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Abstract

We analyse a simple model of dynamic moral hazard in which there is a clear

and tractable trade-off between static and dynamic incentives. In our model, a

principal wants an agent to complete a project. The agent undertakes unobservable

effort, which affects in each period the probability that the project is completed. We

characterise the contracts that the principal sets, with and without commitment.

We show that with full commitment, the contract involves the agent’s value and

wage declining over time, in order to give the agent incentives to exert effort. The

long-run levels of the value and wage depend on the relative discount rates of the

principal and agent. We also characterise the set of sequentially rational equilibria,

where the principal has no commitment power.
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1 Introduction

It has been estimated that approximately 90% of American companies use, to some

extent at least, agency firms to find workers; see Fernandez-Mateo (2003). According

to Finlay and Coverdill (2000), between 13% and 20% of firms use private employment

agencies “frequently” to find a wide variety of workers. The proportion is higher when

searching for senior executives. Recent surveys in the pharmaceutical sector estimate

almost two-thirds of senior executive hires involve a ‘headhunter’. Typically, it takes a

number of months to find and recruit a candidate; for example, the same pharmaceutical

source states that the average length of time taken to fill a post is between four and six

months from the start of the search. See Pharmafocus (2007). While payment happens in

a variety of ways, most contracts involve an element of payment when a candidate is placed

successfully. See Finlay and Coverdill (2000). There is risk attached to search: between

15% and 20% of searches in the pharmaceutical sector fail to fill a post (Pharmafocus

(2007)).

Residential real estate accounts for a large share of wealth—on average, around 30%

over the period 1983–2007 in the U.S.,1 and 39% in the UK in 1999, according to the

Office of National Statistics.2 The value of residential house sales in England and Wales

between July 2006 and July 2007 was of the order of 10% of the UK’s GDP.3 According to

the Office of Fair Trading (2004), over nine out of ten people buying and selling a home

in England and Wales use a real estate agent. The median time in the UK to find a buyer

who eventually buys the property is 137 days. (The details of the UK market are given in

Merlo and Ortalo-Magné (2004) and Merlo, Ortalo-Magné, and Rust (2006).) The real

estate agent can affect buyer arrival rates through exerting marketing effort. But there

is also exogenous risk (such as general market conditions) that affect the time to sale. In

most cases, the real estate agent is paid only on completion of the sale.

In both of these examples, a principal hires an agent to complete a project. The prin-

1Source: own calculations from the 1983, 1989, 1992, 1995, 1998, 2001, 2004 and 2007 U.S. Survey of
Consumer Finances.

2Wealth and Assets Survey 2006/08.
3More recent figures are likely to be less impressive.
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cipal gains no benefit until the project is completed. The agent can affect the probability

of project completion by exerting effort. The principal’s objective is to provide the agent

with dynamic incentives to exert effort. We assume that the agent is risk neutral and

subject to a limited liability constraint (in other words, the agent cannot make payments

to the principal). By assuming away risk neutrality, we can argue that our dynamic

results arise from the optimal management of the agent’s intertemporal surplus.

The task of this paper is to analyse the dynamic incentives that arise in these settings

and the contracts that are written as a result. Dynamics matter for both sides. For the

agent, its myopic incentives are to equate the marginal cost of effort with the marginal

return. But if it fails to complete the project today, it has a further chance tomorrow.

This continuation values means that the forward-looking agent reduces its current effort,

substituting towards future effort. Hence this dynamic factor, all other things equal, tends

to reduce the agent’s effort towards project completion. Similarly, the principal’s myopic

incentives trade off the marginal costs of inducing greater agent effort (through higher

payments) with the marginal benefits. But the principal also knows that the project

can be completed tomorrow; all other things equal, this tends to lower the payment that

the principal pays today for project completion. On the other hand, the principal also

realises that the agent faces dynamic incentives; this factor, on its own, tends to increase

the payment to the agent.

Our modelling approach allows us to resolve these different incentives to arrive at

analytical conclusions. We start by analysing the stationary game where the principal

sets a constant wage for the agent once and for all. If the agent expects the wage rate

to remain constant for all future periods, then it would be in the best interest of the

principal to offer a temporary wage increase. This simple observation shows that it is in

the principal’s best interest to offer non-stationary wage profiles over time. There are two

separate scenarios to compare: in the first, the principal can commit to a full sequence of

future wages; in the second, she has to make offers that are sequentially rational (given

the expectations of the agent).

In the full commitment case, we distinguish between two cases. When the agent is
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more patient than the principal, the principal can induce the agent to take an arbitrarily

high effort with an arbitrarily low cost. Because of the differences in the discount factors,

a wage payment with a fixed present value to the agent is less costly to the principal (in

present value terms) when the payment is delayed. Hence the principal can promise a

high reward for success at negligible cost in this case through delayed payments.

The moral hazard problem has bite, then, only when the agent is no more patient

than the principal. We show that in this case, the agent’s wage and effort in the full

commitment solution are falling over time. This is the only way in which the principal

can resolve in its favour the trade-off between static incentives (which call for a high

current wage) and dynamic incentives (which call for lower future wages). When the

principal is equally patient as the agent, the agent’s wage and effort, must converge to

zero. On the other hand, when the principal is more patient than the agent, the agent’s

wage and effort converge to strictly positive levels. In this case, the principal can rely on

the agent’s impatience to provide incentives for current effort. It is clear that solutions

where the effort level converges to zero cannot be supported as sequentially rational

solutions of the game and, as a result, we see that the principal gains from her ability to

commit.4

We also characterise sequentially rational equilibria, in which the principal has no

commitment ability but instead sets payments period-by-period. We show that the sta-

tionary sequentially rational equilibrium, in which the principal offers the same wage in

each period and the agent takes the same action, yields the lowest equilibrium payoff

to the principal. We characterise also the equilibrium yielding the highest payoff to the

principal, linking it in an intuitive way to the full commitment solution.

We conclude the analysis by considering how the main results might change when

project quality matters. (For most of the paper, we assume that the completed project

yields a fixed and verifiable benefit to the principal.)

At first glance, our results look similar to those in papers that look at unemployment

4In the case where the agent is more patient than the principal, any contract could be improved by
delaying payments for completed projects. This delay would exploit the difference in the intertemporal
rates of substitution between the agent and the principal. Our assumption of limited liability on the part
of the agent makes the opposite intertemporal trades impossible.
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insurance: see e.g., Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997). In

these papers, a government must make payments to an unemployed worker to provide a

minimum level of expected discounted utility to the worker. The worker can exert effort

to find a job; the government wants to minimise the total cost of providing unemploy-

ment insurance. Shavell and Weiss (1979) show that the optimal benefit payments to the

unemployed worker should decrease over time. Hopenhayn and Nicolini (1997) establish

that the government can improve things by imposing a tax on the individual when it finds

work.

Some aspects of our analysis are similar: for example, that the principal’s optimal pay-

ment under full commitment decreases over time (c.f., decreasing unemployment benefits

over time). The economic forces at work are different, of course. In the unemployment

insurance papers, the need to smooth over time the consumption of the risk-averse worker

constrains the incentives that can be offered through unemployment benefits. In this pa-

per, the risk neutral agent smooths its effort over time; the principal sets a declining

wage to counteract this incentive. But other aspects of our analysis are quite different.

First, we go beyond the unemployment insurance papers by analysing the full commit-

ment solution for all possible values of the discount rates of the principal and agent.

This shows the importance of relative levels of patience in determining intertemporal in-

centives. Secondly, we provide a full characterisation of the set of sequentially rational

equilibria, showing the benefits of commitment for the principal.

Our work is, of course, related to the broader literature on dynamic moral hazard

problems: particularly the more recent work on continuous-time models. This litera-

ture has demonstrated in considerable generality the benefits to the principal of being

able to condition contracts on the intertemporal performance of the agent. By doing

so, the principal can relax the agent’s incentive compatibility constraints. See e.g.,

Malcomson and Spinnewyn (1988) and Laffont and Martimort (2002). More recently,

Sannikov (2007), Sannikov (2008) and Willams (2006) have analysed principal-agent prob-

lems in continuous time. For example, in Sannikov (2008), an agent controls the drift

of a diffusion process, the realisation of which in each period affects the principal’s pay-
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off. When the agent’s action is unobserved, Sannikov characterises the optimal contract

quite generally, in terms of the drift and volatility of the agent’s continuation value in the

contract.

An immediate difference between this paper and e.g., Sannikov (2008) is that we

concentrate on project completion. We think this case is of independent interest for a

number of different economic applications. But we also think that our setting, while

less general in some respect than Sannikov’s, serves to make very clear the intertemporal

incentives at work. In Sannikov’s models, incentives may be back or front loaded: the

agent’s value can drift either upward or downward. In our model, the agent’s value drifts

in only one direction: downwards. This is a direct consequence of the project completion

setting. This same setting allows us to analyse the full time path of wages and actions,

which also drift downwards. We can deal with different discount rates for the principal

and the agent, leading to a distinction in terms of the asymptotic behaviour of the agent’s

value, wage and effort. In our view, this set-up allows a particularly clear demonstration

of the long-run dynamics of the optimal contract.

Our work is also related to Bergemann and Hege (2005). In that paper, an en-

trepreneur seeks funding from an investor to carry out a risky project. The quality

of the project (the likelihood of success) is unknown: both parties learn about this over

time. The probability of success is affected also by the entrepreneur’s effort, which may

be unobserved by the investor. Bergemann and Hege analyse the equilibrium dynamics

of the contract signed between the entrepreneur and investor. In certain cases, they find

dynamics that are similar to those that we derive. There are two key differences between

the papers, however. First, we assume that the principal makes the contract offer; in con-

trast, Bergemann and Hege assume that the agent makes the offer. Secondly, we allow

for the principal and the agent to have different discount rates. As we shall show, this

makes an important difference to the equilibrium contract.

The rest of the paper is structured as follows. Section 2 lays out the basic model.

Section 3 looks at the situation when the principal commits to a wage that is constant

over time. This analysis gives a clear intuition for the properties of the wage that the
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principal sets when it has full commitment power (and so can commit to a non-constant

wage). The latter is analysed in section 4. Section 5 examines sequentially rational

equilibria. Section 6 considers the issues that arise when the agent can affect the quality

of the completed project. Our overall conclusions are stated in section 7. An appendix

contains the proofs.

2 The Model

We consider the continuous-time limit of a model where an agent must exert effort in any

period in order to have a positive probability of success in a project. We assume that the

effort choices of the agent are unobservable but the success of the project is verifiable;

hence payments can be contingent only on the event of success or no success.

The principal and the agent are risk neutral. The agent is credit constrained so that

payments from principal to agent must be non-negative in all periods. (Otherwise the

solution to the contracting problem would be trivial: sell the project to the agent.) In

fact, the agent could be allowed to be risk averse. The key assumption for our analysis

is that the agent’s value from contracting is positive, which here is a result of limited

liability.

The probability of success when the agent exerts effort a within a time interval of

length ∆ is a∆ and the cost of such effort is c(a)∆. We make the following assumption

about the cost function.

Assumption 1 1. c′(a) > 0, c′′(a) > 0 and c′′′(a) ≥ 0 for all a ≥ 0.

2. ac′(a)− c(a)− a2c′′(a) ≤ 0 for all a ≥ 0.

3. c(0) = 0 and lima→∞ c′(a) = ∞.

This assumption is satisfied e.g., for quadratic costs: c(a) = γa2, where γ > 0.

Success is worth v ≥ 0 to the principal. The principal and the agent have respective

discount rates of rP and rA.
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3 Commitment to constant wage offers

In this section, we look at how a principal who has commitment power will set a constant

wage. The main purpose of this analysis is to provide a benchmark to contrast the full

commitment solution (section 4) and sequentially rational equilibria (section 5).

The simplest contract between the principal and the agent takes the form of a con-

tingent on a success. We consider contracts in which the principal pays a constant wage

w ≥ 0 whenever a success takes place, and nothing if there is no success. (The latter is

clearly optimal: for incentive provision, only the extra payment that results from a suc-

cess matters; so it would make no sense to make any payment to the agent before project

completion.) Let W (w) denote the expected payoff to the agent when the principal offers

the constant wage w. If the agent chooses effort level a for a time interval ∆ at cost

c (a)∆, she completes the project with probability a∆ and receives the wage payment w.

If the project is not completed no wage is paid, and both parties face the same problem

in period t+∆. Therefore, we have

W (w) = max
a

{
a∆w − c (a)∆ + e−rA∆ (1− a∆)W (w)

}
.

In the limit as ∆ → 0, this becomes

rAW (w) = max
a

{a (w −W (w))− c (a)} . (1)

The first-order condition to this problem (which is necessary and sufficient by our as-

sumptions on the cost function) is

c′ (a) = w −W (w). (2)

This condition requires that the marginal cost of effort in the current period is equal to

the marginal gain from a success today, net of the opportunity to try again tomorrow.

For a given current wage, a higher continuation value makes the agent less willing to work

in the current period.
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In the model with a constant wage, an increase in the current wage implies an increase

in all future wages, and therefore a higher continuation payoff to the agent. Totally

differentiating equation (2) with respect to a and w gives

a′ (w) =
1−W ′ (w)

c′′ (a)
=

rA
(rA + a) c′′ (a)

. (3)

where we have used envelope theorem in (1) to get the last equality.

Using similar reasoning, we can express the seller’s value as follows:

V S = max
w

{
a (w) (v − w)

rP + a (w)

}
,

in the limit as ∆ → 0. The first-order condition for the principal is then:

w = v −
a (w) (rp + a (w))

rPa′ (w)
= v −

a (w) (rp + a (w)) (rA + a (w))

rP rA
c′′ (a (w)) , (4)

where we have used equation (3) for the last equality. Under our assumption that c′′ (a) ≥

0 and c′′′ (a) ≥ 0, the right-hand side in equation (4) is decreasing in w while the left-hand

side is increasing. Therefore the solution wS to equation (4) is unique. Since the problem

has an interior solution, we know that the solution to the first-order condition also solves

the principal’s problem. Let aS ≡ a
(
wS
)
and W S ≡ W

(
wS
)
.

It is easy to see that even though the environment is completely stationary, the prin-

cipal benefits from setting non-stationary wages. The key difference is that a change in

current wages does not imply an increase in future wages. As a result, a temporary wage

increase induces a larger increase in the agent’s optimal effort. We formalize this simple

observation in the proposition.

Proposition 1 A temporary wage increase at t improves the principal’s payoff relative

to the optimal stationary wage schedule.

Proof. See the appendix. �

This proposition gives a first indication of the advantages of offering more flexible
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wage schedules. Of course it does not give us very good indication of what the qualitative

properties of the optimal wages might be. We turn to the problem of optimal wage

determination in the following section. Proposition 1 also points out the importance of

of commitment. If a current bonus makes the worker expect a bonus in future periods,

then it is clear that flexible wages are less attractive to the principal. We determine the

set of wage contracts that can be supported as sequentially rational equilibria in a wage

setting game without commitment possibilities in section 5.

4 Wages with full commitment

We have established that a temporary wage increase from the constant commitment level

would be desirable for the principal. If the principal can commit at the ex ante stage to

an arbitrary wage schedule, a one-off bonus followed by a constant wage is, of course, a

feasible wage path. There is no reason to believe, however, that such a simple path would

be optimal amongst all possible paths. In this section, we determine the optimal wage

contract when the principal has full commitment.

As argued in the introduction, our model is of interest for the case where the agent is

less patient than the principal. Hence we assume from now on that

rA ≥ rP .

We consider contracts of the form where the principal pays w(t) ≥ 0 to the agent if a

success takes place in time period t and nothing if there is no success. As we have argued

previously, this is the only form of contract that the principal will use.

We can analyse the problem in one of two ways. The first is to specify an optimal

control problem to maximize the principal’s initial value, but with the continuation values

of the principal and the agent as state variables. The second is to use the method

developed by Spear and Srivastava (1987) and Phelan and Townsend (1991) and write

the optimal contract in terms of the agent’s continuation value as the state variable.5

5In earlier versions of this paper, we used this second approach.
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Both will give the same answer, but it turns out to be easier to use the optimal control

approach.

The first step, then, is to determine the evolution of the two state variables in the prob-

lem, W (t) and V (t). Consider an arbitrary reward function w(t). The agent’s Bellman

equation is given by:

rAW (t) = max
a

{
a(w(t)−W (t))− c(a) + Ẇ (t)

}
.

The agent’s first-order condition is:

c′(a(t)) = w(t)−W (t). (5)

The convexity of c(·) ensures that this is necessary and sufficient for an optimum. Sub-

stituting into the Bellman equation gives

Ẇ (t) = rAW (t)− (a(t)c′(a(t)− c(a(t))). (6)

Equation (6) describes how the agent’s value must evolve in equilibrium. Since c(·) is

convex, W cannot increase in percentage terms faster than the discount rate rA. (In fact,

we shall see that in equilibrium, W decreases.)

The principal’s Bellman equation is

rPV (t) = max
a

{
a(t)(v − V (t)−W (t)− c′(a(t))) + V̇ (t)

}

where equation (5) has been used to substitute for the wage. When re-arranged, this

becomes

V̇ (t) = (rP + a(t))V (t)− a(t)(v −W (t)− c′(a(t))). (7)
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The optimal control formulation of the full commitment problem is

max
{a(t),W (0)}

V (0) subject to

V̇ (t) = (rP + a(t))V (t)− a(t)
(
v −W (t)− c′(a(t))

)
, (8)

Ẇ (t) = rAW (t)−
(
a(t)c′(a(t)− c(a(t))

)
.

There are implicit constraints on the state variables V and W , which both must be non-

negative. There is a similar non-negativity constraint on the principal’s control variable,

a(t), the agent’s effort level. We will not incorporate these constraints explicitly in the

problem, but will ensure that they are satisfied when characterizing the optimal solution.

By Pontryagin’s principle, there must exist continuous functions (the co-state multi-

pliers) attached to the first and the second constraint respectively, denoted by λ(t) and

µ(t), so that when the Hamiltonian

H(t) ≡ λ(t)
(
(rP + a(t))V (t)− a(t)(v −W (t)− c′(a(t)))

)

+ µ(t)
(
rAW (t)− (a(t)c′(a(t))− c(a(t)))

)

is defined, the necessary conditions for optimality are given by:

µ(0) = 0; (9)

∂H

∂a
= −λ

(
v −W − V − c′(a)− ac′′(a)

)
− µac′′(a) = 0; (10)

λ̇ = (rP + a)λ−
∂H

∂V
= 0; (11)

µ̇ = (rP + a)µ−
∂H

∂W
= (rP − rA + a)µ− aλ. (12)

In these conditions, we have suppressed the time indices for notational convenience. We

have also expressed the problem in current values terms, as the last two conditions (11)

and (12) make clear. Also, in those conditions, the principal’s effective discount rate

is rP + a, since in any interval [t, t + ∆t], there is a probability a(t)∆t that the agent

completes the project and the problem stops.
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There is also a transversality condition; the form of this condition depends on whether

it is optimal for the principal to stop the problem (i.e., fire the agent) in finite time; or

whether an infinite horizon is optimal. Our first result in this section considers this

question, showing that it is not optimal to choose a finite stopping time.

Proposition 2 A finite stopping time is not optimal in the full commitment problem

when rP ≤ rA.

Proof. See the appendix �

Proposition 2 shows that sufficient incentives can be provided to the agent by reducing

his wage over time, without resorting to firing him. This is in contrast to e.g., the model

of Sannikov (2008), where the possibility of firing (and retiring) are important parts of

the incentive scheme. The result will allow us to establish unambiguously the dynamics

of the optimal contract. We shall see that the dynamics are such that once the agent’s

value starts to increase, it must subsequently always increase. (That is, if Ẇ (t) > 0 at

some t, then Ẇ (t′) >0 for all t′ > t). But this is inconsistent with the transversality

condition when the horizon is infinite, which essentially requires the optimal path to be

bounded. This implies that the agent’s value must be decreasing along the optimal path.

We now establish this result in detail. The appropriate transversality condition in this

case can be stated formally as follows. If V ∗(t) and W ∗(t) are optimal trajectories of the

state variables, then

lim
t→∞

λ(t)
(
V ∗(t)− V (t)

)
≤ 0, lim

t→∞
µ(t)

(
W ∗(t)−W (t)

)
≤ 0

for all feasible trajectories V (t) and W (t). (See Kamihigashi (2001).) Less formally, the

system must converge to a steady state in which the controls and states are stationary

and bounded.

We already have expressions for the dynamics of V and W , as well as the co-state

variables. We now derive the differential equation for the optimal control a. To simplify

the derivation, we set λ (which is a constant, from equation (11)) equal to −1; this is
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without loss of generality. Then, differentiate the first-order condition (10) with respect

to time:

(
c
′′

(a(t)) + (µ(t) + 1)(c
′′

(a(t)) + a(t)c
′′′

(a(t)))
)
ȧ(t)

= −V̇ (t)− Ẇ (t)− a(t)c′′(a(t))µ̇(t). (13)

We establish in the proof of proposition 3 (see the appendix) that the Hamiltonian H is

equal to zero along the optimal path. This means that we can write V̇ as µẆ . Doing this,

and using equations (6) and (12) to substitute in for Ẇ (t) and µ̇(t), gives the following

differential equation for the dynamics of a(t):

(
c
′′

(a(t)) + (µ(t) + 1)(c
′′

(a(t)) + a(t)c
′′′

(a(t)))
)
ȧ(t)

= −(µ(t) + 1)
(
rAW − (a(t)c′(a(t))− c(a(t))) + a2c′′(a)

)

+ a2(t)c
′′

(a(t))(rP − rA)µ(t). (14)

We are now able to characterise the dynamics of the optimal commitment contract

when rA ≥ rP .

Proposition 3 In the full commitment solution when rA ≥ rP , the agent’s continuation

value W (t), the optimal wage profile w(t), and the agent’s effort level a(t) are all decreas-

ing over time. If rP = rA, then the continuation value, wage and effort levels converge

to zero. If rP < rA , then the wage and effort levels converge to strictly positive levels.

The initial effort level, and hence all levels, are below the myopic effort aM (defined by

v − c′(aM)− aMc
′′

(aM) = 0 ).

Proof. See the appendix. �

Figures 1 and 2 illustrate the proof of the proposition. In the shaded area in the

figures, ȧ and Ẇ are non-positive. The optimal initial point must lie on the portion of

the WV ′=0(a) curve that is in bold. Any optimal path from that portion of the curve must

move into the shaded area; hence ȧ and Ẇ must be non-positive along the entire path.
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a

W

Wµ=0(a) WẆ=0(a)

Wȧ=0(a)

W ∗

a∗
b

â aM

Figure 1: Phase diagram for the problem with full commitment with rP = rA

Possible steady states are marked with a dot; clearly, they must lie on the curve along

which Ẇ = 0. If rP = rA, then only one steady state exists: the origin, with a = W = 0.

Otherwise, two steady states exist (as shown in the figure). The optimal path converges

to the steady state with a = W = 0, if rP ≥ rA . Otherwise, it converges to a steady

state with strictly positive levels of a and W .

These results are intuitive. Because the agent has increasing marginal cost of effort, he

looks to smooth his effort over time: to substitute away from current effort toward future

effort. Limited liability means that the agent earns positive rents from the contract. The

principal uses the dynamics of these rents to provide the agent with incentives to exert

effort. In particular, the full commitment contract ensures that the agent’s continuation

value is decreasing in equilibrium. By these means, the principal gives the agent incentives

to exert current effort. The continuation value is driven downwards by a decreasing wage;

the agent’s effort also decreases over time. When the agent is as patient as the principal,

the principal has to drive the agent’s value, wage and hence effort down to zero in the

long-run in order to generate incentives for effort. But when the agent is less patient,

the principal can rely on the agent’s impatience to generate incentives. In this case, the

long-run value, wage and effort are all strictly positive. In all cases, the principal induces
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a

W

Wµ=0(a) WẆ=0(a)

Wȧ=0(a)

W ∗

a∗
b

b

â aM

Figure 2: Phase diagram for the problem with full commitment with rP < rA

less effort from forward-looking agent: equilibrium effort is less than the myopic level.

The phase diagrams can also be used to assess the comparative dynamics of the

contract. For example, consider the case when rA > rP , in figure 2; and look at the

limit as rA → ∞, so that the agent becomes myopic. The curve Wµ=0(a) is unaffected by

changes in rA. The curve WẆ=0(a), however, shifts downward as rA increases, in the limit

running along the horizontal axis. It is straightforward to show that the curve Wȧ=0(a)

shifts so that in the limit, it passes through the point on the horizontal axis where the

two other curves intersect. Hence, with a myopic agent, the optimal contract has no

dynamics: the agent’s effort remains constant at its initial level, and his value is 0. This

is perfectly intuitive. Note also that the effort in this case is still below the myopic level

aM . This is because the principal takes into account her continuation value when writing

the contract.

The final result in this section examines whether the agent completes the project in

finite time.

Proposition 4 When the principal faces an impatient agent (rP < rA), the project is

completed in finite time almost surely. When the principal faces an equally patient agent

(rP = rA), if the cost function is not too convex (i.e., if a2/c′′(a) = O(aβ) for some
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β < 2), then the probability that the project is completed in finite time is less than one.

Otherwise, if β ≥ 2, then the project is completed in finite time almost surely.

Proof. See the appendix. �

The proposition follows immediately when the agent is relatively impatient, since his

effort is always strictly positive. The proof is more subtle when the agent is relatively

patient, since in this case, his effort declines to zero. The proof relies on looking at the

rate of decline of the agent’s effort as the steady state is approached. The intuition is

that if costs are highly convex, it is costly for the principal to induce the agent to have

big differences in her effort across time. As a consequence, the agent’s effort decreases

relatively slowly in equilibrium (at least near the steady state). This means that
∫∞

o
a(t)dt

is unbounded and so the project completes almost surely. But when costs are not too

convex, it is not too costly for the principal to induce high current effort and lower future

effort. This means that the agent’s effort decreases relatively quickly in equilibrium (near

the steady state); consequently,
∫∞

o
a(t)dt is bounded and the probability that the project

completes is less than 1.

5 Wages without commitment

In the previous section, we assumed that the principal can commit to an entire path of

future wages. While full commitment is the standard assumption in static mechanism

design problems, relaxing this assumption is quite natural in dynamic settings. When

the agent is ae patient as the principal, the optimal commitment wage decreases towards

zero. This implies that the optimal effort exerted by the agent and the continuation

value to the principal also converge to zero. In these circumstances, the principal would

be tempted to offer a temporary bonus for the worker from completing the task. In order

to analyze the principal-agent problem when such bonuses are possible, one must make

use of the full machinery of repeated extensive-form games to pin down the principal’s

and the agent’s behaviour after all possible wage offers.

In this section, we make the opposite extreme assumption on commitment. The
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principal can promise only temporary spot wages in each period that condition on whether

the project was successfully completed. In order to lay out the structure of these contracts,

we start with a discrete-time formulation, letting ∆ denote the period length in the

equilibrium computations; and then pass to the continuous-time limit. The details of the

strategic structure of this dynamic contracting game are laid out in the appendix.

A strategy for the principal is a pair of history contingent wage offers
(
ws (ht) ,wf (ht)

)
,

where the first term gives the promised wage in period t after publicly observed history

ht (of past wage offers) if the project is completed, and the second term gives the corre-

sponding wage when there is no success. A strategy for the agent is a history-dependent

action choice a (ht) that assigns an effort level to each history of wage offers (including

the current period ones). We use the pair (w, a) without any arguments to denote the

functions assigning actions to histories. As usual, we also let w|ht and a|ht denote the

continuation strategies of the two players following an arbitrary history ht.

A sequentially rational equilibrium in our game is a pair (w, a) such that w|ht is opti-

mal given a|ht for all ht, and a|ht is optimal given w|ht for all ht. From this point onwards,

we consider only sequentially rational equilibria. Since the underlying contracting game

is stationary in the sense that the continuation game after each history (conditional on no

success) is strategically equivalent to the original game, we may view the set of equilib-

rium continuation wage setting strategies in a recursive manner. The set of sequentially

rational equilibrium strategies does not depend on ht. We denote the set of equilibrium

strategies by E . Then every equilibrium continuation strategy (w, a) ∈ E after history ht

can be written as6

(w, a) = (
(
ws
(
ht
)
,wf

(
ht
)
, a
(
ht, ws, wf

))
, (ŵ,â) ) for some (ŵ,â) ∈ E .

In this section, our task is to characterize pairs (V (w, a),W (w, a)) of payoffs induced

by some (w, a) ∈ E . The induced payoffs are computed in a straightforward manner as

detailed in the appendix.

6Since our stage game is in extensive form, sequential rationality also implies that for any wt, the
continuation (ŵ, a) constitutes an equilibrium in the game.
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We start by making some preliminary observations on the equilibrium payoffs for

the principal. First we show that the game has a unique stationary equilibrium. By a

stationary equilibrium, we simply mean a wage-setting strategy for the principal where

wf (ht) ,ws (ht) and a (ht) are independent of ht. In other words, the principal offers the

same wage contracts in all periods and the agent conditions her current effort choice on

the current wage offers and the stationary wage strategy for the future periods.

Proposition 5 The game has a unique stationary equilibrium where ws (ht) = wSR >

0, and wf (ht) = 0 for all ht and histories and a (ht) = aSR > 0 after all histories ht

where ws (ht) = wSR > 0, and wf (ht) = 0.

Proof. See the appendix. �

Let the payoffs in this equilibrium be V SR and W SR.

Our second result shows that the principal’s minimal payoff in the set of sequentially

rational equilibria is induced by the stationary equilibrium. In the course of proving this

result, we show that all wage paths that generate higher payoffs to the principal than

the stationary equilibrium can be supported as sequentially rational equilibria. This is

turns out to be quite useful for characterizing the best sequentially rational equilibrium

for the principal. In particular, we can use the laws of motion established in the previous

Section to describe the sequentially rational equilibrium path with the highest payoff to

the principal.

Proposition 6 All sequentially rational equilibria induce a payoff of at least V SR to the

principal.

Proof. See the appendix. �

It should be noted that even though the worst equilibrium payoff to the principal can

be supported as a stationary equilibrium, the same is not true of the best payoff. In the

proof of Proposition 6, a key step establishes that a relatively high equilibrium contin-

uation payoff to the principal can be reduced by an essentially unconditional monetary

transfer from the principal to the agent. To get a similar mechanism to work for the best
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equilibria from the principal’s point of view, we would need a mechanism that transfers

continuation value unconditionally from the agent to the principal. This is, however,

ruled out by our assumption of limited liability.

The problem on characterizing the best sequentially rational equilibrium for the prin-

cipal is conceptually similar to the full commitment problem in the previous section. By

Lemma 2 in the appendix, the principal can implement all wage and effort paths paths

that satisfy the requirement that V (t) ≥ V SR for all t Hence it is easy to express the

maximization problem of the principal in a manner analopous to the previous Section.

It is slightly more convenient to cast the analysis in terms of induced effort levels rather

than wages.

Consider then the following family SR (W ) of optimization problems:

SR(W ) : max
{a(t),W (0),T}

V (0) subject to

V̇ (t) = (rP + a(t))V (t)− a(t)
(
v −W (t)− c′(a(t))

)
, (15)

Ẇ (t) = rAW (t)−
(
a(t)c′(a(t)− c(a(t))

)
. (16)

V (T ) = V SR,W (T ) = W. (17)

Denote the optimum value of this program by V0 (W ). We claim that V0 (W ) is

decreasing in W . This fact, which is easy to demonstrate, reflects that low continuation

values for the agent induce higher effort levels prior to T. Let W denote the minimal

sequentially rational continuation payoff to the agent. Our main result in this section

is that the best sequentially rational payoff to the principal is given by the solution to

SR (W ).

Proposition 7 The wage path with the highest expected payoff to the principal over all

sequentially rational equilibria is given by the solution to SR (W ) up to time T . Hence

the equilibrium wage, action and values all decrease before time T . From T onwards, the

continuation payoffs are given by
(
V SR,W

)
. The equilibrium wages and effort choices
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after T are given by the constants (w, a) that can be solved from:

aSR
(
v − wSR

)

rP + aSR
=

a (v − w)

rP + a
,

c′ (a) = w −W,

W =
aw − c (a)

rA + a
=

ac′(a)− c(a)

rA
.

Proof. See the appendix. �

The implied laws of motion up to time T in this best sequentially rational equilibrium

satisfy the differential equations derived in the previous section for the full commitment

solution. We can therefore determine the dynamics of the best sequentially rational equi-

librium using the same phase diagrams. Figure 3 illustrates this for the case rP = rA.

From proposition 3, the full commitment solution path, shown as the dotted line, con-

verges to the origin. The sequentially rational equilibrium path is shown as the solid

line. Since the dynamics of this equilibrium are the same (before T ) as the full commit-

ment solution, its path cannot cross the full commitment path. We also know that the

sequentially rational equilibrium hits the curve Ẇ = 0 at time T . Hence the sequentially

rational path must start above the full commitment path, as shown.

6 Project quality

In the analysis so far, the benefit to the principal from a completed project is fixed and

verifiable. More generally, we might suppose that the agent is able to affect the quality,

and hence the benefit to the principal, of the completed project.

We shall not attempt a general analysis of this issue here. Instead, we outline a variant

of our model where project quality has no effect the overall conclusions. Suppose that an

agent can affect the probability of project completion by exerting effort, in the same way

as in previous sections. But now, the quality of a completed project is drawn at random

from a distribution F (v) where v ≥ 0, which is common knowledge.
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â

bW

a

Figure 3: Phase diagram with rP = rA

At this point, there are two possibilities, which (it will turn out) are equivalent. The

first is that the realised project quality cannot be verified. (For example, the agent may

be a headhunter and the completed project a candidate for an executive position in the

principal’s firm. The fit of the candidate for the principal’s post may be very difficult to

establish to a third-party.) Hence the principal cannot condition payment on the realised

project quality.

The second possibility is that the project quality is verifiable. This then raises the

possibility that the principal pays only when the realised project quality is at least as

great as the current completion wage. But it is easy to see that this cannot be optimal.

The agent’s expected payment on completing at time t would be E[w|v ≥ w] where the

expectation is taken with respect to the quality distribution F (·). The principal gains

E[v − w|v ≥ w]. But the principal could offer this level of payment unconditionally (and

hence present the agent with the same effort incentives); and then accept all completed

projects. The principal would gain E[v|v ≤ w] from this.

So, the principal will continue to pay only on project completion. The problem is un-

altered by this modification: the principal’s benefit v is replaced by an expected benefit—

that is all. Hence our previous analysis continues to hold.

The crucial feature of this example is that the agent’s effort affects only the arrival
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rate of project completion, but not the realised quality. If project quality is affected

(stochastically) by effort levels, then the principal will adjust the wage in order to affect

both the quality and rate of completion of the project. We leave this and other related

issues to further work.

7 Conclusions

We have developed a model of dynamic moral hazard involving project completion which

has allowed us to identify clearly the intertemporal incentives involved. We show in the

full commitment solution how the principal controls the agent’s continuation value over

time to provide the optimal dynamic incentives for current effort. The long-run outcome of

these dynamics is determined by the relative discount rates of the principal and the agent.

The principal never fires the agent—despite the fact that, when the agent is relatively

patient, there may be a positive probability that the project is never completed. We

also characterise the set of sequentially rational equilibria, in particular identifying the

minimal and maximal payoffs of the principal.

The framework that we have developed is very tractable and offers a base from which

we intend to explore further dynamic incentives for this type of problem.

Appendix

7.1 Proof of Proposition 1

Start with w (t) = wS for all t as computed above, and consider a perturbed wage policy

where ŵ (s) = w for t ≤ s < t + ∆ and ŵ (s) = wS for s ≥ t + ∆. Then the agent’s

continuation value is given by W S and by differentiating the first-order condition (2)

with respect to a and w, we have

da (t)

dw (t)
=

1

c′′ (a (t))
.

22



To determine the optimal wage offer for the principal at t, write the value function under

the continuation wages at wS as follows:

V
(
w, V S

)
= max

w
{a
(
w,W S

)
∆(v − w) + e−r∆

(
1− a

(
w,W S

)
∆
)
V S}.

The derivative with respect to w is then

∂V
(
w, V S

)

∂w
=

∂a
(
w,W S

)

∂w

(
v − w − V S

)
− a

(
w (t) ,W S

)
.

At w = wS, we have

a′
(
wS
) (

v − w − V S
)
− a

(
w (t) ,W S

)
= 0;

and so

∂V
(
wS, V S

)

∂w
=

(
∂a
(
wS,W S

)

∂w
− a′

(
wS
)
)
(
v − wS − V S

)

=
W ′
(
wS
)

c′′ (as)

(
v − wS − V S

)
≥ 0.

Hence we conclude that offering a w > wS for [t, t + ∆) increases the payoff to the

principal. �

7.2 Proof of Proposition 2

Suppose not i.e., suppose that it is optimal to choose a finite stopping time T . We show

that this leads to a contradiction.

Since W (T ) can be freely chosen by the principal (subject only to a non-negativity

constraint), it must be that µ(T ) = 0. Hence µ(0) = µ(T ) = 0 (recalling that W (0) also

is freely chosen.) Equation (12) tells us that µ̇(0) = −λa(0) and µ̇(T ) = −λa(T ). Since

a(0) and a(T ) are non-negative and λ 6= 0, this means that either µ̇(0) and µ̇(T ) are both

positive or they are both negative (determined by the sign of λ). We analyse fully the

former case; the latter case follows an identical argument. So, suppose µ̇(0) and µ̇(T ) are
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both positive (and µ(0) = µ(T ) = 0). Since µ is a continuous function of t, there must

be some t∗ ∈ (0, T ) such that µ(t∗) = 0, and µ(·) is decreasing in t at this point. But the

latter cannot be the case, since equation (12) implies that µ̇(t∗) = −λa(t∗) ≥ 0.

Hence a contradiction has been established, and so a finite stopping time T cannot be

optimal. �

Proof of Proposition 3

The proof uses a phase diagram in (a,W ) space. Three aspects need to be analysed: the

dynamics of a and W ; and the sign of V ′(·) in equilibrium.

The sign of Ẇ is, from equation (6), determined by the sign of rAW − (ac′(a)− c(a)).

This defines an upward-sloping function in (a,W ) space, given by

WẆ=0(a) ≡
ac′(a)− c(a)

rA

so that for W > (<)WẆ=0(a), Ẇ > (<)0. Note that WẆ=0 = 0.

We now determine the sign of µ in equilibrium. We first establish that the Hamiltonian

H(t) is zero along the optimal path. Differentiation of H(t) gives

Ḣ(t) = −V̈ (t) + µ̇(t)Ẇ (t) + µ(t)Ẅ (t).

(Here, a double dot denotes a second derivative with respect to time.) After substitution

of the expressions for the various terms and simplification, we end up with Ḣ(t) = (rP +

a(t))H(t). There are then two possibilities: either H(t) > 0 or H(t) = 0 for all t. If the

former, then H(t) grows at least exponentially over time; this clearly cannot be the case

on any feasible path. Therefore H(t) = 0 for all t.

We can therefore write V̇ as µẆ . Now use equations (7) and (10) to give

(rAW − ac′(a) + c(a) + (a+ rP )ac
′′

(a))µ = rP (v −W − c′(a))− (a+ rP )ac
′′

(a). (18)

Consider the left-hand side of this equation. From assumption 1, rAW−ac′(a)+c(a)+(a+
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rP )ac
′′

(a) ≥ 0 for all non-negative values of a and W . Hence the sign of µ is determined

by the sign of rP (v−W − c′(a))− (a+ rP )ac
′′

(a). This defines a function in (a,W ) space,

given by

Wµ=0(a) ≡ v − c′(a)−

(
a+ rP
rP

)
ac

′′

(a).

This is a downward-sloping function, with an intercept Wµ=0(0) = v; it hits the horizontal

axis at an effort level â strictly less than the myopic level aM (defined by v − c′(aM) −

aMc
′′

(aM) = 0). For values of (a,W ) lying below (above) this function, µ is positive

(negative); along the function, µ = 0. The function WẆ=0(a) is, therefore, split into

two portions by the function Wµ=0(a); call the intersection point of the two functions

(a∗,W ∗).

Now consider the dynamics of a, determined by equation (14). When µ = 0 (in

particular, at the optimal initial choice of W ), the term on the left-hand side, 2c′′(a(t))+

a(t)c′′′(a(t)), is non-negative (using assumption 1). The right-hand side is equal to

−
(
rAW − (a(t)c′(a(t))− c(a(t))) + a2c

′′

(a)
)
,

which by assumption 1 is negative for all non-negative values of a and W . Hence ȧ ≤ 0

at the optimal initial choice of W .

The function defined by ȧ = 0 is

Wȧ=0(a) ≡
1

rA

(
ac′(a)− c(a)− ac

′′

(a)

(
a+ (rP − rA)

µ

µ+ 1

))
.

Note that when µ = 0,

Wȧ=0(a) ≡
ac′(a)− c(a)− a2c

′′

(a)

rA
≤ 0

from assumption 1. Hence the function Wȧ=0(a) crosses the function Wµ=0(a) at a point

below the horizontal axis. If rP = rA, then Wȧ=0(a) ≤ 0 for all a ∈ [0, â]. If rP < rA,
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then Wȧ=0(a) > WẆ=0(a) for sufficiently small a. Since Wȧ=0(a) is continuous in a, the

Wȧ=0(a) curve must therefore cross the WẆ=0(a) at a value of a that is strictly less than

a∗.

We can now determine the dynamics of a and W . The region of particular interest

for the analysis is defined as follows. Let

W(a) ≡ {W ∈ R+|W ≤ WẆ=0(a) and W ≤ Wµ=0(a) and W ≥ Wȧ=0(a)}

for a ∈ [0, â]. Let

D ≡
⋃

a∈[0,â]

W(a).

(The region D is illustrated as the shaded regions in figures 1 and 2.) For (a,W ) ∈ D,

both ȧ and Ẇ are non-positive. If rP = rA, then D is defined as the (lower) area between

the curves WẆ=0(a) and Wµ=0(a). If rP < rA, then D is further defined by the curve

Wȧ=0(a).

An initial choice of W on the portion of the Wµ=0(a) curve above the WẆ=0(a) cannot

be optimal. The reason is that the dynamics from this point involve Ẇ ≥ 0. Hence any

path from such a point cannot converge to a steady state, and by transversality cannot

be optimal.

Hence the optimal initial choice of W must lie on the portion of the WV ′=0(a) curve

below the WẆ=0(a). (Note that this must involve an initial effort level less than â, and

hence less than the myopic level aM .) The initial dynamics from such a point are Ẇ ≤ 0

and ȧ ≤ 0. The resulting path lies in the region D, and hence Ẇ ≤ 0 and ȧ ≤ 0 along all

parts of an optimal path. The dynamics of w(t) then follows from equation (5).

If rP = rA, then assumption 1 ensures that the function Wȧ=0(a) is negative for all

values of a ∈ [0, â]. Hence the only feasible steady state is a = W = 0. If rP < rA, then

there is a second steady state with strictly positive a ∈ (0, a∗) and W ∈ (0,W ∗); the

optimal path converges to this steady state. (Note that the system cannot converge to

a point on the horizontal axis. At such a point, the agent’s effort is strictly positive but

her value is 0. But this cannot be optimal for the agent, who could generate a strictly
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positive value by reducing her effort.) �

Proof of Proposition 4

The proposition is immediate when the agent is relatively impatient (rP < rA), since his

equilibrium effort in this case is always strictly positive. To prove the proposition when

the agent is equally patient (rP = rA), we consider the behaviour of the system for small

values of a and W .

From equation (18), as (a,W ) → (0, 0),

µ →
rP (v −W − c′(a))− (a+ rP )ac

′′(a)

rAW + (a + rP )ac′′(a)

and so becomes unbounded as the system approaches the steady state. Using this fact,

the dynamics of the agent’s effort, from equation (14), tends towards

[c
′′

(a(t)) + a(t)c
′′′

(a(t))]ȧ(t)

= −
(
rAW − (a(t)c′(a(t))− c(a(t))) + a2c′′(a)

)
+ a2(t)c

′′

(a(t))(rP − rA). (19)

The expression in the square brackets on the left-hand side of this equation is of order

(big-O) c′′(a) in a. The right-hand side of the equation is of order (big-O) c(a) in a and

is linear in W .

Next, let the path followed by W in (a,W ) space be denoted W (a). Given the dy-

namics described by ȧ and Ẇ , this path is smooth. Consider a Taylor expansion of this

path close to the steady state (0, 0):

W (a) = W (0) + aW ′(0) + a2W ′′(0) + . . . .

Obviously W (0) = 0; and since W (a) ≥ 0 for all a, it must therefore be that W ′(0) ≥ 0.

But since Ẇ ≤ 0 (proposition 3), it must also be that

W (a) ≤ WẆ=0(a) ≡
ac′(a)− c(a)

rA
.
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Therefore

W ′(0) ≤ W ′
Ẇ=0

(a) =
ac′′(a)

rA

∣∣∣∣∣
a=0

= 0.

Therefore W ′(0) = 0, and the Taylor expansion of W (a) becomes

W (a) = a2W ′′(0) + . . . .

That is, on the optimal path, W (a) = O(a2).

Using this fact in equation (19), we see that the left-hand side is of order (big-O) c′′(a)

in a, while the right-hand side is of order (big-O) a2. Let β(a) ≡ a2/c′′(a) for a > 0. (For

example, with quadratic costs c(a) = γa2 with γ > 0, β(a) = a2/2γ.) Hence

ȧ = O(β(a)) as (a,W ) → (0, 0).

Whether the integral
∫∞

0
a(t)dt of the agent’s effort is bounded above by a finite

constant then depends on the order of β(a). It is straightforward to show that if β(a)

is of order a2 or higher, then the rate of decrease is sufficiently slow that the integral is

unbounded. But if β(a) is of lower order than a2, then the rate of decrease is such that

the integral is finite. �

The Dynamic Contracting Game

At the beginning of each period t, the principal promises to pay ws
t if the project is com-

pleted and wf
t if it remains incomplete. All past promises by the principal are observable

but as in the previous sections, we maintain the assumption that the agent’s effort choice

is unobservable. Since the game ends once the project is completed (and this is verifi-

able), the only relevant histories in the game are those conditional on the project not

being completed. We denote a history up to period t by:

ht = (ws
0, w

f
0 , ..., w

s
t−1, w

f
t−1)
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The set of histories up to period t is denoted by H t. The set of all histories of all

lengths is H = ∪tH
t. A wage setting strategy w for the principal is a pair of functions

(ws ,wf ) where

ws : H → R,

wf : H → R.

A continuation wage setting strategy after history ht is denoted by w|ht. Since the agent

chooses her effort in period t only after observing the promised wages, her strategy is

denoted by a where7

a : H → R.

A continuation strategy for the agent after history ht is denoted by a|ht .

Strategies induce payoffs to the principal and to the agent in a manner similar to the

previous section. Letting τ denote the random time at which the project is completed,

we have the expected payoffs for the principal and for the agent as:

V (w, a) = E

[
(1− r∆)τ (v −ws (hτ ))−

τ−1∑

j=0

(1− r∆)j wf
(
hj
)
]

=

∞∑

i=0

Pr{τ = i}

[
(1− r∆)τ (v −ws (hτ ))−

i−1∑

j=0

(1− r∆)j wf
(
hj
)
]
,

W (w, a) = E

[
(1− r∆)τ ws (hτ )−

τ∑

j=0

(1− r∆)j c
(
a
(
hj
))

+

τ−1∑

j=0

(1− r∆)j wf
(
hj
)
]

=

∞∑

i=0

Pr{τ = i}

[
(1− r∆)i ws

(
hi
)
−

i∑

j=0

(1− r∆)j c
(
a
(
hj
))

+

i−1∑

j=0

(1− r∆)j wf
(
hj
)
]
.

Letting ∆ → 0, we recover payoffs analogous to the continuous-time payoffs used in

the previous sections.

7Since the stage game is in extensive form, and the principal moves first, the relevant history for the
agent in period t also contains wt and is thus ht+1.
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Proof of Proposition 5

We start by showing that in any stationary equilibrium wf (ht) = wf = 0 for all ht.

Suppose not. Then wf > 0. If ws ≤ wf , then the optimal effort choice is 0 and the

equilibrium payoff to the principal is negative and setting wf (ht) = ws = 0 is a profitable

deviation after any ht. Suppose next that ws > wf > 0. A deviation to ŵs (ht) = ws−wf ,

ŵf (ht) = 0 leaves the incentives for optimal effort choice in period t unchanged since by

assumption the future wage offers by the principal do not depend on the current ones in

a stationary equilibrium. This deviation reduces the wage payments of the principal by

wf > 0 and hence is clearly profitable.

We compute next a wage offer ws = wSR > 0 and an effort choice function a that

constitute a stationary equilibrium for our game. We start by computing the equilibrium

expected payoff W SR to the agent. By standard arguments, we have for ∆ → 0 :

W SR = max
a

awSR − c (a)

rA + a
. (20)

By solving the first-order condition for a and substituting, we get:

rAW
SR = aSRc′

(
aSR
)
− c

(
aSR
)
,

where aSR solves problem (20.) Therefore we have after substituting:

wSR = c′
(
aSR
)
+

aSRc′
(
aSR
)
− c

(
aSR
)

rA
. (21)

Consider next a current (possibly deviating) wage offer of ws (ht) = w,wf (ht) = 0.8

The agent’s best response to this offer is given by a solution to the following problem:

max
a

{aw∆− c (a)∆ + (1− rA∆) (1− a∆)W SR}.

8By the same argument as above, any deviation where w
f
t > 0 is dominated by a deviation where

w
f
t = 0, but the incentives are unchanged.

30



The first-order condition for the problem is given by:

(
w −W SR

)
= c′ (a) .

Denote the solution to this problem by a (w, 0) . By the implicit function theorem,

da

dw
=

1

c′′ (a (w, 0))
. (22)

The expected payoff to the principal from this wage offer is

a (w, 0)∆(v − w) + (1− rP∆) (1− a (w, 0)∆) V SR, (23)

where V SR is the expected payoff to the principal along the path where ws
t = wSR > 0

for all t. For ∆ → 0, the first order condition for this problem is:

(
v − w − V SR

) da

dw
− a (w, 0) = 0.

Substituting from equation (22), we have:

(
v − w − V SR

)
− a (w, 0) c′′ (a (w, 0)) = 0.

At a stationary equilibrium, we must have the first order condition satisfied at w = wSR.

Therefore

wSR = v −
aSR(aSR + rP )

rP
c′′
(
aSR
)
. (24)

In a stationary equilibrium, equations (21) and (24) must hold simultaneously. By

our assumptions, the former gives wSR as an increasing function of aSR while the latter

gives a decreasing function. At aSR = 0,the former function starts above the latter while

in the limit as aSR → ∞ the latter decreases without bound. Therefore the values of

these functions coincide at exactly one point. �
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Proof of Proposition 6

The proof consists of a number of steps. The first Lemma establishes the existence of a

smallest equilibrium payoff for the principal.

Lemma 1 There exists a number V such that

V = min{V (w, a) |(w, a) ∈E }.

Proof. For any fixed ∆ > 0, there is a w such that any wage offer strategy with wt > w is

strictly dominated for the principal. Under our assumption of limited liability, the agent

cannot make any transfers to the principal. Hence the principal’s relevant choice set is

compact. By the strict convexity of the agent’s effort cost, the same is true for the agent’s

relevant action set.

Since any path is an element in a countable Cartesian product of these compact stage

game action sets, the set of paths is compact in the product topology (Tychonoff’s theo-

rem). Furthermore, the stage game payoffs of the principal and the agent are continuous

in their actions. As a result, we can apply the same reasoning as in Proposition 2 of Abreu

(1988) to conclude the existence of a sequentially rational equilibrium that minimizes the

payoff to the principal. �

The second step shows that all wage offer paths that induce an expected payoff of at

least V SR on all continuation paths can be supported in sequentially rational equilibrium.

To be more precise, we define a path of wages from t onwards w|t := {ws}
∞
s=t to be

a sequence of wage offers ws for all future periods s conditional on success or failure.

Similarly, we define a path of effort choices a|t := {as}
∞
s=t for the agent.

Lemma 2 Suppose that for all t,

V (w|t, a|t) ≥ V SR = V ,

and that a|t is a best response to w|t. Then w|t is the equilibrium wage offer path of some

sequentially rational equilibrium.
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Proof. Let (w∗, a∗) be any sequentially rational rational equilibrium for which

V (w∗, a∗) = V .

Then also (w∗|h1=w, a
∗) is a sequential equilibrium for any arbitrary w. Since (w∗, a∗)

is an equilibrium with payoff V SR to the principal, the payoff induced by (w,w∗|h1=w)

cannot exceed V SR.

By assumption, the payoff from wage path w|t is at least V SR for all t. Consider

the following strategies. As long as the principal has offered wages on w|s, both players

continue to choose actions on the path. If the principal deviates to w′ 6= wt at any t, then

play reverts to (w∗|h1=w, a
∗). Therefore the expected payoff to the principal is always at

least V SR on the path and no larger than V SR for any other choice. By construction, the

agent is always best-responding to the principal’s strategy. �

Lemma 3 Let (w, a) ∈ E , such that V (w, a) > V SR and W (w, a) = W. Then there is a

(w′, a′) ∈ E such that

V (w′, a′) = V ,W (w′, a′) = W + V (w, a)− V > W.

Proof. Write w = (w, ŵ) and let

V (w, a)− V = ε > 0.

Consider then a deviation to

w̃s
(
h0
)

= ŵs
(
h0
)
+ ε, (25)

w̃f
(
h0
)

= ŵf
(
h0
)
+ ε.

Since the wages are increased, the new wages are also non-negative, and furthermore, the

incentives of the agent are unchanged in the continuation game.
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By Lemma 2, ((w̃, ŵ), a) is a sequentially rational equilibrium. �

Corollary 1 Let (w∗, a∗) ∈ E be such that V (w∗, a∗) = V . Then V (w∗|ht, a∗|ht) = V

for all ht on the equilibrium path of (w∗, a∗).

Proof. Suppose to the contrary and apply the same construction as in equation (25) to

obtain a lower equilibrium payoff to the principal after some history on the equilibrium

path and therefore a lower ex ante payoff. �

Finally, consider the set of equilibria that induce payoff V to the principal after all

histories on the equilibrium path. Let
(
wmin, amin

)
solve

max
(w,a)∈E

W (w, a)

s.t. V (w, a) = V .

The final Lemma shows that
(
wmin, amin

)
can be used as the continuation path following

all initial wage offers in any equilibrium inducing the minimal payoff of V to the principal.

Lemma 4 For all w ∈ R,

V
((
w,wmin

)
, amin

)
≤ V (w, a) for all (w, a) ∈ E .

Proof. For a fixed wt = w, the current effort choice at is decreasing in W (w, a). For

fixed w and a continuation payoff V (w, a) for the principal, the equilibrium value to the

principal is linear in the current effort at:

V ((w,w) , a) = at∆(v − wt) + (1− at∆) (1− r∆)V (w, a).
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Therefore it is increasing in at whenever v − wt ≥ (1− r∆) V. By Lemma 3, W (w, a) is

maximized where V (w, a) is minimized over (w, a) ∈ E . Hence
(
wmin, amin

)
solves also

min
(w,a)∈E

V ((w,w) , a)

s.t. V (w, a) = V .

If v−wt < (1− r∆)Vt+1, then at∆(v − wt) + (1− at∆) (1− r∆)Vt+1 < Vt+1 = V by

Corollary 1. �

With this Lemma, the proof of the proposition is complete since
(
wmin, amin

)
is a

stationary equilibrium by construction. �

Proof of Proposition 7

By Corollary 1, we know that the expected payoff to the principal in any equilibrium

inducing payoff V is constant. We start by showing that in the solution to the problem

SW(W ), the expected payoff to the agent (conditional on no success) is also constant.

Suppose to the contrary. Then any equilibrium inducing the minimal payoff to the

agent must have histories ht and ht+1 on the equilibrium path with the property that

W (w|ht+1, a|ht+1) > W (w|ht, a|ht) .

Denote the sequence of continuation wage offers on such an equilibrium path by {ws}∞s=t.

Consider an alternative wage offer sequence {w̃s}∞s=t, where

w̃t+k = wt+k−1 for k > 0.

In other words, the modified sequence {w̃s}∞s=t takes the original equilibrium continuation

path after ht as the continuation path after (ht, w̃t) .

By Lemma 2, the modified sequence {w̃s}∞s=t+1 can be supported as the equilibrium

path of a sequentially rational equilibrium since V (w|ht+1, a|ht+1) = V . We need to show
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that {w̃s}∞s=t also can be supported as part of an equilibrium for a suitable choice of w̃t.

By construction,

W (w̃|t+1, ã|t+1) < W (w|ht+1, a|ht+1) ,

where ã|t+1 = {ã}∞s=t+1 is the sequence of optimal effort choices by the agent when the

future wage sequence is given by {w̃s}∞s=t. Since the agent’s current effort is decreasing in

the continuation value we have at w̃t = wt,

ãt > at.

Clearly,

ãs = as for all s > t.

Continuing with the assumption that w̃t = wt, we have:

W
((
wt, w̃|t+1

)
,
(
ãt, ã|t+1

))
< W (w|ht, a|ht)

and

V
((
wt, w̃|t+1

)
,
(
ãt, ã|t+1

))
> V (w|ht, a|ht) = V

since the current payoff to the principal is increasing in ãt.

The last step shows how to modify w̃t in such a manner that V (w̃|t, ã|t) = V , and

the expected payoff to the agent is further decreased. Fixing the continuation value to

the agent W, the current period expected payoff to the principal is continuous in w̃t. This

payoff is zero at w̃t = 0 and w̃t = v. By continuity, there must be a w̃t < wt such that

V (w̃|t, ã|t) = V .

Since the current payoff to the agent is increasing in w̃t, the payoff to the agent decreases

when changing from wt to w̃t. �
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