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Abstract
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the future. When the experiences of early adopters work as signals about
the quality, a combination of informational and payoff externalities arises.
We show that this combination has a surprising effect when the payoff ex-
ternality is positive: a higher potential for social learning, e.g. due to high
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1 Introduction

Adopting a new innovation is often more valuable if others start using it too.
Network externalities are significant in many industries, including computer soft-
ware, social media, commercial platforms, and electric vehicles. It is also widely
accepted that the green transition requires coordinated actions as novel green
technologies cannot operate without large investments in the infrastructure. An-
other characteristic feature of new innovations is that there is common uncertainty
about their quality. Hence, by trying out a new product, early adopters cause an
informational externality on those still considering whether to start using it. How
does the concurrent existence of informational and payoff externalities affect the
adoption patterns of new innovations and experimentation more broadly? How
do these two externalities interact?

We approach these questions from the perspective of learning potential. Learn-
ing potential is high when adopters generate a lot of public information, i.e. when
past experience predicts future performance well and when communication fric-
tions are not too severe. To fix ideas, one can think of learning potential as
the expected media coverage: if a new innovation attracts a lot of media atten-
tion, potential adopters are likely to hear about the drawbacks and successes of
early adopters, and hence the potential of social learning is high. Our main re-
sult shows that whether learning increases or decreases as a consequence of an
improved learning potential is determined by the payoff externality: the equilib-
rium learning is slower under positive payoff externalities, faster under negative
payoff externalities, and is independent of the learning potential under no payoff
externalities.

To analyze the effect of payoff externalities on experimentation, we build on
the classic Brownian bandit model in Bolton and Harris (1999) where players are
initially uncertain whether the state-of-the-world is high or low and receive nor-
mally distributed signals about it based on the aggregate level of experimentation.
However, we make two important changes: 1) players choose when to irreversibly
stop (e.g. to adopt an innovation), and 2) the payoff after stopping depends on the
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fraction of how many other players have stopped. Payoff externalities are positive
(negative) when the payoff is increasing (decreasing) in the fraction of adopters.
As actions are irreversible, also information generation is persistent. Furthermore,
we focus on experimentation in large games where each player is infinitesimally
small.

An individual player solves an optimal stopping problem with two state vari-
ables: the stock of stopped agents and the belief that the state is high. We show
that both the equilibrium with the fastest and the equilibrium with the slow-
est adoption can be characterized by a cutoff belief that depends on the current
stock of stopped agents. We call such equilibria the maximal equilibrium and the
minimal equilibrium, respectively.

The first step to understanding why higher learning potential may decrease
equilibrium learning is to consider an individual player’s problem when keeping
the behavior of everyone else constant. Clearly, an increase in learning potential
decreases the individual’s willingness to adopt due to the increased value of wait-
ing. This endogenous response drives a wedge between equilibrium learning and
learning potential, irrespective of payoff externalities. However, it is surprising
that this effect is so strong that equilibrium learning may actually slow down,
despite the direct effect of a higher learning potential that speeds up learning.

The equilibrium rate of learning adjusts to the level that makes players indif-
ferent between stopping and waiting. Without payoff externalities, the rate must
hence be independent of the learning potential. The innovation adoption slows
down under a better learning technology just so much that the rate of learning
stays at the same level.

We show that under positive payoff externalities, a higher learning potential
leads to strictly slower learning and lower welfare in equilibrium. To get the
intuition, start again with the innovation pattern that keeps the rate of learning
constant when the learning potential improves. However, now slower innovation
adoption implies lower stopping payoffs as the early adopters get less of the positive
payoff externality. This effect makes players even less eager to adopt, and hence
learning slows down even further. As both innovation adoption and learning slow
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down, the expected welfare decreases to all players. The comparison holds between
the sets of equilibria and is strict under a large class of parameter values.

The result has important implications for detecting bottlenecks in innovation
adoption. The adoption is slow exactly when the social value of fast adoption is
the highest, i.e. when early adopters generate a lot of information and when there
is a large positive payoff externality among the adopters. This suggests that the
need to subsidize the adoption of new innovations with network effects is especially
pronounced when there is also social learning. The payoff externality strengthens
the informational free-riding caused by the informational externality.

If payoff externalities are negative instead, e.g. if the innovation adopters are
firms operating in the same market, better learning technology always leads to
faster learning and higher welfare in equilibrium. In that case, the equilibrium
innovation adoption does not need to slow down as much as under positive ex-
ternalities because the stopping payoffs increase as the innovation adoption slows
down, creating a counteracting force for informational free-riding.

The key step in showing that the above intuition holds in our dynamic envi-
ronment with forward-looking players is to consider a simplified problem where
players ignore future changes in the stock. We prove an equivalence result be-
tween the simplified problem and the optimal stopping in an equilibrium. This
observation enables solving the maximal and minimal equilibria in closed form.
We show the equivalence by using the iterative elimination of strictly dominated
strategies. The elimination process rules out innovation adoption that is optimal
only if other players behave suboptimally.

Our equilibrium characterization allows for any form of payoff externality, in-
cluding externalities that are non-monotonic. For example, there can be a satura-
tion point so that the externality is positive until the stock reaches a certain level
and is negative thereafter.

4



Related literature

The paper is related to the literature on social learning and experimentation,
see Bolton and Harris (1999), Keller, Rady and Cripps (2005), and Keller and
Rady (2015). The main differences are that actions are irreversible, and hence
information generation is persistent, and that the players’ payoffs depend on the
stopping decisions of other players. The former feature is also present in our earlier
paper Laiho, Murto and Salmi (2023) but without payoff externalities.

Frick and Ishii (2020) studies experimentation by small players under Poisson
learning. In both Frick and Ishii (2020) and Laiho, Murto and Salmi (2023), infor-
mational free-riding mitigates the gains of better learning technology. However,
because there are no payoff externalities, the larger potential of learning does not
lead to slower learning or lower welfare. Frick and Ishii (2020) provide an exten-
sion where a better learning technology may lead to lower aggregate welfare if the
opportunities to adopt the innovation arrive infrequently and there is heterogene-
ity in the players’ patience. In the present paper, players are homogeneous and
there are no frictions in innovation adoption.

There is a large literature on network effects in innovation adoption, for early
papers see Katz and Shapiro (1986), Jovanovic and Lach (1989), and Farrell and
Saloner (1986). We contribute to this literature by analyzing the effects of payoff
externalities together with endogenous learning.

The combination of informational and payoff externalities has been studied
in the context of war of attrition games: see Décamps and Mariotti (2004) and
Kwon, Xu, Agrawal and Muthulingam (2016) for duopoly markets under private
costs of investment. Margaria (2020) studies a related setup without private costs
but with private information about the profitability of the investment. Different
strategic concerns arise in duopoly models of Bergemann and Välimäki (1997) and
(2000) where learning about the product quality affects how close substitutes the
products are and hence how fierce the competition between the firms is. See also
Strulovici (2010), Halac, Kartik and Liu (2017), and Thomas (2021) for other (less
related) environments with joint informational and payoff externalities.
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The way we characterize the equilibria is close to Leahy (1993) and Baldurs-
son and Karatzas (1996) that use an equivalence result to solve a competitive
industry equilibrium under fluctuating demand. We also use a similar approach
in our earlier experimentation paper Laiho, Murto and Salmi (2023) without pay-
off externalities. The proof techniques in the above papers do not extend to the
environment of the present paper. Therefore, the present paper uses a different
approach to rule out equilibria where the equivalence between the simplified prob-
lem and equilibrium optimization would fail by applying the iterative elimination
of strictly dominated strategies.

The distinguishing feature between the present paper and any of the papers
listed above is that we focus on the combination of informational and payoff ex-
ternalities in a large game between symmetrically informed homogeneous players.
Importantly, the players are truly forward-looking and their payoffs change over
time as a consequence of other players’ actions.

2 Motivating example

Here, we present our main result in the simplest possible setup: a two-period
model with linear (affine) payoffs.

Consider a game between a unit mass of identical players in two periods,
t ∈ {1, 2}. In each period, the players who have not stopped before, choose simul-
taneously whether to stop in the current period. All players who have stopped
receive a per-period payoff πω(qt) where qt ∈ [0, 1] is the fraction of players who
have stopped in period t or earlier and ω ∈ {H, L} is an unknown state-of-the
world. We assume that πH(q) = a+bq and πL = −c with a, b, c > 0. A player who
has not stopped gets a payoff 0. These assumptions imply that there is a positive
payoff externality among players who have stopped. After the first period, a fully
revealing signal arrives with probability λq1 where λ ∈ [0, 1] is a parameter that
captures the learning potential in the game. The players maximize the sum of
the expected payoffs over the two periods. Suppose that the initial belief that the
state is high, x1, is high enough that it would be optimal to stop in the first period
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regardless of what other players do if there was no learning: x1a > (1 − x1)c.

We can solve the equilibrium backward. In the second period, all remaining
players stop both absent news and if a signal revealing that the state is high
(good news) arrives. Suppose that fraction q1 of all players stops in the first
period. Then, it is optimal for an individual player to stop in the first period if

(x1(a + bq1) − (1 − x1)c) + (1 − λq1)(x1(a + b) − (1 − x1)c) + λq1x1(a + b)

− λq1(1 − x1)c ≥ (1 − λq1)(x1(a + b) − (1 − x1)c) + λq1x1(a + b),

where the first term is the expected payoff in the first period and the remaining
terms on the left-hand side are the second-period payoffs absent news, after good
news, and after bad news, correspondingly. The right-hand side is the player’s
expected payoff if he does not stop in the first period and then stops in the second
period if there is no bad news. The optimality condition simplifies to

x1(a + bq1) − (1 − x1)c ≥ λq1(1 − x1)c. (1)

Notice that large q1 makes stopping in the first period more appealing if
x1b > (1 − x1)λc. Then there is an equilibrium where everyone stops in the
first period. This is true when learning potential is low, i.e. when λ is small. If
learning potential is high instead, there exists a unique q1 such that all players
are indifferent between stopping and waiting in the first period when the stock q1

of other players is expected to stop. Then, the unique equilibrium is such that
exactly mass q1 stops in the first period. We get the stock q1 from (1):

q1 = x1a − (1 − x1)c
λ(1 − x1)c − x1b

. (2)

Let us now look at what happens to the probability of learning the true state,
λq1 = x1a−(1−x1)c

(1−x1)c−λ−1x1b
, when learning potential improves. In principle, there are two

forces going to opposite directions: the direct effect of high λ is positive, but there
is also a negative effect through the decrease in q1. We see from (2) that the latter
effect dominates whenever q1 < 1 that is if x1b < (1 − x1)λc. This means that
a lower learning potential paradoxically leads to more learning in the equilibrium
up to the point when the learning potential is so low that everyone wants to stop
in the first period anyway.
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Notice that the argument above hinges on positive payoff externalities, b > 0.
If there are no payoff externalilities (b = 0), the probability of receiving news is
independent of the learning potential λ. Under negative externalities (b < 0), high
learning potential increases learning in equilibrium. We see in Section 5 that these
findings generalize to our full model.

3 Model

3.1 Actions and payoffs

Time is continuous and goes to infinity, t ∈ [0, ∞). A unit mass of identical
players chooses when to stop. When a player stops, he starts receiving a flow
payoff πω(qt) where qt ∈ [0, 1] is the fraction of players who have stopped by time
t and ω ∈ {H, L} is an unknown state-of-the-world that can be either high or low.
Players’ payoffs are normalized to 0 before stopping, and they discount with rate
r. Throughout, we assume that πH(q) > 0 and that πL(q) < 0 for all q, which
implies that all players want to stop if the state is known to be high and no one
wants to stop if the state is known to be low. We further assume that πω are
absolutely continuous in q.1

3.2 Learning

Players observe the following public signal process:

dYt = λ(qt)µωdt + dWt, (3)

where µH = 0.5, µL = −0.5, and dWt is a standard Wiener process. The signal-
to-noise ratio of the signal process (3) is λ(qt), and hence the function λ captures
learning potential (or learning technology) in the game.

1Notice that a lump-sum cost of stopping can also be incorporated into the model: in addition
to the flow payoffs above, let there be lump-sum cost C that each player must pay at the time
of stopping. Then, we can find flow payoffs π̂H(q) = πH(q) − rC and π̂L(q) = πL(q) − rC that
give exactly the same discounted stopping payoff as the combination of the flow payoff and the
lump-sum cost.
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Let the initial belief that the state-of-the-world is high be x0 ∈ (0, 1). The
players update their belief based on (3). We denote the realized public belief at
time t by xt. Conditional on the information available at time t, the change in the
public belief, dXt, is distributed normally with mean 0 and variance (λ(qt)xt(1 −

xt))2dt.

Throughout the paper, we assume that the signal-to-noise ratio is differentiable
and increasing in the stock and that there is no exogenous source of information:

Assumption 1. λ′(q) > 0 and λ(0) = 0.

Our main interest is to analyze how higher learning potential affects equi-
librium behavior under payoff externalities. We use the following definition to
(partially) rank learning technologies:

Definition 1. λ has (strictly) higher learning potential than λ̂ if λ(q) > λ̂(q) for

all q > 0.

We provide a micro foundation for Process (3) as aggregate realized payoffs
of the stopped agents in Appendix A.1. Under that interpretation, high learning
potential means little noise in realized payoffs, conditional on the true state ω,
together with good observability of other players’ payoffs.

3.3 Equilibrium

Suppose that the stock of stopped agents follows an increasing process Qt adapted
to the natural filtration generated by Yt in Equation (3). State (q, x) is then a
sufficient history for players to choose the optimal stopping time. When fixing the
stock process Qt, an individual’s problem is:

v(qt, xt) = sup
τ

EQt

[∫ ∞

τ
e−r(s−t)

(
xsπH(qs) + (1 − xs)πL(qs)

)
ds|(qt, xt)

]
. (4)

We define the equilibrium as a stock process that is consistent with individual
optimization:

Definition 2. An increasing process Qt adapted to the natural filtration generated

by Yt is an equilibrium if
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(i) v(qt, xt) = EQt

[∫∞
t e−r(s−t)

(
xsπH(qs) + (1 − xs)πL(qs)

)
ds|(qt, xt)

]
whenever

dQt > 0,

(ii) v(qt, xt) ≥ EQt

[∫∞
t e−r(s−t)

(
xsπH(qs) + (1 − xs)πL(qs)

)
ds|(qt, xt)

]
whenever

dQt = 0.

4 Benchmark without payoff externalities

In this section, we assume that the stopping payoffs are independent of the stock:
πω(q) ≡ πω. Instead of solving for the equilibrium, we focus on the implications of
learning potential. In Section 4.1, we show that the speed of equilibrium learning
is essentially independent of the learning potential. In Section 4.2, we discuss
informally how payoff externalities change this result and the additional steps
needed in order to incorporate payoff externalities into the formal analysis.

4.1 Equilibrium learning is independent of learning poten-

tial

Here, we show that the equilibrium rate of learning is independent of the learning
technology when there are no payoff externalities. More precisely, we argue that if
Qt is an equilibrium under learning potential λ, then stock process Q̂t that yields
exactly the same flow of information under learning potential λ̂ is an equilibrium
under that learning potential. Qualitatively, this observation is shared with some
earlier papers using different models for experimentation, e.g. Frick and Ishii
(2020). For us, the main purpose of analyzing the case without payoff externalities
first is that it helps to build intuition for our main result with payoff externalities.

We seek to compare the equilibria under two different learning technologies, λ

and λ̂ such that λ has a strictly higher learning potential. It is useful to define
information equivalent stock z(q; λ, λ̂), which is the stock that produces the same
amount of information under λ as stock q produces under λ̂. Formally, z(q; λ, λ̂) :=
λ̂−1(λ(q)).
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Suppose that the stock process Qt is an equilibrium under the higher learn-
ing potential λ. We suggest that then process Q̂t, defined as q̂t = z(qt; λ, λ̂) if
z(qt; λ, λ̂) < 1 and q̂t = 1 otherwise, is an equilibrium under lower learning poten-
tial λ̂. To see this, notice that the two processes imply an identical belief process
Xt for all t such that q̂t < 1. As players’ optimal actions depend on other players’
behavior only through the effect on the belief dynamics, also the optimal stopping
rules coincide when they face the same flow of information. Appendix A.2 provides
a formal argument along these lines so that we obtain:

Proposition 1. Let Qt be an equilibrium under learning potential λ. Then,

there exists an equilibrium Q̂t under a lower learning potential λ̂ such that q̂t =
min{z(qt; λ, λ̂), 1} for all t.

Proposition 1 implies that for all realizations of the Wiener process Wt in (3),
the belief is exactly the same in equilibrium Qt under λ as it is in equilibrium Q̂t

under λ̂ as long as some players are still waiting in equilibrium under λ̂. As qt is
still below 1 when (and if) q̂t reaches 1, the two belief processes diverge after that
point. However, that happens only when there are no decisions left to any player
under λ̂, and therefore we say that learning is essentially independent of learning
potential. The expected welfare of all players is the same.

4.2 Payoff externalities: discussion

In the previous subsection, we used a guess-and-verify approach: we guessed that
the information equivalent stock process Q̂t is an equilibrium under the lower learn-
ing potential λ̂ and verified individual optimality, without deriving the equilibrium
properties. We cannot use the same method with payoff externalities because we
lack an immediate guess for an equilibrium. Why does not the same guess work
with payoff externalities? The easiest way to see this is to consider the case where
one tries to construct an equilibrium under a higher learning potential based on
an equilibrium under a lower potential when payoff externalities are positive.

Assume strictly positive payoff externalities such that π′
ω(q) > 0 for both ω ∈

{H, L}. Suppose that stock process Qt is an equilibrium under learning potential
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λ, and define stock process Q̃t such that the stock is information equivalent under
a higher potential λ̃: q̃t := z(qt; λ,

ˆ̂
λ) for all t such that qt < 1. Let (xt, qt) be

such that some players stop, i.e. dQt > 0. This implies that in order for Q̃t be
an equilibrium, some players must be willing to stop at (xt, q̃t). Recall that the
players face the same process for information in Q̃t under λ̃ as they do in Qt under
λ. However, the expected stopping payoffs are not the same because q̃t < qt and
hence also xtπH(q̃t)+(1−xt)πL(q̃t) < xtπH(qt)+(1−xt)πL(qt). Because the stock
evolves slower in Q̃t than in Qt, the positive payoff externality is lower. Therefore,
Q̃t cannot be an equilibrium under learning technology λ̃ if Qt is an equilibrium
under learning technology λ.

The above reasoning seems to suggest that the actual equilibrium stock should
evolve even slower than Q̃t because it would be optimal to wait if others behaved
according to Q̃t. We show in the next section that this is indeed true in equilibrium:
higher learning potential slows down expansions so much that also learning slows
down under positive payoff externalities. However, we cannot show the result
directly because one needs to know how the stock is expected to evolve in the
future in order to evaluate the expected stopping payoff when there are payoff
externalities. Therefore, we first characterize the sets of equilibria (in Proposition 2
and Proposition 3) before proving the counterpart of Proposition 1 with payoff
externalities (in Proposition 4).

5 Equilibrium with payoff externalities

5.1 Characterization

Recall that all players would like to stop if the state was known to be high and
no one would like to stop if it was known to be low. Therefore, to characterize
any equilibrium, it is a reasonable first step to find a stock-dependent cutoff belief
such that more players stop whenever the belief is above the cutoff.The interesting
question is how the cutoff depends on the stock of stopped agents. The stock
affects the profitability of stopping through two channels: it controls the flow of
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new information and affects the payoff externality.

We proceed to solve for the set of equilibria by first considering a simple prob-
lem where the stock of stopped players stays constant over time. Then we show
how we can use the solution of the simple problem in equilibrium characterization.

The first step is to solve the optimal stopping problem for fixed q. This is
a standard one-dimensional optimal stopping problem and its solution is fully
characterized by cutoff x̄ (see e.g. Chapter 5 in Dixit and Pindyck (1994) and
team problem in Bolton and Harris (1999)):

x̄(q) := −β(q)πL(q)
(β(q) − 1) πH(q) − β(q)πL(q) , (5)

where β(q) := 1
2

(
1 +

√
1 + 8r

λ(q)

)
. Next, we define

x̂(q) := max{x ∈ [0, 1] : x ≤ x̄(q′) ∀q′ ≥ q}. (6)

The function x̂ is the largest monotone function that has values below x̄. If x̄ is
monotone, x̄ and x̂ coincide.

We show in Appendix A.4 that the equilibrium cutoff in the game where Qt

changes endogenously coincides with the cutoff with fixed stock:2

Proposition 2. In any equilibrium, dQt > 0 if xt > x̄(q) and dQt = 0 if xt < x̂(q),
where the cutoff beliefs are defined in (5) and (6).

When x̄ is monotone, Proposition 2 implies that the (q, x) state space can
be divided into two regions: there is a stopping region above x̄(q) and a waiting
region below it. If the current state (q, x) is in the stopping region, i.e. x > x̄(q),
more players stop so that we reach a cutoff state (q + dQ, x̄(q + dQ)) where dQ

solves x̄(q + dQ) = x. If x̄ is non-monotone as in Figure 1, there are some states
between the curves x̄ and x̂ and for those Proposition 2 does not imply if the
players should stop or wait. This ambiguity is an integral feature of the model
with payoff externalities because the profitability of stopping depends on other
players’ stopping decisions. Hence, multiple equilibria naturally arise. In the

2This result extends the characterization of the decentralized equilibrium in our earlier paper
Laiho, Murto and Salmi (2023) without payoff externalities and with heterogeneous players.
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q

x

1

1

x̄

x̂

waiting region in all eqa

adoption region in all eqa

(∗)

Figure 1: Illustration of Proposition 2: in any equilibrium, players prefer stopping in all states
above x̄(q) and prefer waiting in all states below x̂(q). The behavior differs across equilibria in
the middle region marked by (∗).

main text, we focus on the equilibrium with the fastest and the equilibrium with
the slowest expansions, which we define in the next subsection. For completeness,
we discuss other equilibria in Appendix A.6.

5.2 Maximal and minimal equilibria

In order to compare the sets of equilibria under different learning potentials, we
focus on the equilibria with the fastest and slowest innovation adoption:

Proposition 3. • Let stock process Qt be characterized by the cutoff rule x̂ in

(6): in state (q, x), dQ = max{q′ − q, 0} where q′ = max{s ∈ [0, 1] : x̂(s) =
x}. Then, Qt is an equilibrium and we call it the maximal equilibrium.

• Let stock process Q
t

be characterized by the cutoff rule x̄ in (5): in state

(q, x), dQ = max{q′ − q, 0} where q′ = min{s ∈ [q, 1] : x̄(s) ≥ x}. Then, Q
t

is an equilibrium and we call it the minimal equilibrium.

Proposition 3 guarantees the existence of an equilibrium by characterizing the
maximal and minimal equilibria. In Appendix A.5, we check that no player has
a profitable deviation under either Qt or Q

t
, which verifies that they are indeed

equilibria. To correctly interpret the maximal and minimal equilibria, recall that a
lower cutoff belief implies a larger stock and faster learning. By Proposition 2, no
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equilibrium can have faster expansion in the stock than the maximal equilibrium.
Similarly, no equilibrium can have slower expansion in the stock than the minimal
equilibrium.

When it comes to the specific form of the maximal and minimal equilibria,
notice that they are both essentially pinned down by x̄(q) in (5). Cutoff x̄(q)
coincides with the optimal stopping threshold of an individual agent when the
stock stays constant forever. This result means that the players can ignore both
faster learning and the payoff consequences of future stopping decisions. Our
earlier paper Laiho, Murto and Salmi (2023) finds a similar result but without
payoff externalities. The intuition behind the result is that, in an equilibrium, the
stock expands only when the player considering stopping now would be willing to
stop, too. Hence, the player would never strictly prefer waiting until the stock
has actually increased. Importantly, the equivalence between optimal stopping
under constant and increasing stock processes is an equilibrium property. One
can always find a non-equilibrium stock process such that a player’s best response
depends on future expansions and hence violates the equivalence.

q

x

x0

q′

1

1

stopping region

waiting region

x̄

q

x

x0

q′′

1

1

stopping region

waiting region

x̄

x̂

Figure 2: The left panel shows the minimal and the right panel the maximal equilibrium. With
the same initial belief x0, the equilibria differ in the mass of players who stop immediately: the
stock jumps to q′ in the minimal and to q′′ in the maximal equilibrium.

Notice that x̄ in (5) may be everywhere increasing, and in that case, the
maximal and the minimal equilibria coincide. By Proposition 2, the equilibrium is
then unique. One can verify from Formula (5) that x̄ is necessarily increasing when
there are no payoff externalities or when the externalities are negative. Hence, the
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multiplicity of equilibria arises only under positive payoff externalities. This is a
natural feature as only positive payoff externalities create a coordination problem
in the game. Notice that a coordination problem arises even without learning:
suppose that λ(q) = 0 for all q and that the belief is such that x0πH(0) + (1 −

x0)πL(0) < 0 but x0πH(1) + (1 − x0)πL(1) > 0. Then, there is an equilibrium
where no one ever adopts the innovation and another equilibrium where everyone
adopts the innovation immediately.

5.3 Main result

We now show that improvements in the learning potential may backfire: under
positive payoff externalities, higher learning potential slows down learning and
reduces total welfare.

We seek to compare the set of equilibria under different learning potentials.
To make the comparison precise, we consider the maximal and minimal equilibria
under different learning technologies. Let qt,λ and q

t,λ
denote a realization of the

stock in the maximal and minimal equilibria under learning potential λ. We use
qt,λ for a generic equilibrium stock under λ. Similarly, we use x̄λ(q) and x̂λ(q) for
the cutoff beliefs (5) and (6) under learning potential λ.

As an intermediate step toward our main result that shows that learning po-
tential may decrease the expected welfare of all players, we study how learning
potential affects equilibrium learning. Recall information equivalent stock from
Section 4, z(q; λ, λ̂) = λ̂−1(λ(q)), which yields exactly the same amount of infor-
mation under λ̂ as stock q does under λ. The following comparison follows directly
from the functional forms of (5) and (6):

Corollary 1. Let λ̂ has strictly higher learning potential than λ.

(i) Suppose strictly positive payoff externalities. Then, x̂λ̂(z(q; λ, λ̂)) > x̂λ(q)
and x̄λ̂(z(q; λ, λ̂)) > x̄λ(q) for all q ∈ (0, 1].

(ii) Suppose strictly negative payoff externalities. Then, x̂λ̂(z(q; λ, λ̂)) = x̄λ̂(z(q; λ, λ̂)) <

x̄λ(q) = x̂λ(q) for all q ∈ (0, 1].
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Corollary 1 is the key to why we may have faster learning under lower learning
potential. To correctly interpret it, recall that if qt,λ̂ < z(qt,λ; λ, λ̂), the equilibrium
under learning technology λ̂ yields less information at time t than the equilibrium
under learning technology λ. Corollary 1 compares the beliefs needed for new
players to be willing to stop under different learning potentials when keeping the
flows of information the same, i.e. when the stock is q under λ and z(q; λ, λ̂) under
λ̂. This comparison shows how the comparable information stocks evolve across
different learning potentials: if a lower belief is everywhere needed for the stock
to expand, learning is necessarily faster. For completeness, we provide an exact
comparison for the equilibrium belief processes in Appendix A.7.

Part (ii) of Corollary 1 implies that the comparison between equilibria under
different learning potentials is as expected under negative payoff externalities:
higher learning potential leads to a larger flow of information in equilibrium.

Part (i) of Corollary 1 implies that under positive payoff externalities, learning
is paradoxically slower under better learning technology. The comparison holds in
the set order: information stock evolves strictly slower in all equilibria under the
better learning technology than in the maximal equilibrium under the worse tech-
nology, and it evolves faster in all equilibria under the worse learning technology
than in the minimal equilibrium under the better learning technology. Next, we
show that this logic implies that high learning potential decreases the welfare of
all players under positive payoff externalities.

To make the welfare comparison precise, we use vmax
λ (x0) to denote the ex-

pected ex-ante payoff of the players in the maximal equilibrium with a given
learning potential λ, and similarly vmin

λ (x0) for the minimal equilibrium. Our
main result shows that the learning potential influences the equilibrium payoffs
differently under positive and negative payoff externalities:

Proposition 4. Suppose λ has strictly higher learning potential than λ′ and let

the initial belief x0 satisfy x0πH (0) + (1 − x0) πL (0) > 0. Then:

(i) With strictly positive payoff externalities, vmax
λ′ (x0) > vmax

λ (x0) and vmin
λ′ (x0) >

vmin
λ (x0).
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(ii) With strictly negative payoff externalities, vmax
λ (x0) = vmin

λ (x0) > vmax
λ′ (x0) =

vmin
λ′ (x0).

The intuition behind the first part of Proposition 4 is that players face both
a slower increase in the stock and a slower arrival of information under higher
learning potential when there are positive payoff externalities. In Appendix A.8,
we show the result formally by showing that the expected time until the maximal
equilibrium reaches belief x̂λ′(1) under λ′ is shorter than the time until the max-
imal equilibrium reaches belief x̂λ′(z(1; λ′, λ)) under λ′ (in expectation). Then,
because the stopping payoff is lower when the stock is z(1; λ′, λ) than when it is
1 under positive payoff externalities, the value must be lower, too. The equiva-
lent argument applies to the comparison between the minimal equilibria. To show
that the converse is true under negative payoff externalities, we argue that the
equilibrium under λ reaches belief xλ′(1) sooner than the equilibrium under λ′ (in
expectation). The value at that belief must also be higher under λ because the
stock is smaller and payoff externalities are negative. In both cases, our argument
utilizes the fact that the expected payoff of all players is the same as the expected
payoff of the last player.

Proposition 4 has important implications in technology adoption under positive
network effects. When potential adopters can learn from each other, the option
value of waiting for more information is strong and gets stronger if innovation
adoption is fast. Therefore, no one wants to be the first to adopt the innovation,
which makes the innovation adoption even less lucrative under positive payoff
externalities. Our results suggest that subsidizing early adoption may be vital for
overall efficiency if the potential for learning is high. Otherwise, the equilibrium
may get stuck to very slow expansion of the new technology as adopters need a
higher belief to be willing to adopt and the low fraction of early adopters makes
the belief move slowly.
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6 Concluding remarks

The fundamental problem in social learning is that the players do not internalize
the informational externality. This affects the effectiveness of various policies try-
ing to facilitate information generation and better informed decision making. This
paper points out that technical solutions to facilitate the aggregation and diffusion
of information may even backfire if there are positive network effects. Therefore,
having obstacles in information transmission may actually improve welfare. An
indirect implication of our analysis is that small subsidies for the use of new tech-
nologies may increase the total welfare significantly even if they are temporary.
When network effects are not important or when they are negative (e.g. in the case
of products and services with congestion), the backfiring effect of improvements
in the learning technology does not appear.
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A Appendix

A.1 Micro foundation for learning process (3)

We provide a micro foundation for Process (3) as coming from the realized payoffs
of the stopped agents:

Start with N players, and let nt be the number of players who have stopped
by time t. When a player stops, he starts receiving a flow payoff

dui
t = πω(qt)dt

N
+ σ

N
dW i

t (7)

that depends on the fraction of other agents who have stopped, qt = nt/N , and an
unknown state-of-the-world that can be either high or low, ω ∈ {H, L}. dW i

t are
independently and normally distributed with mean 0 and variance dt and capture
noise in payoffs. Furthermore, assume that other agents observe a noisy signal of
the realized payoff, dûi

t:

dûi
t = dui

t + σ′

N
dW ′i

t, (8)

where dW ′i
t are independently and normally distributed with mean 0 and variance

dt and capture noise in communication.

The total informativeness of the experiment coincides with observing the sum
of flow payoffs of the agents who have stopped:

dUt =
nt∑

i=1
dûi

t =
nt∑

i=1

(
π(qt, ω)

N
+
√

nt

N
σdW i

t +
√

nt

N
σ′dW ′i

t

)
. (9)

We take the limit as N → ∞. Then, by using that qt = nt

N
, dUt is normally

distributed with unknown mean qtπ(qt, ω)dt and variance qt(σ2 + σ′2)dt. Signal
dUt is a special case of (3) with λ(qt) :=

√
qt(πH(qt)−πL(qt))√

σ2+σ′2
.

Here, parameters σ and σ′ determine the learning potential. The interpretation
of σ is that low σ means that past performance is predictive of future performance;
the interpretation of σ′ is that low σ′ means little friction in communication.
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A.2 Proof of Proposition 1

Proof. Suppose everyone follows Q̂t under λ̂. Suppose that an individual has a
strictly profitable deviation, which means that either an individual has a strict
preference for waiting when dQ̂t > 0 or that he has a strict preference for stopping
when dQ̂t = 0. Consider the first case: an individual has a strict preference for
waiting in some state (z(qt, λ, λ̂), xt) such that dQt > 0 in state (qt, xt). This
contradicts that Qt under λ because the only difference between an individual’s
problem in state (z(qt, λ, λ̂), xt) under (Q̂t, λ̂) and in state (qt, xt) under (Qt, λ) is
that there is more information available under the latter scheme after Q̂t reaches
1.

Consider the second case: an individual has a strict preference for stopping
in some state (z(qt, λ, λ̂), xt) such that dQt = 0 in state (qt, xt). Again, this
contradicts the optimality to wait in state (qt, xt) under (Qt, λ). To see this notice
there must exist x′

t such that the individual’s expected payoff is weakly greater
if she waits for state (qt, x′) rather than stops immediately at state (qt, xt) under
(Qt, λ) (otherwise Qt would not be an equilibrium).3 When fixing the realization
of Wt and the state-of-the-world ω in (3), the implied belief processes are identical
when beginning from state (z(qt, λ, λ̂), xt) under (Q̂t, λ̂) and when beginning from
state (qt, xt) under (Qt, λ). Therefore, it must be weakly optimal to wait until the
belief reaches x′ also from state (z(qt, λ, λ̂), xt) under (Q̂t, λ̂).

A.3 Preliminaries

We will utilize the following lemma that states the optimal stopping problem of
an individual agent as a minimization problem of the opportunity cost of delay:

Lemma 1. Fix arbitrary stock process Q. Then a player should not stop at state

(q, x) if there exists a stopping time τ such that

E
[∫ τ

0
e−rt (xtπH(qt) + (1 − xt) πL(qt)) dt |(q, x; Q)

]
< 0. (10)

3Notice that it is not possible that dQt = 0 for all (qt, x′) because πH(qt) > 0 for all qt.
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If no such stopping time exists, then it is optimal for a player to stop immediately

at state (q, x).

Proof. Given process Q, the optimal stopping time τ ∗ must satisfy:

τ ∗ ∈ arg sup
τ

E
[∫ ∞

τ
e−r(t) (xtπH(qt) + (1 − xt) πL(qt)) dt |(q, x; Q)

]
, (11)

where maximization is over all stopping times τ adapted to the natural filtra-
tion generated by Xt under Q with initial value (q0, x0) = (x, q). Rewriting the
expectation as

E
[∫ ∞

0
e−rt (xtπH(qt) + (1 − xt) πL(qt)) dt

−
∫ τ

0
e−rt (xtπH(qt) + (1 − xt) πL(qt)) dt |(q, x; Q)

]
,

we note that (11) is equivalent to

τ ∗
θ ∈ arg inf

τ
E
[∫ τ

0
e−rt (xtπH(qt) + (1 − xt) πL(qt)) dt |(q, x; Q)

]
,

and so τ ∗
θ > 0 only if (10) holds.

A.4 Proof of Proposition 2

We show here that any equilibrium must satisfy the conditions in Proposition 2.
We will do that in two steps. In the first step, we will show that the region
x > x̄(q) of the state space must be a stopping region in any equilibrium, and in
the second step we will show that there is no equilibrium where some player wants
to stop for x < x̂(q).

Step 1: expansion when x > x̄(q).

Suppose that at time t the state is (qt, xt) = (q, x), where x > x̄(q). If the stock
were to be fixed at qt ≡ q forever, then it would be optimal to stop immediately.
Combining this with Lemma 1 implies that for fixed qt ≡ q, we have

E
[∫ τ

0
e−rt (xtπH(q) + (1 − xt) πL(q)) dt |(q, x; qt ≡ q)

]
≥ 0 (12)

for all stopping times τ (given initial value (q, x) and qt ≡ q fixed).
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Contrary to the claim, assume that no one stops at (q, x). But as long as no
one stops, the optimality conditions (10) and (12) are equivalent, and hence a
player prefers stopping immediately, contradicting that no one stops at (q, x) in
an equilibrium.

Step 2: no stopping when x < x̂(q)

We will now show that it cannot be optimal for any player to stop for x < x̂(q)
in equilibrium. We will prove this through iterated deletion of dominated stopping
strategies. Define

πω(q′, q′′) := max
q∈[q′,q′′]

πω(q),

and define a mapping x̃q : [q, 1] → [0, 1] as

x̃q(q′) := sup
{

x : there exists a stopping time τ such that

E
(∫ τ

0
e−rt (xπH(q, q′) + (1 − x) πL(q, q′)) dt |q(θ), x; qt ≡ q(θ)

)
< 0

}
.

The interpretation is that x̃q(q′) would be the optimal stopping threshold if belief
xt follows process with qt fixed at q, but with the flow payoff given in each state
by maxs∈[q,q′] πω(s). It can be solved in closed form:

x̃q (q′) = −β(q)πL (q, q′)
(β(q) − 1) πH(q, q′) − β(q)πL(q, q′) . (13)

We see directly from (13) that x̃q(q′) is Lipschitz continuous in q and q′, strictly
increasing in q, weakly decreasing in q′, and x̃q(q) = x̄(q).

We next define iteratively a sequence {xn}∞
n=0 of functions xn : [0, 1] → [0, 1].

We first set x0(q) := x̃q (1). The assumption that qt is fixed at q sets the learning
rate at a lower bound for what it can be in the future and the assumption that
the payoff is given by maxs∈[q,1] πω(s) in state ω sets the flow payoff at an upper
bound for what it can be in the future. Since an increase in the learning rate or
a decrease in the payoff flow can only make stopping less profitable, stopping at
(q, x) with x < x0 (q) is a dominated strategy.

For n ≥ 1, assume that xn−1(q) is a Lipschitz continuous and strictly increasing
function with xn−1(q) ≤ x̂(q) for all q (note that these properties hold for x0(q)
defined above). Define

xn(q) := x̃q(q′), where q′ = min{s : x̃q (s) = xn−1(s)}. (14)
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The interpretation is that xn(q) would be the optimal stopping threshold under
the assumption that qt is fixed at q and the flow payoff is given by maxs∈[q,q′] πω(s)
in state ω. Here q′ ∈ (q, 1) is chosen in such a way that if no player ever stops
below xn−1(q), then q′ is an upper bound for qt as long as xt ≤ xn(q). Hence
xn(q) is a lower bound for the optimal stopping threshold when the current stock
is q and under the assumption that no player stops below xn−1(q). It follows from
(14) that if xn−1(q) < x̂(q), then xn−1 (q) < xn(q) ≤ x̂(q), and if xn−1(q) = x̂(q),
then xn(q) = x̂(q). Further, xn(q) inherits from xn−1(q) the properties of being
Lipschitz continuous and strictly increasing function.

We have now shown by iterated deletion of dominated strategies that no player
wants to stop at any (q, x) such that x < xn(q) for any n. The final step is to
show that xn(q) → x̂(q) as n → ∞. By the construction, {xn} is a family of
equicontinuous and strictly increasing functions. Therefore, the sequence {xn}∞

n=0

converges uniformly to some function x(q), which is increasing and continuous. It
also satisfies x(q) ≤ x̂(q) for all q.

It remains to show that x(q) = x̂(q). First, notice that |xn(q) − xn−1(q)| <

ϵ implies that |xn−1(q) − xn−1(q′)| < ϵ for q′ = min{s : x̃q(s) = xn−1(s)} by
construction. This further implies that either |q − q′| is small or xn−1 is almost
flat. When n → ∞, this implies that the limiting x must satisfy that either
x(q) = x̃q(q) = x̄(q) or x′(q) = 0 for all q. Because we know that xn(1) = x̄(1)
and that xn(q) ≤ x̄(q) for all n, it cannot be that x is constant and hence the only
possibility is that x(q) = x̂(q) for all q.

A.5 Proof of Proposition 3

Proof. We prove that the stock process Qt is an equilibrium (part i). The proof
for Q

t
follows the same steps and is omitted.

We need to verify that the best response to stock process Qt is to stop when
the belief reaches x̂(q). We will proceed through two main steps. In step 1, we
will show that whenever xt < x̂(q), it is optimal to wait. In step 2, we will show
that if xt ≥ x̂(q), it is optimal to stop.
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Step 1: Optimal to wait when xt < x̂(q)

It is easy to verify that

E
[∫ τ∗

0
e−rt (xtπH(q) + (1 − xt) πL(q)) dt |(q, x; qt ≡ q)

]
< 0,

where τ ∗ is the stopping rule that commends to stop when xt hits x̂(q). But then
τ ∗ delivers a strictly negative opportunity cost of delay also against Qt because
the stock stays constant until hitting x̂(q):

E
[∫ τ∗

0
e−rt (xtπH(q) + (1 − xt) πL(q)) dt

∣∣∣(q, x; Qt

)]
< 0,

and hence by Lemma 1 it is non-optimal to stop when x < x̂(q).

Step 2: Optimal to stop when xt = x̂(q)

Define

F (q, x) := inf
τ
E
[∫ τ

0
e−rt (xtπH(q) + (1 − xt) πL(q)) dt

∣∣∣(q, x; Qt

)]
.

For a contradiction, suppose that there is some q such that F (q, x̂(q)) < 0 so that
by Lemma 1 it is not optimal to stop at that boundary point.

The general solution to the HJB-equation for F (q, x) in the waiting region is

F (q, x) = xπH (θ, q) + (1 − x) πL (θ, q)
r

+ A(q) · Φ(q, x) + B(q) · Φ̃(q, x),

where A(q) and B(q) are some constants and Φ(q, x) := xβ(q) (1 − x)1−β(q) and
Φ̃(q, x) := x1−β(q) (1 − x)β(q). We will first show that our assumption F (q, x̂(q)) <

0 implies Fx (q, x̂(q)) ≤ 0. We will do that separately for potential cases B(q) ≥ 0
and B(q) < 0.

Suppose that B(q) ≥ 0. Then F (x̂(q), q) < 0 implies that

A(q)Φ (q, x̂(q)) < − x̂(q)πH(q) + (1 − x̂(q)) πL(q)
r

. (15)
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But then,

Fx (q, x̂(q)) = πH(q) − πL(q)
r

+ β(q) − x̂(q)
x̂(q) (1 − x̂(q))A(q)Φ(q, x̂(q))

+ 1 − x̂(q) − β(q)
x̂(q) (1 − x̂(q)) B(q)Φ (x̂(q), q)

≤ πH(q) − πL(q)
r

+ β(q) − x̂(q)
x̂(q) (1 − x̂(q))A(q)Φ (q, x̂(q))

<
πH(q) − πL(q)

r

− β(q) − x̂(q)
x̂(q) (1 − x̂(q))

x̂(q)πH(q) + (1 − x̂(q)) πL(q)
r

. (16)

where the first inequality is implied by B(q) ≥ 0 and β(q) > 1, and the second
inequality is implied by (15). Noting that

(β(q) − 1) x̄(q)πH(q) + β(q) (1 − x̄(q)) πL(q) = 0,

which is equivalent to

πH(q) − πL(q)
r

= (β(q) − x̄(q)) (x̄(q)πH(q) + (1 − x̄(q)) πL(q))
rx̄(q) (1 − x̄(q))

and so it follows from (16) that Fx (q, x̂(q)) < 0 when x̂(q) = x̄(q). When x̂(q) <

x̄(q), notice that the state jumps immediately to some (q′, x̄(q′)) s.t. q′ > q when
hitting (q, x̂(q)). Therefore, the optimality of stopping at (q, x̂(q)) is equivalent to
the optimality of stopping at (q′, x̄(q′)) and we ignore the case.

Suppose next that B(q) < 0. This is only possible if there is some x′ < x̄(q)
where F (q, x′) ≥ 0 (otherwise it would be optimal to continue for all values
x < x̄(q) and B(q) < 0 would imply limx↓0 F (q, x) = B(q) limx↓0 Φ̃(q, x) = −∞

contradicting the boundary condition at x = 0). If A(q) ≥ 0, then F (q, x)
is increasing in x, but then F (q, x′) ≥ 0 contradicts our running assumption
F (q, x̄(q)) < 0. The only remaining possibility is that both B(q) and A(q)
are strictly negative. In that case F (q, x) is concave, and so F (q, x′) = 0 and
F (q, x̄(q)) < 0 together imply Fx (q, x̄(q)) < 0.

We have now shown that F (q, x̄(q)) < 0 implies Fx (q, x̄(q)) < 0. But then the
derivative of F (q, x̄(q)) along the boundary is also negative:

d

dq
F (q, x̄(q)) = Fx (q, x̄(q)) d

dq
x̄(q) < 0.
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Iterating the argument along the boundary implies that F (1, x̄(1)) < 0. But since
qt = 1 is an absorbing value for qt, we can treat qt ≡ 1 as fixed. Lemma 1 and
that x̄(q) is the solution to the problem with fixed q imply that F (1, x̄(1)) < 0 is
a contradiction. Hence it is (weakly) optimal to stop in state (q, x̂(q)).

A.6 Other equilibria

For our main result, it is enough to focus on the maximal and minimal equilibria
as they imply dominance in the strong set order. Here, we provide additional
material on what kind of other equilibria there exists.

Proposition 2 does not give a unique prediction for the stopping belief when
x̄(q) > x̂(q). Also, the size of the jump dQt is ambiguous above x̄(qt). One can
show by following the same argument as in Proof of Proposition 3 that in any
equilibrium, either the stock stays constant or it jumps up to some q′ > q such
that x̄(q′) = x when the initial state is (q, x).In fact, one can support any such q′

as the new equilibrium state if x̄(q′) = x and x̄′(q′) > 0. For example, the maximal
equilibrium jumps to the highest q > qt such that x̄(q) = xt (or all the way to 1 if
x̂(1) ≤ x) and the minimal equilibrium jumps to the lowest such q.

q

x

x0

q′′q′

1

1

x̄

x̂

Figure 3: If the initial belief is x0, both dQ0 = q′ and dQ0 = q′′ are possible initial jumps in
the stock.

Figure 3 illustrates why the non-monotonicity of x̄ necessarily leads to multiple
equilibria. In the figure, both q′ and q′′ satisfy x̄(q) = x0. Hence both the stock
process that jumps to q′ (dQ0 = q′) and the stock process that jumps all the way to
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q′′ (dQ0 = q′′) are consistent with Proposition 2. Furthermore, one can construct
equilibria where the jump depends on the fine details of the current belief. For
instance in the situation of Figure 3, one could construct an equilibrium where the
jump in the stock was (just below) q′′ for the initial beliefs just below x0 and where
it was (just above) q′ for the initial beliefs just above x0. In such an equilibrium,
the effect of the initial belief is not monotone. This happens because the belief
works as a coordination device.

Importantly, all realizations of other equilibrium stock processes are between
those from the maximal and minimal equilibria.

A.7 Belief dynamics

Here, we verify that Corollary 1 indeed implies an equivalent comparison for the
equilibrium belief dynamics. We present the result only for the maximal equilibria
under positive payoff externalities. The equivalent result holds for the minimal
equilibria under positive payoff externalities. The result is reversed under negative
externalities.

Let xt,λ denote the belief at time t in the maximal equilibrium under learning
technology λ. We get that the equilibrium belief process has larger expected
volatility (more learning) when λ is low:

Proposition 5. Suppose strictly positive payoff externalities and let λ′ has strictly

higher learning potential than λ. Then, Pr(xs,λ ∈ [a, b] for all s ≤ t) < Pr(xs,λ′ ∈

[a, b] for all s ≤ t) for all t > 0 and all a < x0 and b ∈ (x0, x̂λ(1)].

Proof idea.

The unconditional law-of-motion for the belief is

dXt = λ(qt)xt(1 − xt)dW ′
t , (17)

where W ′
t is a standard Wiener process. We prove Proposition 5 by showing that

the claim holds for all realization of W ′
t :4

4Notice that W ′
t is not the same Wiener process as Wt in (3). Therefore, Proposition 5 is

written in terms of probabilities instead of realizations.
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Lemma 2. Fix the realization of W ′
t . For each learning potential λ, define the

joint belief and stock process (X̂t,λ, Q̂t,λ) such that the belief follows (17) and the

stock is characterized by the cutoff rule x̂ in (6): in state (q, x), dQ̂ = max{q′−q, 0}

where q′ = max{s ∈ [0, 1] : x̂(s) = x}. Suppose that xt′,λ′ = x ∈ (0, x0)∪(x0, x̂λ(1)]
and that xs,λ′ < x̂λ(1) for all s ≤ t′. Then, xt,λ = x for some t < t′.

Lemma 2 implies Proposition 5 because X̂t,λ and Q̂t,λ are distributed identically
as the belief and stock processes in the maximal equilibrium.

Preliminaries.

Let xt follow

dxt = λtxt (1 − xt) dw′
t (18)

with initial value x0 and where w′
t is a standard Wiener process.

Lemma 3. Let λt := g(maxs≤t(xs)) and λ′
t := h(maxs≤t(x′

s)) with some strictly

positive functions g and h, and let xt and x′
t follow (18) with signal-to-noise-ratios

λt and λ′
t, respectively. Fix a realization of w′

t be such that λs > λ′
s for all s < t.

Then, maxs≤t(xs) > maxs≤t(x′
s) if maxs≤t(x′

s) > x0 and mins≤t(xs) > mins≤t(x′
s)

if mins≤t(x′
s) < x0.

Proof. We use notation mt := maxs≤t(xs) and m′
t := maxs≤t(x′

s). Since we have
fixed a realization of w′

t, mt and m′
t are deterministic paths. Notice that dmt = 0

if and only if dm′
t = 0 because λt and λ′

t stay constant whenever xt ≤ mt and
x′

t ≤ m′
t. Therefore both paths xt and x′

t reach their earlier maximum again
exactly at the same time.

Next, define path w̃t as dw̃t = dw′
t if dmt > 0 and dw̃t = 0 otherwise. Next,

we use it to define path m̃t such that dm̃t = λtm̃t (1 − m̃t) dw̃t and m̃0 = x0.
Similarly, define dm̃′

t = λ′
tm̃

′
t (1 − m̃′

t) dw̃t with m̃′
0 = x0.

Now, since w̃t is an increasing path and λs > λ′
s for all s < t, it must be

that m̃t > m̃′
t unless dw̃s = 0 everywhere. In the former case, m̃t = m̃′

t = x0.
By construction, m̃t = mt and m̃′

t = m′
t for all t and hence mt > m′

t whenever
m′

t > x0.
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The argument for the minimal paths mins≤t(xs) and mins≤t(x′
s) is the same

and is hence omitted.

Proof of Lemma 2.

Let the path of the stock defined in Lemma 2 under λ be (q̂t,λ) and let the
path of the stock under λ′ be (q̂t,λ′).

From Lemma 3, we get that the statement immediately holds if λ(q̂s,λ) >

λ′(q̂s,λ′) for all s ≤ t (notice that the belief path is continuous). Therefore, we
focus on the case where there exists s such that λ(q̂s,λ) ≤ λ′(q̂s,λ′) and let t′ be the
smallest such time s.

Notice that λ(q̂t′,λ) ≤ λ′(q̂t′,λ′) is equivalent to q̂t′,λ′ ≥ z(q̂t′,λ; λ, λ′). Because
cutoff x̂λ′(z(q; λ, λ′)) > x̂λ(q) for all q ∈ (0, 1] (from Corollary 1, Part (i)), this
further implies that we must have maxs≤t′ x̂s,λ =: zt′ < maxs≤t′ x̂s,λ′ =: z′

t′ for all
z′

t′ ≤ x̂λ(1). But by Lemma 3, zt′ < z′
t′ is possible only if λ(q̂s,λ) ≤ λ′(q̂s,λ′) for

some s < t′, contradicting that t′ is the smallest such s. Therefore, we conclude
that zt > z′

t for all t such that z′
t ∈ (x0, x̂λ(1)], and then Lemma 3 implies the

claim.

A.8 Proof of Proposition 4

Note that in equilibrium, all agents get the same expected payoff. The plan in
the proof is to pick one individual agent and compare the expected discounted
payoff computed at time zero across the two equilibria involving different learning
potentials.

It is convenient to undertake a transformation of the state variable qt. We
denote by kt the information stock at time t (as opposed to the physical stock qt)
and define it to be the signal-to-noise ratio at that moment:

kt := λ (qt) .

Since λ (·) is strictly increasing, there is a one-to-one mapping between qt and zt,
and therefore we may use (kt, xt) to summarize the state at time t. Notice that
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function β (q) defined in the main text depends on q only through λ. Therefore,
with some abuse of notation it is convenient to write:

β (k) := β
(
λ−1 (k)

)
= 1

2

1 +
√

1 + 8r

k

 .

Similarly, we may write:

x(k) : = x
(
λ−1(k)

)
= −β(k)πL (λ−1(k))

(β(k) − 1) πH (λ−1(k)) − β(k)πL (λ−1(k)) ,

x̂(k) : = x̂
(
λ−1(k)

)
= max

{
x ∈ [0, 1] : x ≤ x(k′)∀k′ ∈

[
k, kλ

]}
,

where kλ is the maximal signal-to-noise ratio kλ := λ (1).

Notice that one can characterize a given equilibrium information stock process
Kt in the (k, x)-space. We define strictly divisive boundaries for the maximal and
minimal equilibria:

xmax
λ,x0 (k) : = max{x0, x̂ (k)},

xmin
λ,x0 (k) : = max{x0, max

0≤k′≤k
(x (k′))}.

The strictly divisive boundaries are defined for k ∈ [0, kλ]. Let x (k) be the
divisive boundary for either maximal or minimal equilibrium. The interpretation
of a strictly divisive boundary is that kt jumps up to x(kt) whenever xt hits x (k).
(Notice that x (k) may take a constant value within some interval, which means
that kt jumps instantaneously up by a discrete amount.) The equilibrium never
reaches states above the divisive boundary. Divisive boundaries are continuous
and increasing.

The payoff comparisons rely on E (e−rτ ) for different paths in (k, x)-space,
where τ is the time of reaching some state point. The following lemma shows how
to compute this expectation:

Lemma 4. Let x(k) be the strictly divisive boundary for either the maximal or

the minimal equilibrium, defined for k ∈
[
0, kλ

]
with initial state (k0, x0) such that

x0 ≤ x (k0). Let τ denote the time of reaching state
(
kλ, x′

)
with x′ ≥ x

(
kλ

)
:

τ := inf
(
t : xt = x′, kt = kλ

)
.
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Then

E
(
e−rτ |k0, x0

)
= Φ (k0, x0)

Φ
(
kλ, x′

) exp
(∫ kλ

k0
β′ (s) log

(
x (s)

1 − x (s)

)
ds

)
,

where Φ (k, x) = xβ(k) (1 − x)1−β(k).

Proof. For an arbitrary current state (kt, xt) = (k, x), we can write

E
(
e−rτ |k, x

)
= A (k) Φ (k, x) ,

where A (k) is a function to be determined. We will derive a differential equation
for A (k). Note that k increases at the boundary x (k), and therefore the partial
of E

(
e−rτ |k, x

)
w.r.t. k must be zero at the boundary:

∂

∂k
E
(
e−rτ |k, x(k)

)
= A′ (k) Φ (k, x (k)) + A (k) Φk (k, x (k)) = 0.

Noting that
Φk (k, x) = β′ (k) log

(
x

1 − x

)
Φ (k, x) ,

we get the following differential equation for A (k):

A′ (k) = −A (k) β′ (k) log
(

x (k)
1 − x (k)

)
. (19)

From E
(
e−rτ

∣∣∣x′, kλ

)
= A

(
kλ

)
Φ
(
kλ, x′

)
= 1, we get the following boundary

condition:
A
(
kλ

)
= 1

Φ
(
kλ, x′

) ,

which gives us the solution to (19) as:

A (k) = 1
Φ(kλ, x′)

exp
(∫ kλ

k
β′ (s) log

(
x (s)

1 − x (s)

)
ds

)
.

This gives

E
(
e−rτ |k0, x0

)
= A (k0) Φ (k0, x0) = Φ (k0, x0)

Φ
(
kλ, x′

) exp
(∫ kλ

k0
β′ (s) log

(
x (s)

1 − x (s)

)
ds

)
.
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We now proceed to the proof of the statements in the proposition. Consider
first the case of strictly positive payoff externalities and compare the maximal
equilibrium Qt and Q

′
t corresponding to λ and λ′, respectively, where λ has a

strictly higher learning potential than λ′. For notational simplicity, we use x(k)
for xmax

λ,x0 (k) and x′(k) for xmax
λ′,x0 (k). It follows from (1) that x (k) ≥ x′ (k) for all

0 ≤ z ≤ kλ′ and where x (k) > x′ (k) whenever x′ (k) > x0. Figure 4 depicts the
divisive boundaries, x′ (k) in red and x (k) in black.

k

x

kλ′ kλ

x(kλ′)
x(k)

x′(k)

Figure 4: Divisive boundaries for learning potentials λ and λ′ under positive payoff externali-
ties: x(k) = xmax

λ,x0
(k) and x′(k) = xmax

λ′,x0
(k).

We derive a lower bound for vmax
λ′ (x0), i.e. the ex-ante payoff of an individual

agent under λ′. To do this, note first that vmax
λ′ (x0) is equal to the expected

payoff of the agent who is the last one ever to stop, i.e. the player who stops at
τ ′ := inf

(
t : xt = x′

(
kλ′

))
:

vmax
λ′ (x0) = E

e−rτ ′ x
′
(
kλ′

)
πH (1) +

(
1 − x′

(
kλ′

))
πL (1)

r

 .

Suppose that this agent makes a deviation and decides to stop only when xt hits
x(kλ′), i.e. at the belief when the information stock reaches kλ′ under the other
learning potential. Let τλ′ denote the corresponding (stochastic) stopping time.
This deviation gives a lower a payoff than equilibrium payoff vmax

λ′ (x0), and so we
get

vmax
λ′ (x0) > E

e−rτ
x(kλ′)πH (1) +

(
1 − x(kλ′)

)
πL (1)

r

 (20)

= Φ (k0, x0)
Φ(kλ′ , x(kλ′))

exp
(∫ kλ′

0
β′ (s) log

(
x′ (s)

1 − x′ (s)

)
ds

)
x(kλ′)πH (1) +

(
1 − x(kλ′)

)
πL (1)

r
.
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Let us now consider the corresponding payoff for the learning potential λ,
denoted vmax

λ (x0). Since
(
kλ′ , x(kλ′)

)
is on the path of the maximal equilibrium

(the black curve in Figure 4), we can compute vmax
λ (x0) by considering the agent

that plans to stop at
(
kλ′ , x(kλ′)

)
, i.e.

vmax
λ (x0) = E

(
e−rτλu

(
kλ′ , x(kλ′)

))
, (21)

where u
(
kλ′ , x(kλ′)

)
is the stopping value at state

(
kλ′ , x(kλ′)

)
. Since we have

strictly positive payoff externalities, the stopping value at
(
kλ′ , x(kλ′)

)
, where not

all the agents have stopped yet, must be strictly lower than the stopping value
assuming that all the agents have already stopped, i.e.

u
(
kλ′ , x(kλ′)

)
<

x(kλ′πH (1) +
(
1 − x(kλ′

)
πL (1)

r
. (22)

Combining (21) and (22), we get

vmax
λ (x0) < E

e−rτλ
x(kλ′πH (1) +

(
1 − x(kλ′

)
πL (1)

r

 (23)

= Φ (k0, x0)
Φ(kλ′ , x(kλ′))

exp
(∫ kλ′

0
β′ (s) log

(
x(s)

1 − x (s)

)
ds

)
x(kλ′)πH (1) +

(
1 − x(kλ′)

)
πL (1)

r
,

where the only difference to expression (21) is that we have the divisive boundary
x (s) inside the integral instead of x′ (s) (since we move along the black curve
instead of the red curve in Figure 4). Since x (k) ≥ x′ (k) for all k and x (k) > x′ (k)
for some k < kλ′ , direct comparison of the expressions (21) and (24) imply that

vmax
λ (x0) < vmax

λ′ (x0) .

The argument for the payoff comparison under minimal equilibrium is identical
and gives

vmin
λ (x0) < vmin

λ′ (x0) .

Let us then consider the case of strictly negative payoff externalities. Note that
we have then a unique equilibrium and therefore vmin

λ (x0) = vmax
λ (x0) =: vλ (x0)

for any learning potential λ. Let us again compare λ and λ′, where λ has a strictly
higher learning potential. In this case, we have x (k) ≤ x′ (k) for all k ∈

[
0, kλ′

]
and x (k) > x′ (k) whenever x (k) > x0.
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To compare the payoffs across λ and λ′, take an agent who stops at τ :=
inf

(
t : xt = x′(kλ′)

)
. There are now two cases for the path under λ depending

on whether x
(
kλ

)
< x′(kλ) (the black curve in the left panel of Figure 5) or

x
(
kλ

)
≥ x′(kλ)(the blue curve in the right panel of Figure 5). Next, we argue

that both lead to the same conclusion (26).

k

x

kλkλ′

x′(kλ′)

x(k)

x′(k)

k

x

kλkλ′ k′

x′(kλ′)

x(k)

x′(k)

Figure 5: Two cases under negative payoff externalities.

In the latter case (blue curve in right), stopping at x′(kλ′) is optimal for some
level of the information stock under learning potential λ. Let k′ denote that stock:
x(k′) = x′(kλ′). Therefore, the stopping payoff can be written as

vλ (x0) = E
(
e−rτ u

(
k′, x′(kλ′)

))
, (24)

where the stopping payoff satisfies

u
(
k′, x′(kλ′)

)
>

x′(kλ′)πH (1) +
(
1 − x′(kλ′)

)
πL (1)

r
(25)

since not all the agents have yet stopped and payoff externalities are strictly neg-
ative. Combining (24) and (25), we get

vλ (x0) > E

e−rτ
x′(kλ′)πH (1) +

(
1 − x′(kλ′)

)
πL (1)

r

 . (26)

In the other case (black curve in left), stopping at x′(kλ′) is sub-optimal (since(
k, x′(kλ′)

)
is not on the path for any k), and we have therefore

vλ (x0) > E
(
e−rτ u

(
kλ, x′(kλ′)

))
,

but since in this case all the agents have stopped at (kλ, x′(kλ′)), we have

u
(
kλ, x′(kλ′)

)
=

x′(kλ′)πH (1) +
(
1 − x′(kλ′)

)
πL (1)

r
,
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and so (26) holds in this case too. Combining (26) with Lemma 4 gives us:

vλ (x0) >
Φ (k0, x0)

Φ(kλ, x′(kλ′))
exp

(∫ kλ

k0
β′ (s) log

(
x (s)

1 − x (s)

)
ds

)
x′(kλ′)πH (1) +

(
1 − x′(kλ′)

)
πL (1)

r
.

(27)

Consider now the learning technology λ′ (the red curve in both parts of Fig-
ure 5) and again consider an agent who stops at τ ′ := inf

(
t : xt = x′(kλ′)

)
. This

is now the last agent to stop in equilibrium and gives us:

vλ′ (x0) = E

e−rτ ′ x
′(kλ′)πH (1) +

(
1 − x′(kλ′)

)
πL (1)

r

 (28)

= Φ (k0, x0)
Φ(kλ′ , x′(kλ′))

exp
(∫ kλ′

k0
β′ (s) log

(
x′ (s)

1 − x′ (s)

)
ds

)
x′(kλ′)πH (1) +

(
1 − x′(kλ′)

)
πL (1)

r
.

Notice that in contrast to the expression in (27), we now have kλ instead of kλ′

as the first argument in Φ (·, ·) as well as in the upper bound of the integration.
Using Φ (k, x) = xβ(k) (1 − x)1−β(k), we may write

Φ (k0, x0)
Φ(kλ′ , x′(kλ′))

= Φ (k0, x0)
Φ(kλ, x′(kλ))

(
x′(kλ′)

1 − x′(kλ′)

)β(kλ)−β(kλ′)

= Φ (k0, x0)
Φ
(
kλ, x′(kλ′)

) exp
(∫ kλ

kλ′
β′ (s) log

(
x′(kλ′)

1 − x′(kλ′)

)
ds

)
,

and so we may write (29) as

vλ′ (x0) = Φ (k0, x0)
Φ
(
kλ, x′(kλ′)

) exp
(∫ kλ′

k0
β′ (s) log

(
x (s)

1 − x (s)

)
ds +

∫ kλ

kλ′
β′ (s) log

(
x′(kλ′)

1 − x′(kλ′)

)
ds

)

·
x′(kλ′)πH (1) +

(
1 − x′(kλ′)

)
πL (1)

r
.

Comparing this expression with (27) and noting x(k) ≤ min{x′(k), x′(kλ′)} for
k ≤ kλ′ (with strict inequality for a range of values), we get vλ (x0) > vλ′ (x0) .
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