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Abstract

We analyze information aggregation in a stopping game with uncertain payo¤s

that are correlated across players. Players learn from their own private experiences

as well as by observing the actions of other players. We give a full characterization of

the symmetric mixed strategy equilibrium, and show that information aggregates in

randomly occurring exit waves. Observational learning induces the players to stay

in the game longer. The equilibria display aggregate randomness even for large

numbers of players.
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1 Introduction

Learning in dynamic decision problems comes in two di¤erent forms. Players learn from

their own individual, and often private, observations about the fundamentals of their

economic environment. At the same time, they may learn by observing the behavior of

other players in analogous situations. In this paper, we analyze the interplay of private
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and observational learning in a timing game with pure informational externalities. We

show that even though private information accumulates steadily over time in our model,

it is transmitted across players in occasional bursts.

There are many economic environments where both forms of learning are important.

Learning about the quality of a service, the pro�tability of a new technology, or the size of

a new market are examples of this type. Another aspect that is relevant in such contexts

is the degree to which the uncertainty is common across players. Often it is reasonable to

assume that part of the uncertainty is common to all agents while part is idiosyncratic.

For example, demand may be high or low. For a population of monopolistically competing

�rms, the market is pro�table to a larger fraction of �rms if demand is high. Learning

from others is useful to the extent that it can be used to determine the overall demand

level. It is not su¢ cient, however, as it may be that the product of an individual �rm

does not appeal to the consumers even when demand is high.

To represent private learning, we use a standard discounted single-player experimenta-

tion model in discrete time. Players do not know their type at the beginning of the game.

Over time, they learn by observing signals that are correlated with their true payo¤ type.

We assume binary types. Good types gain in expected terms by staying in the game while

bad types gain by exiting the game. We assume that information accumulates according

to a particularly simple form. Good types observe a perfectly informative signal with

a constant probability in each period that they stay in the game while bad types never

see any signals.1 Uninformed players become more pessimistic as time passes and their

optimal strategy is to exit the game once a threshold level of pessimism is reached.

Our timing game involves many players that face the experimentation problem out-

lined above, and whose initially unknown types are correlated. The correlation in the

players� types means that observing others in the game yields additional information.

The basic mechanism is that the more pessimistic players are more likely to exit, and

therefore, observing another player exit is bad news while observing another player stay

is good news. Uninformed players gain from this additional information, and this creates

an incentive to wait as in Chamley & Gale (1994). But in contrast to Chamley & Gale

(1994), private learning prevents the players from waiting inde�nitely. Our model strikes

a balance between the bene�ts from delaying in order to learn more from others and the

costs from increased pessimism as a result of private learning.

We show that the game has a unique symmetric equilibrium in mixed strategies. In

1The actual form of information revelation is not very important for the logic of our model. The

important assumption is that it takes some time for any player to become so pessimistic that exiting is

optimal.
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order to highlight the e¤ects of learning and waiting, we eliminate the observation lags

by reducing the time interval between consecutive decision moments. We show that the

symmetric equilibrium can be characterized by two modes of behavior that we label the

�ow modes and the exit waves. For most of the time, the game is in the �ow mode. In

that mode, the bad news from receiving no informative private signals is balanced by the

good news from the observation that no other player exits. Exits are infrequent and prior

to any exit, the beliefs of the uninformed players evolve smoothly.

Whenever some player exits, the beliefs of the other players become more pessimistic.

This means that from the perspective of an individual uninformed player, it is suddenly

optimal to exit as well. However, if all the uninformed players were to exit immediately,

this would reveal so much information that an individual player would �nd it optimal to

wait (since the cost of delay is small for frequent periods). As a result, the equilibrium

must be in mixed strategies that balance the incentives to exit and wait. These random-

izations are likely to result in further exits. If that is the case, then pessimism persists and

yet another round of randomizations is called for. We call this phase of consecutive exits

an exit wave.2 Only when there is a period with no exits, a su¢ cient level of optimism

is restored and the exit wave ends. An exit wave thus ends either in a collapse of the

game where the last uninformed player exits, or in a reversion to the �ow mode. In the

symmetric equilibrium, the play �uctuates randomly between �ow modes and exit waves

until a collapse ends the game. In Section 7, we argue that exit decisions are bunched

together also in similar models where we allow for heterogeneity between the uninformed

players.3

When the number of players is increased towards in�nity, the pooled information

on the aggregate state becomes accurate. One might conjecture that, conditional on the

state, aggregate randomness would vanish by the law of large numbers. We show that this

is not the case. Even in large games, transitions between the modes remain random. The

size of an individual exit wave as measured by the total number of exits during the wave

also remains random. Information is thus aggregated during quick random bursts. We

compute the exit probabilities during exit waves and the hazard rate for their occurrence

when the number of players is large.

We show that even though in the large game limit the aggregate state must eventually

2Other models that display waves of action that resemble our exit waves include Bulow & Klemperer

(1994) and Toxvaerd (2008). However, these models depend on the direct payo¤ externalities arising

from scarcity, whereas our waves are purely informational.
3Without observational learning, exit decisions would then vary smoothly as a function of the private

information of the players.
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be revealed, this can never happen earlier than the e¢ cient stopping time conditional on

the true state. In particular, this means that information is aggregated e¢ ciently in the

high state: almost all uninformed players exit as if they knew the true state. But if the

state is low, information aggregation fails: the players learn the state too late. In terms

of the payo¤s, the possibility to observe other players�behavior helps the good types by

making them less likely to exit the game. At the same time, observational learning hurts

the bad types as they are encouraged to stay in the game too long.

Related Literature

This paper is related to the literature on herding and observational learning where

players have private information about a common state variable at the beginning of the

game. Early papers in this literature assumed an exogenously given order of moves for

the players, e.g. Banerjee (1992), Bikhchandani, Hirshleifer &Welch (1992), and Smith &

Sorensen (2000). A number of later papers have endogenized the timing of action choices.

Among those, the most closely related to ours is Chamley & Gale (1994).4 In that

paper a number of privately informed players consider investing in a market of uncertain

aggregate pro�tability. The model exhibits herding with positive probability: the players�

beliefs may get trapped in a region with no investment even if the market is pro�table.

In our model, private learning during the game prevents the beliefs from getting trapped.

The di¤erence between the models is best seen by eliminating observation lags, i.e., letting

period length go to zero. In Chamley and Gale, information aggregates incompletely in

a single burst at the start of the game. In our model, information is revealed eventually,

but at a slow rate.

Caplin & Leahy (1994) and Rosenberg, Solan & Vieille (2007) consider models with

gradual private learning about common values. While these papers are close to ours in

their motivation, each makes a crucial modeling assumption that leads to qualitatively

di¤erent information aggregation properties from ours. Caplin and Leahy assume a con-

tinuum of players. This implies that the actions of the players either reveal no information

or result in full information revelation. In contrast, a key feature of our model is that a

large number of players reveal information at a moderate rate, a possibility hence ruled

out by Caplin and Leahy. Rosenberg, Solan & Vieille (2007) assume a �nite number of

players like we do, but they assume signals that may make a player so pessimistic after

one period that exiting is the dominant strategy right away. As a result, when the number

of players is increased towards in�nity, the exit behavior after the �rst period reveals the

state by the law of large numbers. Due to these modeling assumptions, the aggregate

4See also a more general model Chamley (2004). An early contribution along these lines is Mariotti

(1992).
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behavior in the large game limit is essentially deterministic conditional on state both in

Caplin & Leahy (1994) and Rosenberg, Solan & Vieille (2007).5 Our model displays a

qualitatively di¤erent form of endogenous information transmission between the players,

where private information is accumulated gradually and is revealed in randomly occurring

exit waves. In Section 7, we discuss some extensions of our main model where the pattern

of information aggregation remains similar to the main model.

Another di¤erence to the literature mentioned above is that by combining common and

idiosyncratic uncertainty, our paper relaxes the assumption of perfect payo¤ correlation

across players made in Chamley & Gale (1994), Caplin & Leahy (1994), and Rosenberg,

Solan & Vieille (2007). This makes it possible to have a richer analysis of the welfare

consequences of social learning. The pure common values case is obtained in our model

as a special case.

Our paper is also related to the literature on strategic experimentation. That literature

focuses on the private provision of public information rather than aggregation of privately

held information. Examples of such models are Bolton & Harris (1999) and Keller, Rady

& Cripps (2005). The key di¤erence is that in those models the signals of all players are

publicly observable, whereas in our model the players see only each other�s actions.

The paper is organized as follows. Section 2 sets up the discrete time model and

Subsection 2.1 presents an alternative interpretation for the model as a model of irre-

versible investment. Section 3 describes the �ow of information in the game, and Section

4 provides the analysis of the symmetric equilibrium. In Section 5, we discuss information

aggregation in large games. In Section 6, we characterize the symmetric equilibrium in

the continuous time limit. Section 7 presents a number of extensions of the basic model

and some suggestions for future work. Appendix A contains the proofs for all results

given in Sections 3, 4, and 6. The proofs for Section 5 are longer and they are given in

Appendix B.

2 Model

The model is in discrete time with periods t = 0; 1; :::;1. The discount factor per period
is � = e�r�, where � is the period length, and r > 0 is the pure rate of time preference.

The set of players is f1; :::; Ng.
Before the game starts, nature chooses an (aggregate) state randomly from two alter-

natives: � 2 fH;Lg. Let q0 denote the common prior q0 = Prf� = Hg. After choosing
5The main emphasis in Rosenberg, Solan & Vieille (2007) is on the characterization of the symmetric

equilibrium in games with a small number of players.
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the state, nature chooses randomly and independently the type of each player. Each

player is either good or bad, but the players do not know their type at the beginning of

the game. If � = H, the probability of being good is �H , while if � = L, the probability

of being good is �L, where 0 � �L < �H � 1. In the special case, where �H = 1 and

�L = 0; the players�types are perfectly correlated and the game is one of pure common

values. Conditional on the state, the player types are drawn independently for all players.

All types are initially unobservable to all players, but the parameters q0, �H , and �L are

common knowledge.

The information about the aggregate state and the individual types arrives gradually

during the game. As long as a player stays in the game, she receives a random signal

� 2 f0; 1g in each period. Signals have two functions: they generate payo¤s and transmit
information. For a bad-type player, � = 0 with probability 1. For a good player, Prf� =
1g = ��, where � > 0 is a commonly known parameter.6 Upon receiving the signal,

the players collect a payo¤ � � v, where v is the value of the good signal � = 1 for the

players. Notice that a good signal occurs with a probability that depends linearly on the

period length, and as a result, information arrives at a constant rate in real time. The

signal realizations across periods and players (conditional on the state and the type) are

assumed to be independent. Each player observes only her own signals. We use the terms

informed and uninformed to refer to the players�knowledge of their own type: players

who have had a good signal are informed, other players are uninformed.

At the beginning of each period t, all active players i make a binary decision ati. They

either exit, ati = 0, or continue, a
t
i = 1. Exiting is costless, but irreversible: once a player

exits, she becomes inactive and receives the outside option payo¤ 0. Hence we require

that whenever ati = 0, then asi = 0 for all s > t. We call player i active in period t if

she has stayed in the game up to that point in time. We denote by N the set of active

players and we let n denote their number. If the player continues in the game, she pays

the (opportunity) cost c � �. The cost c and the bene�t v are parameters for which we
assume 0 < c < �v. The expected payo¤ per period is (�v � c)� > 0 for a good player

and �c� < 0 for a bad player. This means that if the players knew their types, bad types
would exit immediately, and good types would never exit.

At the beginning of each period the players choose their actions simultaneously. Ac-

tions are publicly observed. At the end of the period, the players observe their own

private signals. Hence, the past actions are common knowledge, but the players do not

know each others�informational types, i.e. whether the other players are informed.

The history of player i consists of her private history of own past signals, and the

6We assume throughout that � is so small that ��� 1.
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public history consisting of the actions of all players. Since a good signal reveals fully

the player�s type, the uninformed have never observed the good signal. Conditional on a

good signal, it is a dominant strategy to stay in the game forever. It is therefore su¢ cient

to specify the exit behavior of the uninformed players. For the uninformed players, all

relevant information is contained in the public history of past actions, and therefore we

call this public information simply the history. Formally, a history ht in period t is a

sequence of actions:

ht =
�
a0; a1; :::; at�1

	
;

where at = (at1; :::; a
t
N). Denote by H

t the set of all such histories up to t and let H =
1[
t=0

H t. A history h1 = fatg1t=0 gives a sequence of action pro�les for the entire game.

A (behavior) strategy for an uninformed player i is a mapping

�i : H ! [0; 1]

that maps all histories to an exit probability.7 A strategy pro�le in the game is a vector

� = (�1; :::; �N).

Each player maximizes her expected discounted sum of payo¤s as estimated on the

basis of her own signal history, observations of the other players�behavior, and the initial

prior probability assessment q0. By equilibrium, we mean a Perfect Bayesian Equilibrium

of the above game. In an equilibrium, all actions in the support of �i (ht) are best

responses to ��i for all i and for all ht:

2.1 Interpretation as an Investment Game

We can interpret the game as an investment model where a number of �rms have the

option of undertaking an irreversible investment. The project qualities are correlated

across �rms. A good project yields c� > 0 per period whereas a bad project yields

(c� �v)� < 0 per period. The �xed investment cost is normalized to zero. Before

undertaking the project, each �rm learns about the quality of her individual potential

project as follows. In each period of this prior experimentation phase, a "failure" signal

occurs with probability �� if and only if the project is bad.8 The �rms do not, however,

earn the proceeds c� before the actual investment has been made.

To see that this is equivalent to our exit game, consider the capitalized value of

undertaking the action "exit" in our original model. If the player type is bad, then

7Since exit is irreversible, we require that �i (ht) = 1 for a player that has already exited at some

earlier period s < t.
8See Décamps & Mariotti (2004) for another investment model with this kind of learning.
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by exiting the player avoids the �xed cost c� from today to eternity. Therefore the

capitalized value of exit is equal to the value of investing in a "good" project in the

investment model. A "good" type in the original model avoids the cost c� by exiting,

but at the same time she forgoes the expected payo¤�v� per period. The net capitalized

value of exit is then equal to the value of investing in a "bad" project. This shows that the

two models are isomorphic (with "good" types interpreted as "bad" projects and "bad"

types as "good" projects).

3 Beliefs

In this section we describe the two di¤erent forms of learning in our model. First, as long

as a player stays in the game, she receives in every period a direct signal �t on her own

private type. The strength of this signal is exogenously given, and Bayesian updating

resulting from such signals has been studied extensively in the literature. We let pt
denote the player�s belief on the event that her type is good given that she is uninformed

after t periods. By p�t we denote the probability of being good type conditional on being

uninformed after t periods and conditional on state �: Subsection 3.1 below describes the

evolution of these beliefs, which is based on private signals only.

The second form of learning depends on the publicly observed actions and is en-

dogenous in our model. Only uninformed players exit in our game and the number of

uninformed players depends on the state. As a result, players learn about the state by

observing the other players�actions. Since each player�s own type is also correlated with

the state, this information is payo¤ relevant.

We denote by ��i (h
t) the posterior probability with which player i is uninformed given

history ht, conditional on state �. Using this notation, we can de�ne the exit probability

of player i conditional on state � as:

��i
�
ht
�
:= �i

�
ht
�
��i
�
ht
�
: (1)

As long as �Hi (h
t) 6= �Li (h

t) ; the other players learn about the true aggregate state by

observing the exit decisions of player i: Notice that the speed of observational learning

depends on �i through two channels. The direct e¤ect is through current exit probabilities

�i (h
t) while the indirect e¤ect summarizes the observations from all past periods in the

statistic ��i (h
t). We denote by bq (ht) the probability of the event that the state is high

given a public history ht. Subsection 3.2 describes the evolution of bq (ht), which is based
only on the public history.
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Subsection 3.3 combines the two forms of learning to derive the beliefs of an unin-

formed player in our model. Since p�t does not depend on observational learning and sincebq (ht) is by de�nition independent of private observations, this step simply puts together
the information contained in p�t and bq (ht). We denote by p (ht) a player�s belief that her
type is good given that she is uninformed and given the public history ht: By q (ht) ; we

denote her belief that the state is high. We summarize the di¤erent forms of updating in

the table below:

(Section 3:1) p�t
�t�! p�t+1

&
(p (ht) ; q (ht)) (Section 3:3)

%

(Section 3:2) bq (ht) �(ht);��(ht)�! bq (ht+1)
3.1 Private Learning

We start with the analysis of an isolated player that can only learn from her own signals.

Denote by pt the current belief of an uninformed player about her type, i.e.

pt := Prf"type of player i is good" j"i is uninformed in period t"g:

If the player continues for another period, and receives a bad signal � = 0, the new

posterior pt+1 is obtained by Bayes�rule:

pt+1 =
pt (1� ��)

pt (1� ��) + 1� pt
: (2)

The updating formula is essentially the same if the player knows the true aggregate state.

We let p�t denote the player�s belief on her own type conditional on state �. Using p
�
0 = �

�,

equation (2) gives us the formula for p�t :

p�t =
�� (1� ��)t

�� (1� ��)t + (1� ��)
: (3)

Notice that p�t is a strictly decreasing function of t and since it conditions on the state of

the world, it will not be a¤ected by learning from others.

3.2 Observational Learning

To describe observational learning in our model, we consider for the moment how player i

learns from the behavior of players j 6= i if she ignores her private signals. We denote by
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bqi (ht) the belief of i on the aggregate state, when learning is based only on the behavior
of the other players. Alternatively, we may think of bqi (ht) as the belief of player i as an
outside observer to the game.

Recall that ��j (h
t) denotes the probability with which an active player j 2 N (ht) exits

at history ht. If �Lj (h
t) > �Hj (h

t) > 0 and j does not exit, then i believes that j is more

likely to be informed, and that state H is relatively more likely. To describe the belief

updating, we denote by A�i (ht) the random vector containing the actions of all active

players, excluding i, at history ht. The probability of a given exit vector at�i is then:

P�
�
A�i

�
ht
�
= at�i

�
=

Y
j 6=i;

j2N(ht)

�
(1� atj)��j

�
ht
�
+ atj

�
1� ��j

�
ht
���

; (4)

where we use shorthand notation P� to denote probability conditional on state:

PH (�) := Pr (� j� = H ) , PL (�) := Pr (� j� = L) :

After observing the exit vector at�i, player i updates her belief bqi (ht) according to
Bayes�rule as follows:

bqi �ht+1� = bqi (ht)PH �A�i (ht) = at�i�bqi (ht)PH �A�i (ht) = at�i�+ (1� bqi (ht))PL �A�i (ht) = at�i� : (5)

Note that bqi (ht+1) depends on ��j (ht) through (4), which in turn depends on ��j (ht)
through (1). Therefore, in order to complete the description of observational learning

in our model, we must also specify the evolution of ��i (h
t), i = 1; :::; N , for the �xed

strategy pro�le �. These posteriors change for two reasons within each period. First, at

the beginning of each period exit decisions are realized. If player i continues, then the

other players believe that i is more likely to be informed and update their beliefs using

Bayes�rule as follows:

�0�i
�
ht
�
=
��i (h

t) (1� �i (ht))
1� �i (ht)��i (ht)

; � 2 fH;Lg: (6)

Second, uninformed players become informed within the current period with probability

1 � p�t�� (conditional on not exiting). Combining these two steps, the updated belief

after history ht+1 is:

��i
�
ht+1

�
=
��i (h

t) (1� �i (ht))
1� �i (ht)��i (ht)

�
�
1� p�t��

�
, � 2 fH;Lg: (7)
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3.3 Combined Learning

The remaining task is to combine the two forms of learning to derive the beliefs of the

uninformed players in the game. Recall that bqi (ht) denotes i�s belief on aggregate state if
she ignores all of her private signals. Therefore, the actual belief of an uninformed player

i is obtained by combining the information contained in bqi (ht) with the information
contained in her private history (i.e. with the fact that i remains uninformed).

Let ��t denote the ex-ante probability with which a player (that stays in the game with

probability 1) is uninformed in period t, conditional on state �. The player is of a bad

type with probability
�
1� ��

�
; and all bad types remain uninformed with probability 1.

The player is a good type with probability ��, and good types remain uninformed with

probability (1� ��) in each period. Hence we have:

��t =
�
1� ��

�
+ �� (1� ��)t : (8)

We denote by qi (ht) the belief of an uninformed player i on the aggregate state. This

belief di¤ers from bqi (ht) only to the extent that the private history of i a¤ects her belief,
and therefore the relationship between the two is given by Bayes�rule as follows:

qi
�
ht
�
=

bqi (ht)�Htbqi (ht)�Ht + (1� bqi (ht))�Lt ; (9)

where �Lt and �
H
t are given by (8).

We denote by pi (ht) the belief of an uninformed player i on her own type. This belief

is tightly linked to qi (ht). By the law of iterated expectation, we have:

pi
�
ht
�
= qi

�
ht
�
pHt +

�
1� qi

�
ht
��
pLt , (10)

where pLt and p
H
t are given by (3). Inserting (9) in this equation, we have:

pi
�
ht
�
=
bqi (ht)�Ht pHt + (1� bqi (ht))�Lt pLtbqi (ht)�Ht + (1� bqi (ht))�Lt : (11)

We end this section with two propositions that characterize learning in our model. The

�rst proposition establishes that whatever the strategy pro�le, the players are always more

likely to exit in state L than in state H. In particular, the likelihood ratio across states

is bounded away from 1, which guarantees that an exit is always informative about the

aggregate state.

To state the result, note that equation (8) implies that the ex-ante likelihood ratio

across states of being uninformed changes monotonically over time:

�Lt
�Ht

>
�Lt�1
�Ht�1

> � � � > �L1
�H1

=
1� �L��
1� �H�� > 1. (12)
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With this observation at hand, we can prove our �rst result on the informativeness of

exits.

Proposition 1 For any strategy pro�le �, we have

�Li (h
t)

�Hi (h
t)
� �Lt
�Ht

> 1

for all t > 0 and ht such that �i (ht) > 0.

The second proposition ranks strategy pro�les according to their informativeness. For

a pro�le � and a history ht; we let the random variable P t+1i (ht;� (ht)) denote the

posterior of player i on her own type at the beginning of period t+ 1, assuming that she

is uninformed at the beginning of period t. The randomness in the posterior arises from

i�s private signal realization and the realized exit decisions of the players other than i.

The following Proposition shows that higher exit probabilities by other players induce a

mean preserving spread (in the sense of Rothschild & Stiglitz (1970)) on the posterior.

Proposition 2 Take an arbitrary history ht with t > 0 and two strategy pro�les � and �0

with � (hs) = �0 (hs) for s = 0; :::; t�1. Then P t+1i (ht;� (ht)) dominates P t+1i (ht;�0 (ht))

in the sense of second order stochastic dominance if �0j (h
t) � �j (h

t) for all j 6= i and

�0j (h
t) > �j (h

t) for some j 6= i.

The economic content of this Proposition is rather immediate. Since all players�types

are correlated with the state of the world �; having maximal information on the state

is also maximal information on an individual type. The total amount of information

available to the players is captured by the vector of information types for the players,

i.e. an enumeration of all players that are informed. A pure strategy pro�le � (ht) = 1

transmits all this information, since under this strategy players exit if and only if they

are uninformed. The pro�le with � (ht) = 0 conveys no information. Any intermediate

exit probability can be seen as a convex combination of these two signal structures, and

it is to be expected that the combination with a higher weight on the informative signal

is more informative with respect to the true informational state of a player.

4 Equilibrium Analysis

4.1 Isolated Player

It is again useful to start with the case of an isolated player. The decision problem

of the isolated player is to choose whether to continue or exit at period t: Standard
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arguments show that the problem is a Markovian optimal stopping problem with the

posterior probability p = pt as the state variable. We let Vm (p) denote the value function

of the isolated player. Stopping at posterior p yields a payo¤ of 0. If the player continues,

she pays the cost c�; and gets a good signal � = 1 with probability p��: In this case,

the player learns that her expected payo¤ per period is (�v � c) ��, and thus the value
function jumps to

V + (�) :=
(�v � c) ��
1� � .

If the signal is � = 0, then p falls to pt+1 according to (2). The Bellman equation for the

optimal stopping problem can thus be written as:

Vm (p) = max

�
0;�c�+ p��

�
v + �V + (�)

�
+ (1� p��) �Vm

�
p (1� ��)

p (1� ��) + (1� p)

��
:

(13)

The optimal policy is to stop as soon as p falls below a threshold level, which we

denote by p� (�). Standard arguments establish that the value function Vm (p) is increas-

ing, convex and continuous in p. The threshold p� (�) is obtained from (13) by setting

Vm (p
� (�)) = 0:

p� (�) =
c

� (v + �V + (�))
: (14)

We shall see that p� (�) plays a crucial role also in the model with many players. Denote

by t� (�) the period in which p falls below p� (�) if all signals so far have been bad:

t� (�) := min ft 2 N jpt � p� (�)g :

We denote the optimal strategy of the isolated player by

am (pt) =

(
1 if pt > p� (�) ;

0 if pt � p� (�) :

4.2 Symmetric Equilibrium

In this subsection, we show that the exit game with observational learning has a unique

symmetric equilibrium.9 Furthermore, the equilibrium value functions of the individual

9The game has also asymmetric equilibria, where the players act in a predetermined order conditioning

their actions on the outcomes of the previous moves by the other players. Since the properties of such

equilibria are essentially similar to the herding models with exogenous order of moves, we do not discuss

them further (details about asymmetric equilibria are available from authors upon request).
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players can be written as functions of their belief on their own type only. With sym-

metric strategies all uninformed players have identical beliefs, and therefore we drop the

subscripts i from the beliefs and the strategies of the uninformed players. In particular,

we let � (ht) denote the probability with which each uninformed player exits at history

ht in symmetric equilibrium, and we let p (ht) denote the belief of an uninformed player

on her own type at history ht.

We start by showing that if a symmetric equilibrium exists for the stopping game, then

the equilibrium value function is closely related to the value function of the isolated player.

Let V (ht) denote the equilibrium value of an uninformed player at history ht. Lemma 1

says that the equilibrium value is equal to the value of an isolated player evaluated at the

current belief. The key observation for this result is that as long as � (ht) = 0, there is no

observational learning and thus the information available in the game is identical to the

information available to the isolated player. On the other hand, whenever � (ht) > 0, the

players can learn from each other, but then their value must be zero since they choose to

exit with a positive probability.10

Lemma 1 For any symmetric equilibrium of the exit game,

V
�
ht
�
= Vm

�
p
�
ht
��
:

With the help of Lemma 1 we can derive a symmetric equilibrium strategy pro�le

recursively. To see this, note that if a symmetric equilibrium is given for periods 0; :::; t�1,
we can calculate the beliefs of uninformed players at history ht as explained in Section

3. Consider then exit probabilities at history ht. By Lemma 1, the payo¤ for the next

period is given by V (ht+1) = Vm (p (ht+1)), and therefore, all we have to do is to �nd an

exit probability � (ht) that induces a probability distribution for p (ht+1) that makes the

players indi¤erent between exiting and staying. This indi¤erence condition must equate

the discounted expected value for the next period with the cost of staying for one period,

so we can write it as:

�EVm
�
P t+1

�
ht;�

�
ht
���

= c
�
ht
�
��;

where we use notation c (ht) to denote cost of staying net of expected payo¤ per time

unit:

c
�
ht
�
:= c� p

�
ht
�
�v.

10In Section 7, we discuss how this result is modi�ed in extensions of the current model where the

active players may have heterogenous private histories.
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The next Lemma shows that increasing the exit probabilities for the current period

increases the players�incentive to stay. This result follows from two observations. First,

by Proposition 2, increasing the exit probability for the current period induces a mean

preserving spread for the next period belief P t+1 (ht; � (ht)). Second, we know from

Subsection 4.1 that the isolated player�s value function Vm is convex. The lemma also

guarantees that this monotonicity property is strict at the point of indi¤erence, which is

essential for the uniqueness of symmetric equilibrium.

Lemma 2 The expected continuation payo¤ EVm (P t+1 (ht;� (ht))) is weakly increasing
in � (ht). Furthermore, for each ht such that p (ht) < p� (�) ; there is at most one exit

probability � (ht) satisfying

�EVm
�
P t+1

�
ht;�

�
ht
���

= c
�
ht
�
��:

Lemma 2 guarantees that for each ht (except for the knife-edge case p (ht) = p� (�)), at

most one exit probability can make the players indi¤erent between exiting and staying.11

However, if the players are so pessimistic that even the information transmitted by the

pure strategy pro�le � (ht) = (1; :::; 1) is not su¢ cient to compensate for the loss c (ht)�

of waiting for one more period, then it is a dominant action for all the uninformed players

to exit with probability 1. When this happens, we say that the game collapses.

With these preliminaries, we are ready to prove the existence and the uniqueness of a

symmetric equilibrium.12

Theorem 1 The stopping game has a unique symmetric equilibrium where the exit prob-

ability at history ht is given by:

�
�
ht
�
=

8>><>>:
0 if �EVm (P t+1 (ht; 0)) > c (ht)�;

�� (ht) 2 [0; 1] if �EVm (P t+1 (ht; 0)) � c (ht)� � �EVm (P t+1 (ht; 1)) ;
1 if �EVm (P t+1 (ht; 1)) < c (ht)�;

where �� (ht) solves

�EVm
�
P t+1

�
ht;��

�
ht
���

= c
�
ht
�
�:

The symmetric equilibrium has a simple structure. Whenever the players� beliefs

on their own type are above the threshold of the isolated player, i.e. p (ht) > p� (�) ;

then �EVm (P t+1 (ht; 0)) > c (ht)� and thus the equilibrium actions coincide with those

11For the non-generic case where p (ht) = p� (�) after some history ht; all randomizations � (ht) that

result in posteriors p
�
ht+1

�
� p� (�) for all at are compatible with equilibrium.

12The uniqueness is modulo the multiplicity at p(ht) = p� as explained in the previous footnote.
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prescribed by the optimal decision rule of the isolated player (i.e. stay). On the other

hand, if the players are very pessimistic, then �EVm (P t+1 (ht; 1)) < c (ht)�, and again

equilibrium actions coincide with the isolated player (i.e. exit with probability one). With

intermediate beliefs equilibrium behavior di¤ers from isolated player: in equilibrium the

exits take place with a probability that exactly balances the players�incentives to exit

and wait, whereas an isolated player would exit with probability one.

We will obtain a sharper characterization of the symmetric equilibrium when we de-

crease the time lag between successive periods towards zero. This will be done in Section

6.

5 Information Aggregation in Large Games

In this section, we analyze information aggregation in the symmetric equilibrium of the

game as the number of players grows without bound. As a benchmark case for comparison,

we use the case where information is pooled, that is, the players share all the information

with each other. If the number of players is large in this benchmark, the (weak) law

of large numbers implies that the players can determine the true aggregate state with

arbitrarily high accuracy. As a result, for large games the e¢ cient benchmark in terms of

information aggregation is simply the one where all the players know the aggregate state

�. Nevertheless, idiosyncratic uncertainty about player types remains also in the e¢ cient

benchmark: conditional on the state, each player is still uncertain about her own type.

In state �; an uninformed player believes that she is a good type with probability p�t , and

therefore it is optimal for her to exit as soon as p�t falls below p
� (�). Hence, the e¢ cient

exit period in state � is given by t�� (�) de�ned as:

t�� (�) := min
�
t : p�t � p� (�)

	
, � = H;L,

where p�t is given by (3). Since p
L
t < p

H
t , we have t

�
L (�) < t

� (�) < t�H (�).
13 That is, it

is e¢ cient to experiment longer in state � = H than in state � = L.

The main result of this section is Theorem 2, which says that by decreasing the period

length, we eliminate the possibility that a large number of players exit too early relative

to this e¢ cient benchmark. This means that for large games, information is aggregated

e¢ ciently in state � = H because t�H (�) is an upper bound for all exit times of the

uninformed players. However, if � = L, information aggregation fails: all players exit too

late in expectation.

13Unless �L and �H are very close to each other and � is large, in which case we may have t�L (�) =

t�H (�). In that case the optimal action does not depend on state, and observational learning is irrelevant.
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Since we vary the number of players N and the period length � while keeping all the

other parameters of the model �xed, we denote by � (�; N) the game parametrized by �

and N . We denote by X (ht) the number of players that exit the game at history ht in

the unique symmetric equilibrium of the game:

X
�
ht
�
:= n

�
ht
�
� n

�
ht+1

�
.

As a �rst step towards Theorem 2, we consider the e¤ect of a large number of exits

on the beliefs. We already showed in Proposition 1 that individual exit probabilities

are di¤erent across the two states, which allows the players to make inferences based on

observed exits. It is therefore natural to expect that if a large number of players exit, then

all the remaining players should have accurate beliefs on the aggregate state. Proposition

3 shows that this must indeed be the case with a high probability. The idea in the proof

is to follow the belief of an outside observer to the game, and to show that this belief

must converge to truth at a high rate as the number of exits grows. The argument uses

techniques developed in Fudenberg & Levine (1992).

Proposition 3 For all " > 0, there is some K 2 N such that

PHfh1 : n
�
ht
�
� N �K and q

�
ht
�
< 1� " for some ht 2 h1g < "; (15)

PLfh1 : n
�
ht
�
� N �K and q

�
ht
�
> " for some ht 2 h1g < "; (16)

for any game � (�; N).

A couple of remarks are in order. First, the bound K for the number of exits in the

Proposition is independent of � and N . Hence, by increasing N; we can make sure that

the state is revealed if an arbitrarily small fraction of players exit. Second, although we

assume a symmetric equilibrium pro�le in this section, Proposition 3 actually holds for

all strategy pro�les � (equilibrium or not) as long as some private information has been

accumulated before the �rst exits.

Proposition 3 implies that once a large number of players have exited and � = H; then

with a high probability all the remaining players are so convinced of the true state that

no further exits take place before the e¢ cient exit period t�H (�). This would suggest that

the total number of suboptimally early exits must be bounded. However, we must also

consider the possibility that an arbitrarily large number of players exit within a single

period, before they have learnt the true state. Our second step towards Theorem 2 is to

show that by reducing period length � towards zero; we can eliminate this possibility.

This is established in Proposition 4 below.
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We need some notation to keep track of the passage of real time as we vary �:14 Let

� � denote the e¢ cient exit time corresponding to state � in the limit �! 0:

� � := lim
�!0

[t�� (�) ��] , � = H;L. (17)

To link real time to the corresponding period of a discrete time model, we de�ne t (� ;�)

as the last period before an arbitrary real time � :

t (� ;�) := max ft : t �� � �g . (18)

Proposition 4 For all � < �H and " > 0, there are constants � 2 R+ and K 2 N such
that

PHfh1 : X
�
ht
�
> K for some t � t (� ;�)g < ";

for any game � (�; N) with � < �.

The proof of Proposition 4 is lengthy, but the intuition is straightforward. If the

players were to adopt a strategy that induces a large number of exits with a non-negligible

probability within a single period, then this would generate a very informative signal about

the state. For all � < �H , the value of such a signal is positive. If the waiting cost is low

enough (that is, � is small enough), then all the players would have a strict preference

to observe the signal rather than exit contradicting the hypothesized positive probability

of exits.

Combining Propositions 3 and 4 gives us the theorem that bounds the total number of

suboptimally early exits in the game. This result implies that in the double limit where

we increase the number of players and reduce the period length, the fraction of players

that exit suboptimally early shrinks to zero.

Theorem 2 For all � < �H and " > 0, there are constants � 2 R+ and K 2 N such that

PH

8<:h1 :
t(�;�)X
t=0

X
�
ht
�
> K

9=; < ";

for any game � (�; N) with � < �.

This theorem is important for us in two respects. First, as we will see in the next

section, it allows us to compute explicitly the statistical properties of the equilibrium path

in the limit where � is small and N is large. Second, it carries a central message about

14This notation will also be useful in the following Section where the continuous time limit of the model

is considered.
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information aggregation in our model: information cannot be fully aggregated before the

e¢ cient exit time conditional on the true state.

Perhaps the most illuminating special case is the case of perfectly correlated private

types (i.e. �H = 1 and �L = 0) where full information on the aggregate state is su¢ cient

to determine all players� payo¤ types. In this case �H = 1, and Theorem 2 implies

that in state H almost all the players remain in the game forever. In state L; all the

players exit the game eventually, but they do so later than they would in the absence of

observational learning.

Although we have assumed symmetric strategies throughout this section, the results

would go through for asymmetric equilibria as well. The proof of Proposition 3 is valid

for any asymmetric equilibrium strategy pro�le as such. The proof of Proposition 4

uses symmetry in two lemmas (Lemma 6 and Lemma 8 in Appendix B). However, even

there symmetry is used merely for convenience (the number of exits within a period is

binomially distributed, which leads more easily to the desired results).

6 Exit Waves

In this section, we characterize the symmetric equilibrium in the limit as � # 0. We
have several reasons for this. The �rst reason is substantive. In a model with endogenous

timing decisions, it is important to know if the results depend on an exogenously imposed

reaction lag �. Second, it turns out that the inherent dynamics of the model are best

displayed in the limit: information aggregation happens in randomly occurring bursts of

sudden activity. We call these bursts of activity exit waves. Third, when we also let

N !1, we can compute the statistical properties of the equilibrium path in an explicit

form.

We may view the public history h1 generated by the symmetric equilibrium � (�; N)

in the game � (�; N) from a slightly di¤erent angle. Suppose that the players are to

be treated anonymously. Then the vector t (�; N) = (t1 (�; N) ; :::; tN (�; N)) where

tk (�; N) indicates the period in which kth exit took place gives a full account h1: The

pro�le � (�; N) induces a probability distribution on RN on instants of exit measured

in continuous time � (that is, the kth exit takes place at time � k = tk (�; N) � �). We
denote this distribution, conditional on state �, by F ��;N (� ). We investigate the limiting

distribution

F �N (� ) = lim
�#0
F ��;N (� ) ;

where the convergence is taken to be in the sense of weak convergence. Observational
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learning then results from the di¤erences between FHN (� ) and F
L
N (� ).

In Subsection 6.1 we keep the number of players �xed at N . We show that when there

was no exit in the previous period, the probability of an exit within the current period

is of the order �. This means that exits arrive according to a well de�ned hazard rate,

and we say that the game is in the �ow mode. On the other hand, if there was an exit

in the previous period, then the probability of an exit in the current period is bounded

away from zero, and we say that the game is in an exit wave.

In Subsection 6.2, we consider the limiting distributions

F � (� ) = lim
N!1

F �N (� )

de�ned on the set of sequences of exit times f� kg1k=1: In particular, we compute the
distributions for the �rst K exit instants and we also calculate the probability of the

event that the game collapses by time instant � ; i.e. the probability of the event f� k � �
for all kg. We make use of Poisson approximations and Theorem 2 when computing the

size of the exit events and the probability of a collapse given that an exit event started.

6.1 The Structure of the Symmetric Equilibrium

In this subsection, we keep the number of players N �xed. Since we are interested in the

limit � ! 0, we parametrize the game and its histories with the period length �. We

say that the game is in the �ow mode at history ht if no players exited at history ht�1;

i.e. if X (ht�1) = 0: The game is in an exit wave at history ht if X (ht�1) > 0: Finally,

we say that the game collapses at history ht if � (ht) = 1. The collapse is an absorbing

state: since all uninformed players exit, the game is e¤ectively over, and � (hs) = 1 for all

s > t. This means that for a game with a given �, we have three mutually exclusive sets

of histories, corresponding to the �ow mode, exit wave, and collapse, respectively:

Hf (�) : =
�
ht : X

�
ht�1

�
= 0 and �

�
ht
�
< 1
	
;

Hw (�) : =
�
ht : X

�
ht�1

�
> 0 and �

�
ht
�
< 1
	
;

Hc (�) : =
�
ht : �

�
ht
�
= 1
	
:

In order to relate the discrete decision periods to real time instants, we de�ne

p� := lim
�#0
p� (�) ;

� � := lim
�#0
t� (�) ��;

where p� (�) and t� (�) denote the belief threshold and the corresponding exit time as

de�ned in Section 4.1.
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We start by showing that the beliefs of the uninformed players are qualitatively di¤er-

ent in the two active modes. When the game is in the �ow mode and � is small, beliefs

stay close to p� (as long as t � t� (�), that is, players have started to randomize). In

contrast, in an exit wave the beliefs are bounded away from p�:

Lemma 3 i) For all " > 0, there is a � > 0 such that

p
�
ht
�
2 (p� � "; p� + ")

for all ht 2 Hf (�), t � t� (�), � < �.
ii) There is a � > 0 and a � > 0 such that

p
�
ht
�
< p� � �

for all ht 2 Hw (�), � < �.

The following Proposition shows that the active players also behave di¤erently in the

two modes. In the �ow mode, the probability with which any exits take place within a

period is at most proportional to the period length. In contrast, in an exit wave the

corresponding probability is bounded away from zero even in the limit �! 0.

Proposition 5 i) There is a � > 0 such that

PH
�
X
�
ht
�
> 0
�
< PL

�
X
�
ht
�
> 0
�
< �� for all ht 2 Hf (�) ;� > 0:

ii) There is a p > 0 and a � > 0 such that

PL
�
X
�
ht
�
> 0
�
> PH

�
X
�
ht
�
> 0
�
> p for all ht 2 Hw (�) ; 0 < � < �:

The �rst claim in the above Proposition justi�es our use of the term �ow mode. The

�ow mode comes to an end with a well-de�ned hazard rate. The actual computation

of the equilibrium hazard rate is not hard in principle. Nevertheless, the formula will

depend on the evolution of �� (ht) and it is not possible to give a closed-form solution for

the continuous-time limit of the updating formula (7).15 In the following subsection, we

compute the explicit hazard rate in the limit as N !1:
The second point to note is that since at least one player must exit at each period for

the exit wave to continue, the total number of players N gives an upper bound for the

periods within an exit wave. Therefore, the real time duration of an exit wave is bounded

15The computation is somewhat complicated because the updating of �� (ht) depends on the equilib-

rium randomization probabilities � (ht) :
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from above by �N and hence vanishes as � ! 0: As a result, we may view the limit

exit waves as (rather complicated) randomization events between the �ow mode and the

collapse.

Finally, every exit wave results in a collapse with a strictly positive probability. To

see this, recall that in an exit wave, p (ht) must be bounded away from p� by part ii)

of Lemma 3, whereas by part i) of the same Lemma, the belief must be back within

a small neighborhood of p� once the game returns to the �ow mode. Since this belief

is a martingale, we can conclude that a return to the �ow mode cannot happen with

probability 1, hence the collapse must take place with a positive probability.16 Note that

if the number of players is small, then the �rst exit starting a wave may in fact lead

to an immediate collapse. Then the exit wave lasts only one period and ends up in a

collapse with probability one. If this is not the case, then a similar martingale argument

establishes that the game must return to the �ow mode with a strictly positive probability.

6.2 Exit Events in Large Games

The large game limit N ! 1 simpli�es the computations for a number of reasons.

First, we can use Poisson approximations of the Binomial distribution for the number

of exits within each period of an exit wave. Second, as long as the state has not been

fully revealed, we know that the probability with which an individual player has exited is

negligible. To see this, note that if each player would exit with a non-negligible probability,

then in the limit N !1 this would mean that the total number of exits explodes, which

by Proposition 3 implies full sate revelation. The simpli�cation that we obtain from

this observation is that we can use the continuous time limit of equation (8) instead of

equation (7) to compute the conditional probabilities for the players to be uninformed.

Third, we can apply Theorem 2, which implies that the game collapses in state � = H

before the e¢ cient stopping time �H with a vanishing probability as N !1:
Let p� (�) and �� (�) denote the continuous time limits of (3) and (8):

p� (�) : =
��e���

(1� ��) + ��e��� ;

�� (�) : =
�
1� ��

�
+ ��e��� :

We compute �rst the hazard rate of exits in the �ow mode. In particular, assume that

k players have exited the game at real times � 1; :::; � k, and the game is in the �ow mode

16The argument also utilizes the observation that an exit wave takes only a vanishing amount of real

time in the limit �! 0. This guarantees that the possibility that the belief of a player jumps upwards

during the wave due to a private signal can be ignored.
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at real time � . Using the fact that the likelihood ratio of exit across the states is given

by �L (�) =�H (�), and the fact that the belief of an uninformed player must stay close to

p� as long as no player exits (as required by Lemma 3), we can calculate the hazard rate

with which an additional player exits:

Proposition 6 In the limit N ! 1, the instantaneous hazard rate of k + 1st exit at
some � 2 (� k; �H), conditional on the �rst k exit times � 1; :::; � k, is given by

f �k+1 (� j� 1; :::; � k )
1� F �k+1 (� j� 1; :::; � k )

= �� (�)�
p� (1� p�)

�
pH(�

�
� pL (�))

(p� � pL (�)) (pH (�)� p�) (�L (�)� �H (�)) : (19)

Note that the right hand side does not depend on � 1; :::; � k, and therefore, the hazard

rate of k + 1st exit depends only on � . Furthermore, note that (19) applies also in the

case where no player has yet exited. Hence, irrespective of the number of players that

have already exited, equation (19) gives the hazard rate with which an exit wave starts

at time � , � > � �, conditional on the game being in the �ow mode.

Every exit wave leads either to a collapse or a return to the �ow mode. With a large

number of players, it is easy to compute the probabilities with which either possibility

occurs. To see this, let us again utilize the fact that in the �ow mode an uninformed

player must have belief p� on her own type (by Lemma 3). Since the beliefs on one�s own

type and on the aggregate state are linked by equation (10), we can equivalently express

this by requiring the belief on the aggregate state at time � to be given by:

q� (�) :=
p� � pL (�)

pH (�)� pL (�) , �
� � � � �H .

Note that q� (�) is strictly increasing within [�L; �H ] and q� (�L) = 0 and q� (�H) = 1.

Consider now the posterior after the �rst exit of an exit wave that takes place at real

time � . Since the belief just before the exit is given by q� (�) and the exit reveals one

player to be uninformed, the posterior after the �rst exit is given by Bayes�rule:

q� (�) =
�H (�) q� (�)

�H (�) q� (�) + �L (�) (1� q� (�)) < q
� (�) :

By Theorem 2, the game returns to the �ow mode with a probability that converges

to 1 as N ! 1 in state � = H. Therefore, if the game collapses, q (�+) = 0: On the

other hand, we know from Lemma 3 that if the game returns to the �ow mode, we have

q (�+) = q� (�). Let �� (�) denote the probability of the collapse given an exit event at

� < �H , conditional on state �. By Theorem 2,

�H (�) = 0;
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so the probability of the collapse estimated by a player with belief q� (�) is (1� q� (�))�L (�).
Therefore, by the martingale property of the belief of this player we have:17

q� (�) =
�
1�

�
1� q� (�)

�
�L (�)

�
q� (�) ;

which gives

�L (�) =
q� (�)� q� (�)
q� (�) (1� q� (�)) =

�L (�)� �H (�)
�L (�)

: (20)

Since (19) gives the hazard rate with which an exit wave starts, and (20) gives the

probability with which a given exit wave leads to collapse, we get the hazard rate of

collapse by multiplying them:

Corollary 1 In the limit N ! 1, the instantaneous hazard rate of collapse at time
� 2 (� �; �H), conditional on state, and conditional on being in the �ow mode at � , is:

�H (�) = 0; (21)

�L (�) = �
p� (1� p�)

�
pH(�

�
� pL (�))

(p� � pL (�)) (pH (�)� p�) : (22)

Note that the equations (21) and (22) tell us how an outside observer learns from

the actions of the players. Since the game collapses only in state L, an outside observer

becomes gradually more optimistic over time about the aggregate state if there is no

collapse. By Bayes�rule, the belief dynamics of the outside observer is given by:

dbq (�)
d�

= bq (�) (1� bq (�))�L (�) .
If �H < 1, pH (�) falls to p� at � = �H . We see from (22) that

lim
�!�H

�L (�) =1.

In words, the hazard rate of collapse in state L explodes at �H . This is to be expected,

because �H is an upper bound for all exit times. As a result, the state is eventually fully

revealed to the outside observer: if the game collapses strictly before �H , then � = L,

otherwise � = H.

Corollary 1 applies also to the special case of perfectly correlated types (i.e. �H = 1

and �L = 0). In that case, pH (�) � 1 and pL (�) � 0, and hence Equation (22) reduces
to �L (�) = �. To understand this simple formula, note that an uninformed player learns

fully her own type from either receiving a good private signal (in which case she must be

17If the game has N < 1 players, then collapse will take place at a posterior qC > 0 and as a

consequence, the probability of a collapse is higher than in equation (20).
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a good type) or by observing the game collapse (which in the case of perfectly correlated

types means that she must be a bad type). Lemma 3 requires that her belief stay constant

as long as none of these two events occur. This is possible only if both events arrive at

the same rate conditional on state. Note that in this special case �H = 1, and hence if
� = H, the game never collapses and the outside observer learns only asymptotically the

true state.

We end this section by describing the sequence of events within a given exit wave that

takes place at real time � . We use index s = 1; 2; ::: to refer to the consecutive periods

within the exit wave. Let qs denote the belief on the aggregate state in the sth period

of the wave, and let Xs denote the number of exits at that period. Note that since we

are considering the limit �! 0, the duration of the exit wave in real time is zero in the

limit.

Fix a period s and the corresponding belief qs. Lemma 3 implies that we must have

qs < q
� (�). On the other hand, the same lemma implies that if s is the last period of the

exit wave (that is, no player exits), then we must have qs+1 = q� (�).

Proposition 7 Consider period s of an exit wave taking place at time � : As N ! 1;
X�
s converges in distribution to a Poisson random variable with parameter:

�� (�)

(�L (�)� �H (�)) log
�

q� (�)

(1� q� (�)) �
(1� qs)
qs

�
for � 2 fH;Lg: (23)

If the realized number of exits is Xs = k, the next period belief is:

qs+1 (k) :=

�
�H (�)

�k
q� (�)

(�H (�))k q� (�) + (�L (�))k (1� q� (�))
: (24)

Notice from (24) that the number of exits in the previous stage is a su¢ cient statistic

for the belief in the current stage, which in turn by (23) is a su¢ cient statistic for current

stage randomization probabilities. Hence, the number of exits at period s is a random

variable distributed according to the Poisson distribution with a parameter that depends

on the number of exits at period s� 1.
The exit event taking place at real time instant � reverses to the �ow mode at the �rst

s such that Xs = 0. Hence, the probability of the exit wave ending at period s depends

on the number of exits at period s� 1, and can be calculated from a Poisson distribution
with the parameter given by (23).

7 Discussion

We analyzed a stopping game where the players base their decisions on their privately

acquired information and on the behavior of the other players in a similar situation. The
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possibility to observe the actions of others makes the players more likely to postpone their

actions. But this, in turn, reduces the informativeness of their actions, thus reducing

the incentives to wait. The symmetric equilibrium balances these e¤ects and leads to

aggregate delays and randomly arriving exit waves. We showed that even when the

number of players gets large, aggregate uncertainty persists in equilibrium. Information

is aggregated gradually until a sudden collapse leads to full revelation of the aggregate

state.

We kept the model as simple as possible in order to highlight the interplay between

individual and social learning. In the following subsections, we discuss a number of

extensions of the model.

7.1 Heterogenous Private Values

In the main model, all players have an identical opportunity cost c and an identical value

from the signal v: We could have equally well assumed that ci is private information

and drawn from a common distribution F (ci) at the beginning of the game. With this

speci�cation, the game has a pure Perfect Bayesian Equilibrium in symmetric strategies.

An isolated player has an optimal policy characterized by a stopping threshold p� (�; ci)

and an optimal value given by Vm (p (ht) ; ci) : With heterogenous private values, the

conclusion of Lemma 1 holds only for players with high ci. For each history (ht; ci) ;

there exists a cuto¤ cost type c (ht) such that the symmetric equilibrium value V (ht; ci)

is equal to the expected payo¤ of the isolated player for all ci > c (ht) :

Adjusting the cuto¤ level c (ht) plays the same role as changing the equilibrium ran-

domization probabilities � (ht) in the main model. It is no longer true that all players

get the same payo¤ as they would as isolated players (the players with lower c bene�t

from observational learning). Nevertheless, the characterization of the equilibrium path

remains almost unchanged.

It is perhaps worth noticing that with heterogenous costs, the isolated players�optimal

stopping times are continuously distributed as a function of ci: In the case where the

individual types are perfectly correlated (i.e. �H = 1 and �L = 0) and players observe

each others�actions, almost all players exit the game at the same time if the number of

players is large.

7.2 Bounded Signals

We stressed the importance of our assumption that the players do not become unbound-

edly pessimistic as a result of their private learning. Yet we allow for the fact that
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signals are perfectly informative for the good types. In this subsection, we argue that

this assumption is purely for notational simplicity.

A more general model would allow for two Poisson rates of signal arrivals, �G if the

player is a good type, and �B for a bad type. The players�private histories are now

summed by kti ; the number of signals that player i has observed up to period t: The

optimal stopping policy of the isolated player is still characterized by a cuto¤ rule p� (�) :

Denote the symmetric equilibrium payo¤ in this case by V (ht; kti) : In analogy to Lemma

1, we can show that for all ht such that p (ht; kti) < p
� (�) for some active players i; there

is a cuto¤ level of private histories k (ht) such that all players with kti < k (h
t) earn the

same expected continuation payo¤ as an isolated player with the same belief of her own

type.

The equilibrium randomization probabilities are determined through the requirement

that the players with exactly k (ht) signals must be indi¤erent between continuing and

exiting. Those players with fewer than k (ht) signals exit with probability one if they have

not exited already.

In the modi�ed model, all players are ex ante identical, but they become heterogenous

due to their di¤erent private experiences. Since only the most pessimistic players exit

with positive probability, the ex ante equilibrium value in the model with observational

learning exceeds the ex ante expected payo¤ of the isolated player. Furthermore, with

perfectly correlated private types, almost all players exit the game at the same time when

the number of players is large.

7.3 Payo¤ Externalities

Finally, a more challenging extension would be to incorporate payo¤ externalities in the

model. The payo¤ could for example depend on the number of players present in the mar-

ket. It seems to us that beyond the two-player case, quite di¤erent analytical techniques

would be needed to cover this case. Lemma 1 has no analogue in this extension, and as a

result, the analysis will have to be quite di¤erent. In our view, this is an interesting and

challenging direction for further research.
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Appendix A: Shorter Proofs

Proof of Proposition 1. Since ��i (h
t) = �i (h

t)��i (h
t), all we have to do is to show

that
�Li (h

t)

�Hi (h
t)
� �Lt
�Ht

(25)

for all t > 0 (note that �Lt =�
H
t > 1 follows from (12)).

We use induction. As an induction hypothesis, assume that (25) holds for some t � 0.
Using (7) and (25), we then have

�Li (h
t+1)

�Hi (h
t+1)

=

�
�Li (h

t)

�Hi (h
t)

��
1� �i (ht)�Hi (ht)
1� �i (ht)�Li (ht)

��
1� pLt ��
1� pHt ��

�
�

�
1� pLt ��

�
(1� pHt ��)

�Lt
�Ht
: (26)

On the other hand, using (3) and (8), we have:

��t+1 =
�
1� p�t��

�
��t , � = H;L.

Combining this with (26) gives us the induction step:

�Li (h
t+1)

�Hi (h
t+1)

�
�Lt+1
�Ht+1

.

Noting that �Li (h
0) = �Hi (h

0) = �L0 = �
H
0 = 1 gives us:

�Li (h
0)

�Hi (h
0)
� �L0
�H0
;

and therefore, the proof by induction is complete.

Proof of Proposition 2. Construct an experiment Xi on � = fH;Lg with outcomes
in SXi = f0; 1g: The joint probabilities on the states and outcomes are given by the
following stochastic matrix PXi

PXi � = H � = L

sXi = 1 1� �i (ht)�Hi (ht) 1� �i (ht)�Li (ht)
sXi = 0 �i (h

t)�Hi (h
t) �i (h

t)�Li (h
t)

We interpret the event f� = Hg as the event that the state is good and the event
fsXi = 1g as the decision of player i to stay in the game. The joint probability over�
�; sXi

�
simply re�ects the conditional exit probabilities given strategy �:

Consider next another experiment Yi on � with outcomes in SYi = f0; 1g and the
associated stochastic matrix P Yi

28



P Yi � = H � = L

sYi = 1 1� �0i (ht)�Hi (ht) 1� �0i (ht)�Li (ht)
sYi = 0 �0i (h

t)�Hi (h
t) �0i (h

t)�Li (h
t)

with �0i (h
t) > �i (h

t) : Then we can write

PXi = �P Yi ;

where the stochastic matrix � is given by:

� sYi = 1 sYi = 0

sXi = 1 1
�0i(ht)��i(ht)

�0i(h
t)

sXi = 0 0
�i(ht)
�0i(h

t)

Since � is a stochastic matrix that is independent of �; Xi is a garbling of Yi; and therefore

Yi is su¢ cient for Xi:

Since the individual exit decisions Xi are independent (conditional on the informa-

tional status of the players), the same argument as above applies for the joint experiments

X := �n(h
t)

i=1 Xi and Y = �
n(ht)
i=1 Yi.

Finally, consider two experiments X! = (X;Z) and Y ! = (Y; Z) on 
 = fG;Bg
where X and Y are as above and Z is an experiment with outcomes in SZ = f0; 1g: Since
� is correlated with !; the information contained in X and Y is also information on 
:

We interpret Z as the individual learning experiment on own type and hence the matrix

of conditional probabilities for that experiment is given by PZ :

PZ ! = G ! = B

sZ = 1 �� 0

sZ = 0 1� �� 1

Since (X;Z) is a garbling of (Y; Z) by the argument above, we know that (Y; Z) is

su¢ cient for (X;Z) with respect to 
: The assertion that P t+1i (ht;� (ht)) second order

stochastically dominates P t+1i (ht;�0 (ht)) follows from Blackwell�s theorem.

Proof of Lemma 1. i) Assume that � is a symmetric equilibrium pro�le and p (ht) >

p� (�). If i continues for one period and then exits, her payo¤ is:

p
�
ht
�
��
�
v + �V + (�)

�
� c� > 0;

where the inequality follows from (14). This implies that � (ht) = 0 if p (ht) > p� (�).

ii) Assume that p (ht) < p� (�). Note from (14) that for such a belief we have:

p
�
ht
�
�
�
v + �V + (�)

�
< c. (27)
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We show that � (ht) > 0. Assume on the contrary that � (ht) = 0. Let h� be the �rst

continuation history of ht on the equilibrium path such that � (h� ) > 0: In other words,

h� = (ht; at; :::; a��1) where as = (1; :::; 1) and � (hs) = 0 for all s 2 ft; t + 1; :::; � � 1g;
and � (h� ) > 0:

First, note that if no such h� exists, then the players never exit, and their value

calculated at history ht is given by:

V
�
ht
�
=
p (ht)�v�� c�

1� � < 0;

where the inequality follows from (27). This is a contradiction, because equilibrium value

must be at least zero due to the exit option.

Since exiting is in the support of the equilibrium strategy at h� ; we have

V (h� ) = 0;

and hence the value in period � � 1 is given by

V
�
h��1

�
= �c�+ p

�
h��1

�
��
�
v + �V + (�)

�
< 0,

which contradicts optimal behavior at h��1. It follows that � (ht) > 0 if p (ht) < p� (�).

This implies that V (ht) = 0 if p (ht) < p� (�). If p (ht) = p� (�), we have

V
�
ht
�
= max

�
0; p� (�)��

�
v + �V + (�)

�
� c�

	
= 0.

iii) Since V (ht) = 0 whenever p (ht) � p�, and since � (ht) = 0 for p (ht) > p�, the

pure strategy am (p (ht)) is a best response for each player after each history ht, given

the strategy pro�le �. For any ht such that p (ht) > p� (�) ; p (ht+1) is updated on the

equilibrium path using the isolated player�s belief updating formula in equation (2) since

� (ht) = 0: Therefore, V (ht) = Vm (p (ht)) for each ht.

Proof of Lemma 2. By Lemma 1,

EV
�
ht+1

�
= EVm

�
P t+1

�
ht;�

�
ht
���

:

Furthermore, Vm (p) is convex in p and P t+1 (ht;� (ht)) is second order stochastically

decreasing in � (ht) by Proposition 2 and hence the �rst claim follows.

To prove the second claim, suppose that p (ht) < p� (�) and that there exists a � (ht)

such that

�EVm
�
P t+1

�
ht;�

�
ht
���

= c
�
ht
�
�: (28)

We claim that for all �0 (ht) > � (ht) ;

EVm
�
P t+1

�
ht;�0

�
ht
���

> c
�
ht
�
�: (29)
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To see this, consider the exit decision of player i when all players use the symmetric

strategy � (ht) and (28) holds. Since p (ht) < p� (�), there must be an exit decision vectorbat�i for players other than i that makes player i�s exit decision ati pivotal in the following
sense. In what follows, we use the notation p (ht;� (ht)) and V (ht;� (ht)) to emphasize the

dependence of these quantities on the equilibrium strategies. For ht+10 :=
�
ht;
�bat�i; 0�� ;

p
�
ht+10 ;�

�
ht
��
< p� (�) ; (30)

and for ht+11 :=
�
ht;
�bat�i; 1�� ;

p
�
ht+11 ;�

�
ht
��
> p� (�) . (31)

Furthermore,

PrfA�i
�
ht
�
= bat�ig > 0:

Suppose next that player i exits with probability �0i > � (ht) and all other players

exit with probability � (ht) after history ht:We consider the beliefs of an arbitrary player

j 6= i following this change in the strategy pro�le at history ht:
Denote the pro�le where all players but i exit with probability � (ht) and i exits with

probability �0i by (��i; �
0
i) : By Proposition 2, and by the convexity of Vm (p) ; we know

that for every at�i

�EaiV
��
ht;
�
at�i; ai

��
; (��i; �

0
i)
�
� �EaiV

��
ht;
�
at�i; ai

��
;�
�
ht
��
:

Therefore, the payo¤ of players other than i is strictly increasing in �0i, if for the exit

vector bat�i, the previous inequality is strict, i.e.:
�EaiV

��
ht;
�bat�i; ai�� ; (��i; �0i)� > �EaiV ��ht; �bat�i; ai�� ;� �ht�� :

But this follows immediately from (30) - (31) and the strict convexity of the isolated

player value function Vm in the neighborhood of p� (�). To see this, note that

p
�
ht+10 ; (��i; �

0
i)
�
= p

�
ht+10 ;�

�
ht
��
< p� (�) ;

p
�
ht+11 ; (��i; �

0
i)
�
> p

�
ht+11 ;�

�
ht
��
> p� (�) ;

and:

0 =
@�Vm

�
p
�
ht+10 ;� (ht)

��
@p

<
@�Vm

�
p
�
ht+11 ;� (ht)

��
@p

;

where @
�Vm(p)
@p

denotes the derivative from the left (which exists by the convexity of Vm (p))

of Vm at p:
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Starting with the strategy pro�le (��i; �0i) ; change the exit probability of all players

j 6= i to �0j = �0i, and denote the resulting symmetric pro�le by �0 (ht). By Proposition 2,
the payo¤ to all players is weakly increased. Therefore for all j;

EVj
�
ht+1;�0

�
ht
��

= EVm
�
P t+1

�
ht; (�0�i; �

0
i

��
� EVm

�
P t+1

�
ht; (��i; �

0
i

��
> EVm(P t+1

�
ht;�

�
ht
��
) = EVj

�
ht+1;�

�
ht
��
:

Proof of Theorem 1. All we have to do is to check that � (ht) is optimal for all

players under all three cases given in the Theorem, and that this is the only symmetric

exit probability with this property.

Lemma 1 implies that it is optimal to stay (exit) at ht i¤ � (ht) satis�es

�EVm
�
P t+1

�
ht;�

�
ht
���

� (�) c
�
ht
�
�: (32)

Consider now cases i) - iii) below. These cases cover all possibilities and are mutually

exclusive, because EVm (P t+1 (ht;� (ht))) is increasing in � (ht) by Lemma 2.
i) Assume that

�EVm
�
P t+1

�
ht; 0

��
> c

�
ht
�
�:

Then it is strictly optimal for all the players to stay in the game if � (ht) = 0. Moreover,

by Lemma 2, �EVm (P t+1 (ht;x)) > c (ht)� for all x � 0, so � (ht) = 0 is the unique

symmetric equilibrium action in that case.

ii) Assume that

�EVm
�
P t+1

�
ht; 0

��
� c

�
ht
�
� � �EVm

�
P t+1

�
ht; 1

��
:

First note that EVm (P t+1 (ht;� (ht))) is continuous in � (ht) as a result of the continuity
of the Bayes�rule in � (ht). Lemma 2 implies that there is a unique value �� (ht) for which

�EVm
�
P t+1

�
ht;��

�
ht
���

= c
�
ht
�
�:

Moreover, for all � (ht) < �� (ht) the strictly optimal action is to exit, and for all

� (ht) > �� (ht) the strictly optimal action is to stay. Thus, �� (ht) is the unique symmetric

equilibrium action in this case.

iii) Assume that

�EVm
�
P t+1

�
ht; 1

��
< c

�
ht
�
�.

Then it is strictly optimal for all the players to exit if � (ht) = 1. Moreover, by Lemma

2, �EVm (P t+1 (ht;x)) < c (ht)� for all x � 1, so � (ht) = 1 is the unique symmetric

equilibrium action in that case.
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Proof of Lemma 3. i) We claim �rst that for each " > 0 there exists a � > 0 such

that for all � < �;

p
�
ht
�
< p� (�) + " for all ht such that t � t� (�) :

Fix an " > 0 and suppose that the claim does not hold. Then, with an arbitrarily

small �, we must be able to �nd some history ht such that if there are no exits, the belief

jumps above p� (�) + ":

p
�
ht;1

�
> p� (�) + ", (33)

where we denote by (ht;1) the history at t+ 1 with no exits at ht.

Consider the continuation value of an arbitrary uninformed player i at V (ht). Clearly,

this value is bounded from below by the payo¤ of the event that no player exits at ht

weighted by the probability of that event, which gives us:

V
�
ht
�
� �c�+ PrfAt�i = 1ge�r�Vm (pt+1 (ht;1)) , (34)

where PrfAt�i = 1g is the probability that i assigns to the event that no players j 6= i

exits at ht. But since the players are willing to randomize at ht, we must have V (ht) = 0.

Using this fact and (33), we can write (34) as

c� > PrfAt�i = 1ge�r�Vm (p� (�) + ") .

Since Vm (p) is strictly increasing for p > p� (�) ; there is an � > 0 such that

e�r�Vm (p
� (�) + ") > �:

Hence we have:

PrfAt�i = 1g <
c�

e�r�Vm (p� (�) + ")
<
c

�
�: (35)

On the other hand, a natural lower bound for PrfAt�i = 1g is given by:

PrfAt�i = 1g � Prfall players j 2 N
�
ht
�
�i are informedg.

To evaluate this lower bound, note that for an arbitrary j 6= i;

Pr fj is informedg � 1� �Lt ,

and therefore,

PrfAt�i = 1g �
�
1� �Lt

�n(ht)�1 . (36)

Since �Lt < 1 and n (h
t) � N , (36) contradicts (35) for small enough �, and the claim is

established.
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It remains to show that if ht 2 Hf (�), then p (ht) > p� (�)�" for su¢ ciently small�.
Note that ht 2 Hf (�) means that ht = (ht�1;1). If p (ht�1) < p� (�) ; then p (ht�1;1) >

p� (�), otherwise the players would strictly prefer to exit at ht�1. If p (ht�1) � p� (�) ;

then the players stay with probability one and p (ht�1;1) > p� (�) (1� ��) by (2). Hence
there exists an � > 0 such that

p
�
ht
�
> p� (�)� ��: (37)

Together with the above claim, this establishes part i) of the Lemma.

ii) Let

ht (k) =
�
ht�1; at (k)

�
;

where at (k) is a vector of exit decisions where exactly k active players exit at history

ht�1: By Bayes�rule, we know that

1� q (ht (k))
q (ht (k))

=
1� q (ht (0))
q (ht (0))

�
�L (ht�1)

�H (ht�1)

�k
:

By Proposition 1, there is an � > 0 such that
�L(ht�1)
�H(ht�1) > 1 + �: Therefore, for all k � 1;

there is an �0 such that

q
�
ht (k)

�
< q

�
ht (0)

�
� �0:

By equation (11), there exists a � > 0 such that

p
�
ht (k)

�
< p

�
ht (0)

�
� �:

By part i), for all " > 0; there exists a � > 0 such that for all � < �;

p
�
ht (0)

�
< p� + ":

Since " > 0 can be chosen arbitrarily small, the claim follows.

Proof of Proposition 5. i) Take an arbitrary ht 2 Hf (�). If p (ht) > p� (�),

then no player wants to exit and we have PL (X (ht) > 0) = 0. Suppose therefore that

p (ht) � p� (�). Since ht 2 Hf (�), we know from (37) in the proof of the previous

Lemma that

p
�
ht
�
> p� (�)� �� (38)

for some �.

Since p (ht) � p� (�) and ht 2 Hf (�), the players must be indi¤erent between staying

and exiting. In the absence of observational learning, the loss from staying in the game
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for an additional period to an uninformed player is

c�� ��p
�
ht
� �
v + e�r�V + (�)

�
= �

�
c� �p

�
ht
� �
v + e�r�V + (�)

��
< �

�
c� � (p� (�)� ��)

�
v + e�r�V + (�)

��
= ����

�
v + e�r�V + (�)

�
:= b� (�)2 ; (39)

where the inequality uses (38) and the last line uses (14). Hence the loss is at most

quadratic in �. This loss must be compensated by the gain from observational learning,

which by the same logic as in part i) of the previous Lemma, is bounded from below by

PrfAt�i = 1ge�r�Vm
�
p
�
htn;1

��
; (40)

where p (ht;1) is the belief at t+1 with no exits at ht, and PrfAt = 1g is the probability
of no exits at ht as estimated by an arbitrary uninformed player. A lower bound for the

value at at p (ht;1) is given by:

Vm
�
p
�
ht;1

��
�
�
p
�
ht;1

�
� p� (�)

�
��
�
v + e�r�V + (�)

�
: (41)

Combining (39), (40), and (41), we have

p
�
ht;1

�
� p� (�) < b� (�)2

��(v + e�r�V + (�)) PrfAt�i = 1ge�r�
.

Noting that PrfAt�i = 1g is bounded away from 0 for the same reason as in the proof of

Lemma 3, we can conclude that there is a �0 > 0 such that

p
�
ht;1

�
< p� (�) + �0�. (42)

Combining (38) and (42), we can conclude that

p (ht;1)

1� p (ht;1) �
1� p (ht)
p (ht)

<
p� (�) + �0�

1� p� (�)� �0� � 1� p
� (�) + ��

p� (�)� �� < 1 + �00� (43)

for some �00 > 0.

Let �� (ht) denote the probability with which an arbitrary player exits at ht, conditional

on �. Bayes�rule gives:

p (ht;1)

1� p (ht;1) =
�
1� �H (ht)

�n(ht)�1�
1� �L (ht)

�n(ht)�1 p (ht)

1� p (ht) >
1� �H (ht)
1� �L (ht)

p (ht)

1� p (ht) : (44)

By Proposition 1, there is some � < 1 such that

�H
�
ht
�
< ��L

�
ht
�
,
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and therefore by (44),

p (ht;1)

1� p (ht;1) �
1� p (ht)
p (ht)

>
1� ��L (ht)
1� �L (ht)

. (45)

Combining (43) and (45) gives:

�L
�
htn
�
<

�00

2 (1� �)�.

Therefore,

PL
�
X
�
ht
�
> 0
�
< N�L

�
ht
�
<

N�00

2 (1� �)� := ��.

ii) From part ii) of Lemma 3, we know that there is a � > 0 and � > 0 such that

p (ht) < p� (�) � � for all ht 2 Hw (�), � < �. Indi¤erence requires that p (ht+1;1) >

p� (�). The result follows then from Bayes�rule.

Proof of Proposition 6. By Proposition 5, the probability of exit per period in the

�ow mode is at most proportional to �. Therefore, we know that in the limit � ! 0,

there is a well de�ned hazard rate for the exits. Moreover, by (1) the probability of

exit for an individual player is proportional to the probability with which that player is

uninformed, and therefore in the limit N ! 1, the hazard rate of exit conditional on
state must be proportional to �� (�):

f �k+1 (� j� 1; :::; � k )
1� F �k+1 (� j� 1; :::; � k )

= �� (�)K;

where K is a number that we will next determine using Lemma 3.

Consider the change in beliefs within short d� induced by a given exit intensity K.

Denote by q (�) the belief of an uninformed player on the aggregate state at real time

instant � . Within d� , this belief changes for two reasons. First, a good signal arrives

with probability p� (�)�d� , and second, an exit takes place with probability �� (�)Kd� .

Therefore, Bayes�rule gives:

q (� + d�) =

q (�)
�
1� pH (�)�d�

� �
1� �H (�)Kd�

�
q (�) (1� pH (�)�d�) (1� �H (�)Kd�) + (1� q (�)) q (�) (1� pL (�)�d�) (1� �L (�)Kd�) :

With d� small, this can be expressed as:

dq (�)

d�
= q (�) (1� q (�))

��
�L (�)� �H (�)

�
K +

�
pL (�)� pH (�)

�
�
�
: (46)

On the other hand, we know by Lemma 3 that when�! 0, the belief of an uninformed

player on aggregate state must be given by

q (�) =
p� � pL (�)

pH (�)� pL (�) : (47)

36



Di¤erentiating this with respect to � gives us:

dq (�)

d�
= �

pH (�)
�
1� pH (�)

� �
p� � pL (�)

�
+ pL (�)

�
1� pL (�)

� �
pH (�)� p�

�
(pH (�)� pL (�))2

; (48)

where we have used:
dp� (�)

d�
= ��p� (�)

�
1� p� (�)

�
.

Equating (46) and (48), using (47), and solving for K gives us:

K = �
p� (1� p�)

�
pH(�

�
� pL (�))

(p� � pL (�)) (pH (�)� p�) (�L (�)� �H (�)) :

Proof of Proposition 7. Consider an arbitrary period of an exit wave, where belief is

given by qs. The number of exits at this period is binomially distributed with parameters

�n�
� (�) and n, where n denotes the number of active players in the game and �n denotes

the exit probability of an individual uninformed player. In case there is no exit, the next

period belief is given by Bayes�rule by:

qs+1 (0) =

�
1� �n�H (�)

�n�1
qs

(1� �n�H (�))n�1 qs + (1� �n�L (�))n�1 (1� qs)
:

Lemma 3 requires that

lim
n!1

�
1� �n�H (�)

�n�1
qs

(1� �n�H (�))n�1 qs + (1� �n�L (�))n�1 (1� qs)
= q� (�) ;

which gives us:
q� (�)

1� q� (�) =
qs

1� qs
lim
n!1

�
1� �n�H (�)

�n�1
(1� �n�L (�))n�1

:

Taking logarithm on both sides and evaluating limits gives us:

lim
n!1

(n� 1)�n =
1

�L (�)� �H (�) log
�

q� (�)

1� q� (�)
1� qs
qs

�
:

Therefore,

lim
n!1

n�n�
� (�) =

��

�L (�)� �H (�) log
�

q� (�)

1� q� (�)
1� qs
qs

�
;

and the result is given by the Poisson approximation of Binomial distribution.

The second claim is an immediate consequence of the Bayes�rule with k exits.
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Appendix B: Proofs for Section 5

This appendix contains the proofs for Proposition 3, Proposition 4, and Theorem 2. Our

arguments rely on the convergence of the outside observer�s belief bq (ht), which we de�ne
as the posterior belief of the event f� = Hg at public history ht:

bq �ht� = q0PHfhtg
q0PHfhtg+ (1� q0)PLfhtg

:

Note that bq (ht) di¤ers slightly from bqi (ht) that was de�ned in Section 3.2: bq (ht) is
based on actions of all players (and represents therefore a true outside observer), whilebqi (ht) is based on actions of players other than i.
To link bq (ht) to the beliefs of actual players in the game, note that player i�s belief

qi (h
t) di¤ers from bq (ht) only to the extent that i�s private information a¤ects her belief.

Lemma 4 below guarantees that player i�s private history cannot overwhelm a su¢ ciently

strong public history:18

Lemma 4 Suppose that �H < 1: Then for all " > 0, there is some � > 0 such that the

following implications hold for all i:

bq �ht� � 1� � =) qi
�
ht
�
� 1� " and (49)bq �ht� � � =) qi

�
ht
�
� ". (50)

Proof. Recall from Section 3.2 the de�nition of bqi (ht) as the belief based on public
histories of all players other than i. In addition to this, bq (ht) also conditions on actions
of i. Consider the e¤ect of this additional information. The most favorable piece of

evidence in terms of state � = H that could ever be obtained form i�s actions is the one

that fully reveals i to be informed. The likelihood ratio of being informed across the states

is
�
1� �Ht

�
=
�
1� �Lt

�
, so Bayesian rule gives us an upper bound for bq (ht) as expressed

in terms of bqi (ht): bq (ht)
1� bq (ht) � 1� �Ht

1� �Lt
bqi (ht)

1� bqi (ht) . (51)

On the other hand, we can write the relationship between qi (ht) and bqi (ht) using (9):
qi (h

t)

1� qi (ht)
=
�Ht
�Lt

bq (ht)
1� bq (ht) . (52)

18In the pure common values case, where �H = 1, the ratio �Ht
�Lt

! 0 as t ! 1. In that case the
statement below holds for all t up to an arbitrary, �xed t. This modi�cation is not essential for any of

our results.
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Combining (51) and (52) gives us:

qi (h
t)

1� qi (ht)
� �Ht
�Lt

1� �Lt
1� �Ht

bq (ht)
1� bq (ht) : (53)

By (8), �Ht and 1� �Lt are bounded away from zero, and therefore the �rst equation

of Lemma 4 follows directly from (53). The second equation follows from the fact that

qi (h
t) � bq (ht), which in turn follows directly from (8) and (9).

Proof of Proposition 3

Our proof strategy is to follow the evolution of the outside observer�s belief along a

�ltration that samples the players�actions sequentially one player at a time. We show

that this belief must converge to truth as the number of exits increases. Furthermore

this implies the convergence of the actual players�beliefs in the original �ltration where

all actions within a period are sampled simultaneously. The key step in the argument is

Lemma 5 below, which implies that the belief process that we consider has a strong drift

towards truth when sampled at the points where any player exits. With this Lemma at

hand, the rest of the argument is a relatively straightforward application of Theorem A.1.

of Fudenberg & Levine (1992).

We use index s 2 N to track the moments of observation starting from period t� (�) in
the following way. At s = 1 the action of player 1 in period t� (�) is observed. At s = 2,

the action of player 2 in period t� (�) is observed, and so on. Once the decisions of all N

players in period t� (�) have been sampled, the process moves to the next time period.

At s = N + 1 player 1�s action in period t� (�) + 1 is observed, and so on. This means

that we map every s 2 N to the corresponding period t (s) and player i (s) as follows:

t (s) : =
j s
N

k
+ t� (�) ;

i (s) : = s�N �
j s
N

k
:

Let ��s denote the exit probability of player i (s) in period t (s) with equilibrium strat-

egy pro�le � (nothing in the proof requires this to be symmetric):

��s := �
�
i(s)

�
ht(s)

�
;

where we set ��i (h
t) = 0 if at(s)�1i(s) = 0 (that is, probability of exit is zero for a player that

has already exited). We use xs 2 f0; 1g as an indicator for player i (s) exiting in period
t (s):
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xs =

(
1 if at(s)�1i(s) = 1 and at(s)i(s) = 0

0 otherwise
:

We use notation hs to refer to the history of exits up to s:

hs =
�
a
t(1)
i(1); :::; a

t(s)
i(s)

�
,

and we denote by bqs the belief process of the outside observer, who observes the players
sequentially: bqs = Pr f� = H jhsg ; s 2 N:
By Bayes�rule, this belief evolves according to:

bq0 = q0

bqs =

8<:
bqs�1�Hsbqs�1�Hs +(1�bqs�1)�Ls if xs = 1bqs�1(1��Hs )bqs�1(1��Hs )+(1�bqs�1)(1��Ls ) if xs = 0

, s = 1; 2; ::: (54)

Note that for all s = t �N , t 2 N, the belief bqs coincides with the belief at period t of an
outside observer that observes all players simultaneously at each period:

bqs = bq �ht� , s = t �N , t 2 N.
For all other values of s, bqs is the belief of an outside observer who has observed only a
subset of players in the last period.

Let X1 denote the total number of players that exit the game:

X1 :=

1X
t=0

X
�
ht
�
.

We next de�ne an increasing sequence of natural numbers fs (k)gX1k=1 as follows:

s (0) = 0,

s (k) = min fs > s (k � 1) jxs = 1g ; k = 1; :::; X1.

Hence,
�bqs(k)	X1k=1 is a subset of fbqsg1s=1 sequence, that samples the beliefs immediately

after realized exits.

De�ne:

Lk :=

(
1�bqs(k)bqs(k) for k = 1; :::; X1.

0 for k = X1 + 1; :::
(55)
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In words, Lk is the likelihood ratio for the event f� = Lg sampled after realized exits. It
is clear that under the event f� = Hg; this process is a martingale. The next lemma is
the key to our argument, and it states that this process is an active supermartingale, as

de�ned in Fudenberg & Levine (1992).

Lemma 5 There exists an � > 0 such that

PH
�
jLk+1=Lk � 1j > �

��hs(k) � > � (56)

for all Lk > 0.

Proof. Note �rst that

fjLk+1=Lk � 1j � �g () (1� �)Lk � Lk+1 � (1 + �)Lk: (57)

By Proposition 1 and (12), there is some  > 0 such that

�Ls
�Hs

> 1 +  (58)

for all s 2 N. We choose some � > 0 small enough to ensure that

(1 + �)

(1� �)2
< 1 + . (59)

Write eLs := 1� bqsbqs , s 2 N.

Note that Lk = eLs(k) for k = 1; :::; X1. Using (54) and (58), we have:

eLs =
8<:

�Ls
�Hs
eLs�1 > (1 + ) eLs�1 if xs = 1
(1��Ls )
(1��Hs )

eLs�1 < eLs�1 if xs = 0
By de�nition of s (k), we have xs(k+1) = 1, and therefore, we have

eLs(k+1) > (1 + ) eLs(k+1)�1. (60)

Noting that Lk+1 = eLs(k+1) and Lk = eLs(k), and using (57) and (60), we have:
fjLk+1=Lk � 1j � �g =)

�eLs(k+1)�1 < 1 + �

1 + 
eLs(k)� : (61)

Let s be the �rst observation point after s (k) at which eLs is below 1+�
1+
eLs(k) in case

there are no exits:

s := min

8<:s0 > s (k) :
0@ s0Y
j=s(k)+1

1� �Lj
1� �Hj

1A eLs(k) < 1 + �

1 + 
eLs(k)

9=; :
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Then it follows from (61) and (57) that:

fjLk+1=Lk � 1j � �g

=)
�
xs = 08s = s (k) + 1; :::; s and eLs(k+1) > 1� �

1 + �
(1 + ) eLs� : (62)

But, since eLs is a supermartingale under � = H, we have
E
�eLs(k+1) ��hs; � = H� < eLs;

which implies the following (using the fact that eLs(k+1) is bounded from below by 0):

PH

�eLs(k+1) < 1� �
1 + �

(1 + ) eLs ��hs� � 1� (1 + �)

(1� �) (1 + ) > �,

where the last inequality follows from (59). Combining this with (62), we note that

PH
�
jLk+1=Lk � 1j > �

��hs(k) � > �:
Lemma 5 says that Lk, k 2 N is an active supermartingale with activity �, as de�ned in

Fudenberg & Levine (1992). We need this property to apply Theorem A.1. of Fudenberg

& Levine (1992), which we restate here for convenience:

Theorem 3 (Fudenberg and Levine) Let l0 > 0, " > 0, and � 2 (0; 1) be given. For
each L, 0 < L < l0, there is some K <1 such that

Pr

�
sup
k>K

Lk � L
�
� 1� "

for every active supermartingale L with L0 = l0 and activity �.

With these preliminaries at hand, we are ready to �nish the proof of Proposition 3:

Proof of Proposition 3. Fix an " > 0. Consider the stochastic process Lk, k 2 N,
de�ned in (55). Note from (55) that:

Lk � L()
��bqs(k) � 1

1 + L

�
or fk > X1g

�
:

We set L small enough to guarantee:

Lk � L =)
��bqs(k) > 1� "	 or fk > X1g

�
: (63)

By Lemma 5, we know that Lk is an active supermartingale with activity �. By Theorem

3, we can therefore set K high enough to guarantee that

PH

�
h1 : sup

k>K
Lk � L

�
� 1� ": (64)
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Combining this with (63), we have

PHfh1 : n
�
ht
�
� N �K and bq �ht� < 1� " for some ht 2 h1g < ". (65)

We have now proved the Proposition as regards equation (15). Knowing this, the part

concerning equation (16) follows from Bayes�rule as follows. De�ne the following event:

A (K; ") :=
�
h1 : n

�
ht
�
< N �K and " < bq �ht� < 1� " for some ht 2 h1	 .

Then, by the de�nition of A (K; "), the posterior of f� = Hg conditional on reaching
A (K; ") must be between " and 1� ":

" <
q0PH (A (K; "))

q0PH (A (K; ")) + (1� q)PL (A (K; "))
< 1� ": (66)

Since (65) holds for any " given large enough K, we know that PH (A (K; ")) can be made

arbitrarily small by increasing K. Therefore, for (66) to hold, also PL (A (K; ")) must go

to zero as K is increased, which implies that for any " > 0, we can �nd K large enough

to ensure that

PLfh1 : n
�
ht
�
� N �K and bq �ht� < " for some ht 2 h1g < ":

Proof of Proposition 4

We work through a number of lemmas. First, we formalize the intuitive fact that whenever

the probability that a large number of players exit within the current period is non-

negligible, the realized actions generate a precise signal about the state of the world. In

particular, if the true state is � = H, then the beliefs of all players must be very close to

one after that period:

Lemma 6 For all " > 0 and q > 0, there is some K 2 N such that

PL
�
X
�
ht
�
> K

�
>
1

2
=) PH

�
q
�
ht+1

�
> 1� "

�
> 1� ";

whenever q (ht) > q and t � t� (�).

Proof. Denote

�� := E
�
X
�
ht
�
j�
�
= n

�
ht
�
��
�
ht
�
:

Since X (ht) is a random variable that can only take positive values, the following must

hold:

PL
�
X
�
ht
�
> K

�
>
1

2
=) �L >

1

2
K. (67)
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By Proposition 1, we know that there is some  > 0 such that

�L (ht)

�H (ht)
> 1 + 

for all t � t� (�). Consider the random variable

Z
�
ht
�
:=
X (ht)

�L
:

We have:

E
�
Z
�
ht
�
j� = H

�
=
n (ht) �H (ht)

n (ht) �L (ht)
<

1

1 + 
; (68)

E
�
Z
�
ht
�
j� = L

�
=
n (ht) �L (ht)

n (ht) �L (ht)
= 1; (69)

var
�
Z
�
ht
�
j� = H

�
=
n (ht) �H (ht)

�
1� �H (ht)

��
n (ht) �L (ht)

�2 <
1

n (ht) �L (ht)
=
1

�L
; (70)

var
�
Z
�
ht
�
j� = L

�
=
n (ht) �L (ht)

�
1� �L (ht)

��
n (ht) �L (ht)

�2 <
1

n (ht) �L (ht)
=
1

�L
: (71)

Consider the event

A =

�
Z
�
ht
�
�
1 + 1

2


1 + 

�
:

The formulas (68) - (71) imply that

lim
�L!1

PH (A) = 1 and lim
�L!1

PL (A) = 0.

By (67), assuming PL (X (ht) > K) > 1
2
and increasing K will increase �L without

bound. Hence, the result follows from Bayes� rule by considering the likelihood ratio

across states of event A as K is increased.

The next step in the proof, Lemma 7, bounds the probability with which a large

number of players may exit within an arbitrary single period. By Lemma 6, a random

experiment that induces a large number of players to exit with a non-negligible probability

is very informative on the aggregate state. Any uninformed player would like to stay in

the game until �H if she knew the state to be H. Suppose next that the probability of

state H is bounded away from zero. As the period length is reduced towards zero, the

players would rather wait and observe the result of an informative experiment than exit

immediately. Lemma 7 formalizes this argument.

Lemma 7 For all � < �H and q > 0, there exist a K 2 N and a � 2 R+ such that

q
�
ht
�
> q =) PL

�
X
�
ht
�
> K

�
<
1

2

whenever � < � and t � t (� ;�).
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Proof. Fix a � < �H and a q > 0. Lemma 6 implies the existence of a function

� : N! R+ with
lim
K!1

� (K) = 0;

such that for all ht, t � t (� ;�), and q (ht) > q:

PL
�
X
�
ht
�
> K

�
>
1

2
=) PH

�
q
�
ht+1

�
> 1� � (K)

�
> 1� � (K) : (72)

Recall the de�nition of pHt in equation (3) , i.e. the belief of a player on her own

type conditional on state H: If � < �H , we can choose an � > 0 and a �0 > 0 such that

pHt(�;�)+1 > p
� (�) + � for all � < �0. This follows directly from the continuity of p� (�)

and the de�nition of �H : This means that we can choose a K high enough so that

q
�
ht+1

�
> 1� � (K) =) p

�
ht+1

�
> p� (�) + �. (73)

We choose aK such that (72) and (73) hold for all ht, t � t (� ;�), for which q (ht) > q.
Take any such history, and assume that PL (X (ht) > K) > 1

2
. Consider next the expected

payo¤ that an uninformed player would get by staying in the game with probability one

at that history. We want to �nd a lower bound for that payo¤. Since q (ht) > q, the

posterior for � = H is bounded from below by q. By (72) and (73), 1� � (K) is a lower
bound for the probability that p (ht+1) > p� (�) + �, conditional on � = H. Finally,

Vm (p
� (�) + �) > 0 is the value of the isolated player at belief p� (�) + �. Therefore, the

continuation payo¤ for a player that stays is bounded from below by:

V
�
ht
�
� �c�+ e�r� � q � (1� � (K)) � Vm (p� (�) + �) : (74)

We see from (74) that we guarantee V (ht) > 0 by setting � small enough and K large

enough. Since then it is strictly optimal for any individual player to stay in the game,

this contradicts the presumption that PL (X (ht) > K) > 1
2
. We thus conclude that for

high enough K 2 N and small enough � 2 R+ the implication

q
�
ht
�
> q =) PL

�
X
�
ht
�
> K

�
<
1

2

holds whenever � < � and t � t (� ;�).
Lemma 8 shows that if a large number or players exit within a period, then the belief

of an uninformed player falls to a very low level.

Lemma 8 For all � < �H and q > 0, there exist a K 2 N and a � 2 R+ such that the
following implication holds on the equilibrium path of any game � (�; N) with � < �:�

t � t (� ;�) ^ q
�
ht
�
> q ^X

�
ht
�
> K

	
=)

�
q
�
ht+1

�
< q
	
:
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Proof. Fix a � < �H and a q > 0. By Lemma 7, �x K 0 2 N and �0 such that

PL
�
X
�
ht
�
> K 0� < 1

2
(75)

whenever � < �0, q (ht) > q, t � t (� ;�). Since � < �H , the same logic that led to (73)
allows us to �x �00 > 0 and q� < 1 such that whenever t � t (� ;�) and � < �00, the

following implication holds

q
�
ht
�
> q� =) p

�
ht
�
> p� (�) : (76)

De�ne � = min (�0;�00). For the rest of the proof we assume that � < �, and we take

an arbitrary history ht such that t � t (� ;�), q (ht) > q, and �H (ht) > 0. Our goal is to
�nd a K such that X (ht) > K would imply q (ht+1) < q.

Consider the expression for the probability of k exits:

P�
�
X
�
ht
�
= k
�
=

 
n

k

!�
��
�
ht
��k �

1� ��
�
ht
��n(ht)�k

: (77)

Since �H (ht) < �L (ht), it follows by straightforward algebra from (77) that

PH (X (h
t) = k)

PL (X (ht) = k)
>
PH (X (h

t) = k0)

PL (X (ht) = k0)
for k < k0. (78)

It then also follows that
PH (X (h

t) = K 0)

PL (X (ht) = K 0)
< 2. (79)

To see why, assume the contrary. Then, we have

PH
�
X
�
ht
�
� K 0� = K0X

k=0

PH
�
X
�
ht
�
= k
�
> 2 �

K0X
k=0

PL
�
X
�
ht
�
= k
�
> 2 � 1

2
= 1;

where the �rst inequality uses (78) and the presumption that (79) does not hold, whereas

the second inequality follows from (75). But a probability of an event can not be greater

than one, so (79) must hold.

Consider next the following expression:

PH (X (h
t) = K 0 +K 00)

PL (X (ht) = K 0 +K 00)
=

 
n

K 0 +K 00

!�
�H (ht)

�K0+K00 �
1� �H (ht)

�n(ht)�K0�K00

 
n

K 0 +K 00

!�
�L (ht)

�K0+K00 �
1� �L (ht)

�n(ht)�K0�K00

=

�
�H (ht)

�L (ht)

�K0 �
1� �H (ht)
1� �L (ht)

�n(ht)�K0

�
�
�H (ht)

�L (ht)

�K00 �
1� �L (ht)
1� �H (ht)

�K00

=
PH (X (h

t) = K 0)

PL (X (ht) = K 0)
�
�
�H (ht)

�L (ht)

�K00

�
�
1� �L (ht)
1� �H (ht)

�K00
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By (79),
PH (X (h

t) = K 0)

PL (X (ht) = K 0)
< 2:

Also, since �L (ht) > �H (ht), we have�
1� �L (ht)
1� �H (ht)

�K00

< 1:

By Proposition 1, we have

lim
K00!1

�
�H (ht)

�L (ht)

�K00

= 0;

and therefore, we can set K 00 high enough to ensure

PH (X (h
t) = K 0 +K 00)

PL (X (ht) = K 0 +K 00)
<
1� q�
q�

q: (80)

Since �H (ht) > 0, we know from (76) that q (ht) < q� (otherwise no player would want

to exit). Therefore, Bayes�rule and simple algebra leads to:

q
�
ht+1

��X �ht� = K 0 +K 00 �
=

q (ht)PH (X (h
t) = K 0 +K 00)

q (ht)PH (X (ht) = K 0 +K 00) + (1� q (ht))PL (X (ht) = K 0 +K 00)

<
q (ht)

1� q (ht)
PH (X (h

t) = K 0 +K 00)

PL (X (ht) = K 0 +K 00)

� q�

1� q�
PH (X (h

t) = K 0 +K 00)

PL (X (ht) = K 0 +K 00)
< q;

where the last inequality follows from (80). By (78), this means that

q
�
ht+1

��X �ht� = k� < q
for any k > K, where we have set K := K 0 +K 00.

Finally, we state a lemma that limits the probability with which an outside observer�s

belief bq (ht) could ever get small values if � = H. This result is simply a formalization of
the notion that a Bayesian observer is not likely to be convinced of the untrue state.

Lemma 9 For all " > 0, there is a q > 0 such that

PH
�
h1 : bq �ht� � q for some ht 2 h1	 < ".

Proof. Consider the event

A =
�
h1 : bq �ht� � q for some ht 2 h1	 :
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The posterior probability of � = H conditional on reaching A is

q0PH (A)

q0PH (A) + (1� q0)PL (A)
� q

by the de�nition of the event A. Since PL (A) � 1, we have:

PH (A) �
(1� q0) q
q0 (1� q)

;

which can be made arbitrarily small by decreasing q.

With Lemmas 8 and 9 at hand, it is now easy to �nish the proof of Proposition 4:

Proof of Proposition 4. Fix a � < �H and an " > 0. Using Lemma 9, and noting that

the divergence of the uninformed players�belief from outside observer�s belief is bounded

by Lemma 4, we can choose a q > 0 such that

PH
�
h1 : q

�
ht
�
� q for some ht 2 h1

	
< ": (81)

Next, by Lemma 8, we can choose a K 2 N and a � 2 R+ such that�
t � t (� ;�) , q

�
ht
�
> q , X

�
ht
�
> K

	
=)

�
q
�
ht+1

�
< q
	
;

whenever � < �. Thus, if there is some ht, t � t (� ;�), for which X (ht) > K, we must
have either q (ht) � q or q (ht+1) � q. But by (81) this cannot happen with probability
greater than ", and as a result, we have

PH
�
h1 : X

�
ht
�
> K for some t � t (� ;�)

	
< "

if � < �.

Proof of Theorem 2

Proof of Theorem 2. Fix a � < �H and an " > 0. Then, by Lemma 4 and equation

(11), we can choose a q0 < 1 and a �0 > 0 such that whenever � < �0 and t � t (� ;�),
the following holds: bq �ht� � q0 =) p

�
ht
�
> p� (�) . (82)

Next, by Proposition 3, we can choose a K 0 such that

PHfh1 : n
�
ht
�
� N �K 0 and bq �ht� < q0 for some ht 2 h1g < "

2
. (83)

Assume that �t(�;�)t=0 X (ht) � K 0 (if not, then there is nothing to prove), and denote by

tK0 the �rst period with fewer than N �K 0 active players left in the game:

tK0 := min
�
t : n

�
ht
�
� N �K 0	 . (84)

48



Since �t(�;�)t=0 X (ht) � K 0, we must have

tK0 � t (� ;�) + 1. (85)

Equations (82) and (83) mean that the probability that any player exits in [tK0 ; :::; t (� ;�)]

is less than "
2
:

PH

8<:h1 :
t(�;�)X
t=tK0

X
�
ht
�
> 0

9=; <
"

2
. (86)

By the de�nition of tK0 in (84) we know that

tK0�2X
t=0

X
�
ht
�
< K 0. (87)

Finally, by (85) and Proposition 4, we can �nd a �00 2 R+ and a K 00 such that

PH
�
h1 : X

�
htK0�1

�
> K 00	 < "

2
: (88)

Noting that (86) holds when � < �0 and (88) holds when � < �00, we may set K :=

K 0 +K 00 and � := min (�0;�00), and combine (86) - (88) to get:

PH

8<:h1 :
t(�;�)X
t=0

X
�
ht
�
> K

9=; < ",

whenever � < �.

References

Banerjee, A.V. 1992. �A Simple Model of Herd Behavior.�Quarterly Journal of Eco-

nomics 107:797�817.

Bikhchandani, S., D. Hirshleifer & I. Welch. 1992. �A Theory of Fads, Fashion, Cus-

tom, and Cultural Change as Informational Cascades.�Journal of Political Economy

100:992�1026.

Bolton, P. & C. Harris. 1999. �Strategic Experimentation.�Econometrica 67:349�374.

Bulow, J. & P. Klemperer. 1994. �Rational Frenzies and Crashes.�Journal of Political

Economy 102:1�23.

Caplin, A. & J. Leahy. 1994. �Business as Usual, Market Crashes, and Wisdom After the

Fact.�American Economic Review 84:548�565.

49



Chamley, C. 2004. �Delays and Equilibria with Large and Small Information in Social

Learning.�European Economic Review 48:477�501.

Chamley, C. & D. Gale. 1994. �Information Revelation and Strategic Delay in a Model

of Investment.�Econometrica 62:1065�1086.

Décamps, J.-P. & T. Mariotti. 2004. �Investment Timing and Learning Externalities.�

Journal of Economic Theory 118:80�102.

Fudenberg, D. & D. Levine. 1992. �Maintaining a Reputation When Strategies are Im-

perfectly Observed.�Review of Economic Studies 59:561�579.

Keller, G., S. Rady & M. Cripps. 2005. �Strategic Experimentation with Exponential

Bandits.�Econometrica 73:39�68.

Mariotti, M. 1992. �Unused Innovations.�Economics Letters 38:367�371.

Rosenberg, D., E. Solan & N. Vieille. 2007. �Social Learning in One Arm Bandit Prob-

lems.�Econometrica 75:1591�1611.

Rothschild, M. & J. Stiglitz. 1970. �Increasing Risk I: De�nition.�Journal of Economic

Theory 2:225�243.

Smith, L. & P. Sorensen. 2000. �Pathological Outcomes of Observational Learning.�

Econometrica 68:371�398.

Toxvaerd, F. 2008. �Strategic Merger Waves: A Theory of Musical Chairs.�Journal of

Economic Theory 140:1�26.

50


