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1 Discretizing the energy price process

Our starting point for the oil price process is the continuous time Geometric
Brownian Motion:

dx = µxdt + σxdz.

Letting ∆ represent the real-time duration of one discrete time period, we can
approximate the above process by a binomial process that governs the evolution
of xt as follows:
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The discount factor per period in the discrete version of the model is:

δ ≡ e−r∆.

In our numerical computations, we define a grid X consisting of possible
values of energy price as follows:

X =
{
x1, ..., xM

}
,

where

xm ≡ x0 ·
(
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)m

, m = 1, ..., M .

Here, x0 is some positive, arbitrarily small real number, and M is some
positive, arbitrarily large integer. Within this truncated grid, we assume that
the boundary grid points are absorbing states. By choosing a wide enough grid,
the effect of this approximation can be made negligible. The Markov process
used in the computations is then as follows. For xt = xm, 1 < m < M :
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and for xt = x1 and xt = xM :

xt+1 = xt with probability 1. (2)

2 Evaluating the value functions used in com-

putations

In our computations, we need to evaluate repeatedly expected values of the
following type. Given two grid points x, x ∈ X, some known function v : X → R,
and two known boundary values V (x) , V (x) ∈ R, define the following value
function:

V (x) ≡ E

[
t∗∑

t=0

δtv (xt) + δt∗ (V (xt∗))

]
, x ∈ X∩ [x, x] , (3)

where xt is the Markov process defined in (1) - (2) s.t. x0 = x, and where
t∗ = min {t ≥ 0 |xt ∈ {x, x}}. It is easy to evaluate (3) using value function
iteration. Note that the value function is simply a vector [x, ..., x] of real numbers
corresponding to grid points X∩ [x, x], with V (x) and V (x) fixed. A simple
algorithm to find V (x) proceeds as follows:

1. Set i = 0 and set some initial value V i for the value function (with V i (x) =
V (x) and V i (x) = V (x)).

2. Compute V i+1from:

V i+1 (xt) = v (xt) + δEV i (xt+1)

for all xt ∈ X∩ [x, x]

3. Set i = i + 1 and repeat step 2 until the value function has converged.

3 Solving the equilibrium capacities

As explained in the paper, the equilibrium is computed by solving the cor-
responding myopic investment problem for each capacity level. That is, we
discretize the capacity space letting

K ≡{0, ∆k, 2∆k, ..., K} ,

where ∆k is the size of each capacity increment and K is chosen to be so
large that it will never be reaced in equilibrium (profits would not justify further
entry at this level of capacity even if energy price were in infinity).
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Let us consider the discrete time version of equation (11) in the paper. The
problem of the myopic investor at an arbitrary capacity level k ∈ K, facing
feed-in tariff at level τ , can be written as:

Fm
τ (x, k) = max

x∗∈X

E

∞∑

t=t∗

δt · ∆ · [Rτ (k, xt) − rI] , (4)

where
t∗ ≡ min {t ≥ 0 |xt ≥ x∗ } ,

and where Rτ (k, xt) is the revenue flow of a new capital unit with tariff τ ,
capacity k, and energy price xt. The solution to (4) can be solved by standard
dynamic programming methods. In our matlab implementation we utilize the
following fact: since Rτ (k, xt) is increasing in xt, a necessary and sufficient
condition for immediate investment being optimal at some x ∈ X is:

V 0 (x) ≡ E

t+−1∑

t=0

δt · ∆ · [Rτ (k, xt) − rI] > 0, (5)

where x0 = x and t+ ≡ min {t > 0 |xt > x}. Therefore, to solve (4), we sim-
ply find the lowest x ∈ X such that V 0 (x) > 0. The expression (5) for an arbi-
trary x ∈ X can be evaluated by the value function iteration explained in section
2 above by setting x = 0, x = min {x′ ∈ X |x′ > x}, V (x) = ∆

δ
[Rτ (k, x) − rI],

V (x) = 0, and v (xt) = ∆ · [Rτ (k, xt) − rI].
Let us denote the solution to (4) for given k and τ by x∗

τ (k). Having solved
this for all k ∈ K, the equilibrium capacity path kτ : X → K is:

kτ (x̂) = max {k ∈ K |x∗
τ (k) ≤ x̂} .

4 Computing the effects of the subsidy on con-

sumer surplus and total welfare

We want to evaluate the difference in the producers’ and consumers’ surpluses
between two equilibrium paths: kτ (the equilibrium capacity with tariff τ ) and
k0 (the corresponding equilibrium without any tariff). We evaluate these as
present values computed at t = 0 with some initial value for energy price x0.

Let P (k, x) denote the market price of electricity, let C (k, x) denote the
cost of procuring the annual demand from market, and let Sτ (k, x) denote the
annual total subsidy with tariff τ , given total capacity k and oil price x. Here
we show that the effects of τ on consumers’ and producers’ surpluses can be
computed without explicitly computing Sτ (k, x).

Since capacity along an equilibrium path depends on the historical maxi-
mum value of the process, we need to evaluate expected discounted sums of
functions that depend on both the current and the historical maximum value
of the energy price process. To evaluate such expected values, it is useful to
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decompose the sequence of future dates into blocks in such a way that the ca-
pacity stays constant during each block. Towards that end, let tm denote the
earliest moment at which xt hits a grid point at or above xm:

tm ≡ min {t = 0, 1, ... |xt ≥ xm } , m = 1, ..., M .

Let m0 ∈ {1, ...M} denote the index of the initial grid point, i.e. we have

x0 = xm0

. Then, the sequence {tm}M
m=m0 is the random sequence of future

dates that contains only periods at which xt hits new record values (note that

tm
0

= 0). Let us also define tM+1 = ∞. Then, given any function f (x, x̂), we
can decompose the expected discounted sum of f (x, x̂) as follows:

E

∞∑

t=0

δtf (xt; x̂t) = E

M∑

m=m0

tm+1−1∑

t=tm

δtf (xt; x
m)

=

M∑

m=m0

Eδtm




tm+1−1∑

t=tm

δ(t−tm)f (xt; x
m)





=
M∑

m=m0

ρm · E




tm+1−1∑

t=tm

δtf (xt; x
m)



 , (6)

where the last line defines ρm ≡ Eδtm

and utilizes the fact that δtm

and
xt, t > tm, are independent random variables (by Markov property of xt). The
formula (6) is useful, because it breaks the infinite sum into a sum of M−m0+1
terms, each of which has constant x̂t = xm. Thus, each of those terms is a
discounted sum of a function that depends on current xt only, and can thus
easily be computed by the value function iteration explained in section 2.

We can now apply this formula to compute the expected total value of subsi-
dies that accrue to the investors due to tariff τ . Setting f (x, x̂) = Sτ (x,kτ (x̂))
in (6), we can write the expected present value of subsidies as:

S0
τ ≡ E

∞∑

t=0

δt · ∆ · Sτ (xt,kτ (x̂t)) (7)

=

M∑

m=m0

ρm · E




tm+1−1∑

t=tm

δt · ∆ · Sτ (xt,kτ (xm))



 .

Moreover, we can utilize the fact that kτ (x̂) is an equilibrium capacity path.
That is, free entry eliminates any profits to the entrants. In particular, this
means that the total discounted revenue per unit of capacity between any two
entry dates must correspond exactly to the investment cost expressed in flow
units:

E




tm+1−1∑

t=tm

δt · ∆ · St (xt,kτ (xm))

kτ (xm)



+E




tm+1−1∑

t=tm

δt · ∆ · P (xt,kτ (xm))



 = E




tm+1−1∑

t=tm

δt · ∆ · rI



 ,
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where the left hand side sums subsidies (first term) and market revenue
(second term), and right hand side gives the investment costs. Rearranging
this, and substituting in (7) allows us to express the total discounted value of
subsidies in terms of the price function P (x, k):

S0
τ =

M∑

m=m0

ρm · E




tm+1−1∑

t=tm

δt · ∆ · (rI − P (xt,kτ (xm))) · kτ (xm)



 .

The total consumer cost with tariff τ is the sum of market price paid by the
consumers and the subsidies paid to the investors, i.e.:

Cτ =

M∑

m=m0

ρm
E




tm+1−1∑

t=tm

δt · ∆ · C (xt,kτ (xm))



 + S0
τ (8)

=

M∑

m=m0

ρm
E




tm+1−1∑

t=tm

δt · ∆ · [C (xt,kτ (xm)) + (rI − P (xt,kτ (xm))) · kτ (xm)]



 .

The expected value in (8) can be computed by the value function iteration
of Section 2 by setting:1

x = xm, x = 0, x = xm+1,

V (x) =
∆

δ
[C (x,kτ (xm)) + (rI − P (x,kτ (xm))) · kτ (xm)] ,

V (x) = 0,

v (xt) = ∆ · [C (xt,kτ (xm)) + (rI − P (xt,kτ (xm))) · kτ (xm)] .

The change in consumer surplus due to tariff τ is

∆Cτ ≡ C0 − Cτ ,

where C0 is (8) evaluated at τ = 0.
Let us then consider the total social cost due to a distortionary tariff. Let k

denote an arbitrary capacity level. For each k > 0, let tτ (k) denote the period
at which equilibrium capacity exceeds k for the first time under tariff τ :

tτ (k) ≡ min {t ≥ 0 : kτ (xt) ≥ k} .

Consider then an infinitesimal increment to capacity at current capacity
level k. The socially optimal moment to build that incremental unit without
distortionary tariff is given by t0 (k), yet in equilibrium with tariff τ this unit
is built already at moment tτ (k) ≤ t0 (k). Since the flow social benefit of that
incremental unit is given by P (xt, k) and the corresponding flow social cost is

1Also ρm = Eδt
m

can be computed with the same algorithm setting x = x0, x = 0,
x = xm, V (x) = 0, V (x) = 1, and v (xt) = 0 for all xt < x.
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given by rI, the expected social cost of building that particular unit at tτ (k)
instead of optimal time t0 (k), as measured at moment tτ (k), is given by

E




t0(k)∑

t=tτ (k)

δt · ∆ · (rI − P (xt, k))



 .

Summing this over all incremental capacity units (i.e. integrating over k)
and expressing everything in the present value units of time t0 gives us the total
social loss due to tariff τ :

∆Csoc
τ =

∞∫

k=0

Eδtτ (k) · E




t0(k)∑

t=tτ (k)

δt · ∆ · (rI − P (xt, k))



 · dk. (9)

Again, the expected values in this expression can be evaluated with the value
function iteration. Finally, since the social cost of the distortinary tariff must
be the sum of changes in the consumers’ and producers’ surpluses, we get the
change in the producers’ profits simply as:

∆Wτ = ∆Csoc
τ − ∆Cτ .
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