction of

increasing πh. Since πh∗l (πh) and πl∗l (πh) are continuous curves, this implies that there cannot be

more than one crossing point. There is a unique (πh, πl) where V IF
h (πl, πh) = V FPA

l (πl, πh) = c.

The final step is to prove that properties P1 - P4 actually hold. In both of the two cases in

Proposition 6, the low type payoff can be written as:

V IF
l (πl, πh) = V 0

l (πl, πh) .
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This is clearly a continuous function and it is easy to show that

∂V IF
l (πl, πh)

∂πl
< 0,

∂V IF
l (πl, πh)

∂πh
< 0.

To derive an expression for V IF
h (πl, πh), we need to consider separately the two cases of Proposition

6. Consider first the case, where 0 is in the bidding supports of both types. In that case we have

V IF
h (πl, πh) = V 0

h (πl, πh) ,

which is a continuous function and

∂V IF
h (πl, πh)

∂πl
< 0,

∂V IF
h (πl, πh)

∂πh
< 0.

It is also straightforward to show that

∂V 0
l (πl, πh)

∂πl

∂V 0
h (πl, πh)

∂πh
>
∂V 0

h (πl, πh)

∂πl

∂V 0
l (πl, πh)

∂πh

so that also property P4 holds when V FPA
h (πl, πh) = V 0

h (πl, πh) = c and V FPA
l (πl, πh) = V 0

l (πl, πh) =

c.

Consider next the second case, where the bidding supports of the two types do not overlap. Let

p′ (πh, πl) denote the only common point in the two supports, and note that this is a function of

the entry rates. Since p′ (πh, πl) is in the support of both type of players’ bidding strategy, we can

write the payoffs of the two types as

V IF
θ (πh, πl) = qθw1 (πh, πl) + (1− qθ)w0 (πh, πl) , θ = h, l,

where

qh =
αq

αq + β (1− q)
and ql =

β (1− q)
αq + β (1− q)

are the posteriors of the two types, and wω (πh, πl), ω = 0, 1, is the payoff from bidding p′ (πh, πl)

conditional on state. By bidding p′ (πh, πl), a player wins if and only if there are no high type

entrants, and therefore we may write the state conditional payoffs from this strategy as:

w1 (πl, πh) = e−απh (v (1)− p′ (πl, πh)) , (17)

w0 (πl, πh) = e−βπh (v (0)− p′ (πl, πh)) ,

where p′ (πl, πh) can be solved from the indifference condition for a low type bidder between bidding

0 and bidding p′ (πl, πh):

qle
−απh−(1−α)πlv (1) + (1− ql) e−βπh−(1−β)πlv (0)

= qle
−απh (v (1)− p′ (πl, πh)) + (1− ql) e−βπh (v (0)− p′ (πl, πh)) ,
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which gives

p′ (πl, πh) =
qle
−απh

(
1− e−(1−α)πl

)
v (1) + (1− ql) e−βπh

(
1− e−(1−β)πl

)
v (0)

qle−απhv (1) + (1− ql) e−βπhv (0)
.

This is continuous in (πh, πl), and so are V IF
θ (πh, πl), θ = h, l. From this we can also show that

∂p′ (πl, πh)

∂πl
> 0,

∂p′ (πl, πh)

∂πh
< 0.

Differentiating wω (πl, πh), we have

∂w1 (πl, πh)

∂πh
= −e−απh

(
α (v (1)− p′ (πl, πh)) +

∂p′ (πl, πh)

∂πh

)
,

∂w0 (πl, πh)

∂πh
= −e−βπh

(
β (v (0)− p′ (πl, πh)) +

∂p′ (πl, πh)

∂πh

)
,

∂w1 (πl, πh)

∂πl
= −e−απh ∂p

′ (πl, πh)

∂πl
,

∂w0 (πl, πh)

∂πl
= −e−βπh ∂p

′ (πl, πh)

∂πl
,

and we see immediately that

∂w1 (πl, πh)

∂πl
< 0,

∂w0 (πl, πh)

∂πl
< 0, (18)

which implies that also in this case we have

∂V IF
h (πl, πh)

∂πl
< 0.

To check property P3, note first that since V IF
l (πh, πl) = V 0

l (πh, πl) for all (πh, πl), we have

V IF
l (πh, 0) = V 0

l (πh, 0) and

V IF
l (0, πl) = V 0

l (0, πl) .

For the high type, it is easy to show that if there are no low types, the payoff of high type is equal

to the social contribution and

V IF
h (πh, 0) = V 0

h (πh, 0) .

Moreover, a high type always gets at least the social contribution so that

V IF
h (0, πl) ≥ V 0

h (0, πl) .
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It is easy to check using these that P3 holds whenever c < c.

Finally, we consider property P4 in the case where bidding supports do not overlap. First, we

can write (15) as:(
ql
∂w1 (πl, πh)

∂πl
+ (1− ql)

∂w0 (πl, πh)

∂πl

)(
qh
∂w1 (πl, πh)

∂πh
+ (1− qh)

∂w0 (πl, πh)

∂πh

)
>

(
qh
∂w1 (πl, πh)

∂πl
+ (1− qh)

∂w0 (πl, πh)

∂πl

)(
ql
∂w1 (πl, πh)

∂πh
+ (1− ql)

∂w0 (πl, πh)

∂πh

)
.

By straightforward algebra, this can be written as

ql

(
∂w1 (πl, πh)

∂πl

)(
∂w0 (πl, πh)

∂πh

)
+ qh

(
∂w0 (πl, πh)

∂πl

)(
∂w1 (πl, πh)

∂πh

)
> qh

(
∂w1 (πl, πh)

∂πl

)(
∂w0 (πl, πh)

∂πh

)
+ ql

(
∂w0 (πl, πh)

∂πl

)(
∂w1 (πl, πh)

∂πh

)
.

Since qh > ql, we see that (15) is equivalent to

∂w1 (πl, πh)

∂πh

∂w0 (πl, πh)

∂πl
>
∂w1 (πl, πh)

∂πl

∂w0 (πl, πh)

∂πh
. (19)

Differentiating (17), we have:

∂w1 (πl, πh)

∂πh

∂w0 (πl, πh)

∂πl

= e−(α−β)πh

(
α (v (1)− p′ (πl, πh)) +

∂p′ (πl, πh)

∂πh

)
∂p′ (πl, πh)

∂πl
,

∂w0 (πl, πh)

∂πh

∂w1 (πl, πh)

∂πl

= e−(α−β)πh

(
β (v (0)− p′ (πl, πh)) +

∂p′ (πl, πh)

∂πh

)
∂p′ (πl, πh)

∂πl
,

from which we can check that (19) holds, which is equivalent to (15).

Proof of Proposition 11. Suppose that there is an equilibrium with πm > 0 for some m ∈
{2, ...,M − 1}. Let Vω, ω = 0, 1, denote the ex-ante equilibrium payoff conditional on state for

bidding according to type m strategy. Since m breaks just even in equilibrium, qmV1 +(1− qm)V0 =

c . We have q1 < qm < qM . Hence, if V1 > V0, then type M can get strictly more than c by mimicking

the bidding strategy of m, and if V0 > V1, then type 1 can get strictly more than c by mimicking

the bidding strategy of m. Therefore, it must be that V0 = V1. This of course means that any type

can get c by mimicking type m bidding strategy. It remains to show that some type gets strictly

more by deviating from m’s bidding strategy.
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Note that since we consider formal auctions, the bidding strategy is conditional on n, the realized

number of entrants. Let Rn
ω (p) denote the expected payoff of bidding p, conditional on n and

conditional on ω. Suppose that there is some n and either some interval (p′, p′′) or an atom p′′′

in the support of m’s bidding strategy such that Rn
1 (p) 6= Rn

0 (p) within (p′, p′′) or at p′′′. Then,

either type 1 or type M gets more in expectation more than m by deviating to (p′, p′′) or p′′′ for

this n. By using this deviation for n, and by mimicking m for all other n, this type (either 1 or

M) gets a strictly higher ex-ante payoff than m, contradicting the assumption that this strategy

is an equilibrium in the overall game with interim entry. It follows that unless Rn
1 (p) = Rn

0 (p)

within the whole support of type m for all n, there cannot exist an equilibrium with πm > 0,

m ∈ {2, ...,M − 1}.
It remains to show that we cannot have Rn

1 (p) = Rn
0 (p) within the whole support of type m

for all n. First, note that for any n ≥ 2, p
n

:= min
M⋃
i=1

suppF n
i > v (0), where F n

i is the bidding

distribution of type i for realized number of entrants n. If this were not the case, then anyone

bidding p
n

would have a strictly profitable deviation up (recall that n ≥ 2, so if there is no atom

at p
n
, then one can never win by bidding there, and if there is an atom, a small deviation increases

probability of winning discretely). But for all p > v (0), we always have Rn
0 (p) < 0, and hence

Rn
1 (p) 6= Rn

0 (p).

Proof of Proposition 12. The entry rates of the low type bidders conditional on state are

λ0,l := (1− β)πl and λ1,l := (1− α) πl. Note that

1− e−(1−β)πl

1− e−(1−α)πl

is decreasing in πl with limπl→∞
1−e−(1−β)πl

1−e−(1−α)πl
= 1 and limπl→0

1−e−(1−β)πl

1−e−(1−α)πl
= 1−β

1−α . Hence, if

1− β
1− α

>
v (1)

v (0)

and πl is small enough, we have
1− e−λ0,l
1− e−λ1,l

>
v (1)

v (0)
,

so by Proposition 6, zero is in the support of both types of bidders. In this case, the payoff in the

auction is V 0
θ (πh, πl) and equilibrium must be socially optimal:

πh = πopth =
1

α− β

(
(1− β) log

(
v (1)

c

)
− (1− α) log

(
v (0)

c

))
,

πl = πoptl =
1

α− β

(
−β log

(
v (1)

c

)
+ α log

(
v (0)

c

))
.
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Clearly this must be the case when c is sufficiently close to c (when c = c, we have πoptl = 0). In

all the other auction formats, at least the high type bidder gets strictly more than V 0
h (πh, πl), and

hence πh > π∗h (πl), so that equilibrium is inefficient and generates a strictly lower total surplus

than informal FPA.

Proof of Proposition 13. As a first step, we show that with an exogenous entry profile (πh, πl)

a high type gets a higher payoff in formal auctions than in informal first-price auction if πl is small

enough.

If zero is in the bidding support of both types for informal first-price auction, the result is

immediate. Therefore, assume there is no overlap in the bidding supports in informal first-price

auction and denote by p′ the common point in the two supports.

Let us contrast informal first-price auction to formal second-price auction, and consider the

following bidding strategy. In informal first-price auction, let both types bid p′. Since this is in the

support of both types, it generates the equilibrium payoff to both types. In formal second-price

auction, let both types bid p (n) + ε, where

p (n) = E
[
v
∣∣θ = l, N l = n− 1, Nh = 0

]
is the equilibrium pooling bid for the low type and ε > 0 is some number small enough so that

p (n) + ε is strictly below the lowest point in the high type bidding support. With this strategy, a

bidder wins if and only if there are no (other) high type bidders, and price in such a case is either

zero or p (n). Clearly, this strategy is a weakly best-response for both types. Since using these

strategies, a player gets the same allocation in both auction formats (get the object if and only if

there are no high types present), we may compare the players’ preference over the auction formats

by contrasting their expected payment conditional on winning across the auction formats.

Start with the low type. Since the low type gets expected payoff zero in both auction formats,

she is indifferent between bidding p′ in informal first-price auction and bidding p (n) + ε in formal

second-price auction. Therefore, the expected payment conditional on winning must be the same

in the two cases, leading to:

p′ = E
(
p
∣∣θ = l, ”win by bidding p (n) + ε”

)
= Pr

(
N l = 0

∣∣θ = l, Nh = 0
)
· 0

+
∞∑
k=1

Pr
(
N l = k

∣∣θ = l, Nh = 0
)
p (k + 1) .

Consider next the high type. Her expected payment when bidding p (n) + ε in formal second-price
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auction is

E
(
p
∣∣θ = h, ”win by bidding p (n) + ε”

)
=

∞∑
k=1

Pr
(
N l = k

∣∣θ = h,Nh = 0
)
p (k + 1)

=
∞∑
k=1

Pr
(
N l = k

∣∣θ = h,Nh = 0
)
E
(
v
∣∣θ = l, Nh = 0, N l = k

)
and hence she prefers the formal second-price auction if

∞∑
k=1

Pr
(
N l = k

∣∣θ = h,Nh = 0
)
p (k + 1)

< p′ =
∞∑
k=1

Pr
(
N l = k

∣∣θ = l, Nh = 0
)
p (k + 1) , (20)

where

p (k + 1) := E
(
v
∣∣θ = l, Nh = 0, N l = k

)
is a decreasing function of k (for k ≥ 1). Note that the only difference in the two formulas in (20)

is that the probability

Pr
(
N l = k

∣∣θ,Nh = 0
)

is conditioned on θ = h in the first line and θ = l in the second line. Since a high signal makes state

ω = 1 more likely, a simple sufficient condition for (20) to hold is that

Pr
(
N l = k

∣∣ω = 1, Nh = 0
)
< Pr

(
N l = k

∣∣ω = 0, Nh = 0
)

for all k ≥ 1. Since

N l
∣∣(ω = 1, Nh = 0

)
∼ Poisson (λω,l) ,

we know that (20) holds if

λ0,le
−λ0,l > λ1,le

−λ1,l ,

that is

(1− β) πl e
−(1−β)πl > (1− α) πl e

−(1−α)πl

or

πl <
log (1− β)− log (1− α)

α− β
.

Therefore, a high-type bidder has a lower expected payment in the formal second-price auction for

πl small enough, which means that her expected payoff is higher in that auction formal. Since
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low type is always indifferent, this means that that expected revenue for the seller is higher in the

informal first-price auction

The second step is just to conclude that a change of auction format from informal first-price

auction to a formal auction increases πh, which is already too high in the informal first-price auction.

Since in both auction formats, πl = π∗l (πh), this further distortion will move the equilibrium entry

point along π∗l (πh) further away from social optimum, which by Lemma 8 decreases social surplus

and hence revenue.
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Figure 1: Social planner’s reaction curves. 
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