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For the ease of readers, this supplementary material contains the detailed deriva-
tions of Lemmas 5, 6, 7, and 8. We keep the same numbering as in the main text
to facilitate easier comparison.

Lemma 5. For all (x, q) such that q < 1 and x ≤ xE(q), function g(x, q) in (9) is
strictly positive, strictly increasing in x, and Lipschitz continuous. Furthermore,
g(xE(q), q) > xE

′(q) for q < 1 and limq→1 g(xE(q), q) = xE
′(1).

Lemma 6. For all (x, q) with q < q∗ (x), we have

V ∗xx (x, q) = V ∗xx (x, q∗ (x)) = B (q∗ (x)) Φxx (x, q∗ (x)) .

Lemma 7. For all (x, q) with q > q∗ (x), we have

V ∗q (x, q) + xvH (q) + (1− x) vL (q) ≤ 0.

Lemma 8. For all (x, q∗(x)) with q∗ (x) > 0, we have

V ∗(x, q∗(x))
q∗(x) + xvH (q∗(x)) + (1− x) vL (q∗(x)) > 0.

Proof of Lemma 5. Taking the derivative of g(x, q) with respect x gives:

gx(x, q) =−
[
β′′(q)

(
x2(1− 2x)(β(q)− 1)3vH(q)2 − 2(1− x)xβ(q)(β(q)− 1)

× vH(q)vL(q)((1− 2x)β(q)− x) + (1− x)2(1− 2x)β(q)3vL(q)2
)

+ β′(q)
(

2x2(2x− 1)(β(q)− 1)2vH(q)2β′(q) + (1− x)2β(q)2vL(q)

×
(

2(1− 2x)vL(q)β′(q)− 2x(β(q)− 1)v′H(q)− (1− 2x)β(q)v′L(q)
)

+ xvH(q)
(

4(1− x)vL(q)β′(q)
(
(1− 2x)β(q)2 + 2xβ(q) + x

)
− x(β(q)− 1)2

(
(1− 2x)(β(q)− 1)v′H(q) + 2(1− x)β(q)v′L(q)

)))]
/[

(x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q))2β′(q)
]
.

Both g(x, q) and gx(x, q) are bounded if their denominators are bounded away
from zero. We show that this is true if q < 1 and x ≤ xE(q) by showing that it
holds at x = xE. First for the denominator of g(x, q) we have:

xE(q)(β(q)− 1)2vH(q) + (1− xE(q))(β(q))2vL(q) < 0, (22)
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for all q ∈ [0, 1). Notice that the left-side is increasing in x and hence (22) implies
the same inequality for all lower x. The condition (22) is equivalent with

−(β(q)− 1)β(q)vH(q)vL(q)
β(q)vL(q)− (β(q)− 1)vH(q) < 0

which is true because the numerator is positive (other terms are positive except
vL(q) < 0) and the denominator is negative. Together with β′(q) < 0, this implies
that the denominator of g is strictly positive and bounded away from zero. We
can also conclude that both g and gx are bounded and continuous in both x and
q for all (x, q) such that q < 1 and x ≤ xE(q). Hence g is Lipschitz continuous for
all q < 1.

To see that g(x, q) > 0, it is now enough to show that the numerator of (9) is
strictly positive. First notice that the second term inside the brackets is always
positive but the first term can be negative.16 The first term is scaled by x, while
the second therm is scaled by (1 − x). Therefore, if the numerator is positive at
a belief above the boundary, it must be positive for the belief at the boundary
as well. Since the decentralized belief, xE(q), is always above the fully optimal
boundary, we can use it to show that the numerator is positive.

Plugging in xE(q) to the numerator of (9) and dividing by x(1− x) gives:

β(q)vL(q)
(
β′(q) (β(q)− 1) v′H(q)−

(
(β(q)− 1) β′′(q)− 2 (β′(q))2

)
vH(q)

)
β(q)vL(q) + (1− β(q))vH(q)

+
(1− β(q)) vH(q)

(
β′(q)β(q)v′L(q)−

(
β(q)β′′(q)− 2 (β′(q))2

)
vL (q)

)
β (q) vL (q) + (1− β (q)) vH (q) .

Since the denominator is negative (vL < 0 and β > 1), this is proportional to

[vH(q)v′L(q)− v′H(q)vL(q)]β′(q)β(q)(β(q)− 1)− 2vH(q)vL(q)(β′(q))2,

which is always positive because vH(q) > 0 and vL(q), v′H(q), v′L(q) < 0. Hence,
q(x, q) > 0 for all q ∈ [0, 1) and x ≤ xE(q).

Similar direct calculations show that gx > 0 for all (x, q) such that q < 1 and
x ≤ xE(q).

Next, insert xE(q) to (dropping all dependencies) (9):

g(xE(q), q) =
−β(1−β)vLvH

(βvL+(1−β)vH)2

β′β(1−β)vLvH
βvL+(1−β)vH

(
β′β(1− β)(vLv′H − v′LvH)

βvL + (1− β)vH

+ βvLvH(−2β′2 + (β − 1)β′′)
βvL + (1− β)vH

+ (β − 1)vLvH(−2β′2 + ββ′′)
βvL + (1− β)vH

)

=vH (2vLβ′ − (β − 1)βv′L) + (β − 1)βvLv′H
((β − 1)vH − βvL)2 .

16This follows from vL(q) < 0,v′ω(q) < 0, β′(q) < 0, β(q) > 1 and that β(q)β′′(q) > 2(β′(q))2.
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The derivative of the decentralized policy xE is

xE
′(q) =vH (vLβ′ − (β − 1)βv′L) + (β − 1)βvLv′H

((β − 1)vH − βvL)2 .

By subtracting xE ′(q) from g(xE(q), q), we get

g(xE(q), q)− xE ′(q) = β′(q)vL(q)vH(q)
(β(q)vL(q) + (1− β(q))vH(q))2 .

This expression is strictly positive for q < 1 and goes to zero as q goes to 1 (since
vH(q)→ 0).

Proof of Lemma 6. Fixing some (x, q) such that q < q∗ (x), differentiating (17)
twice with respect to x, and simplifying gives:

V ∗xx (x, q) = V ∗xx (x, q∗ (x)) + 2 (q∗)′ (x)
(
V ∗xq (x, q∗ (x)) + vH (q∗ (x))− vL (q∗ (x))

)
+ (q∗)′′ (x)

(
V ∗q (x, q∗ (x)) + xvH (q∗ (x)) + (1− x) vL (q∗ (x))

)
+
(
(q∗)′ (x)

)2 (
V ∗qq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))

)
. (23)

Noting that q∗(x) is the inverse function of x∗(q), the second term on the right-
hand side vanishes by condition (20) and the third term vanishes by the condition
(19). Let us look at the last term. First, since (19) holds along the boundary
(x, q∗ (x)), we can totally differentiate it with respect to x to get:

0 = V ∗xq (x, q∗ (x)) + V ∗qq (x, q∗ (x)) (q∗)′ (x) + vH (q∗ (x))− vL (q∗ (x))
+ [xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))] (q∗)′ (x) .

Applying (20), several terms disappear and this reduces to

V ∗qq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x)) = 0.

The last term in (23) vanishes as well, and it follows that V ∗xx (x, q) = V ∗xx (x, q∗ (x)).

Proof of Lemma 7. If the claim is not true, there must be some x and q > q∗(x)
such that

V ∗q (x, q) + xvH(q) + (1− x)vL(q) > 0. (24)

We show that this leads to a contradiction by showing that (24) implies V ∗xq(x, q)+
vH(q) − vL(q) > 0, which further implies that (24) holds also for all beliefs in
[x, x∗(q)], including V ∗q (x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) > 0, which con-
tradicts (19).
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It remains to show that (24) implies V ∗xq(x, q) +vH(q)−vL(q) > 0. First notice
that V ∗q (x, q) = Bq(q)Φ(x, q)+B(q)Φq(x, q), which then together with (24) implies

Bq > −
Φq

Φ B − xvH + (1− x)vL
Φ

where we have left out all dependencies to simplify notation. We now get the
following lower bound:

V ∗xq + vH − vL = BqΦx +BΦxq + vH − vL > −
ΦqΦx

Φ B − Φx

Φ (xvH + (1− x)vL)

+BΦxq + vH − vL = Φ−1[B(ΦxqΦ− ΦqΦx) + Φ(vH − vL)− Φx(xvH + (1− x)vL)].
(25)

The first term can be simplified as

Φ−1B(ΦxqΦ− ΦqΦx) = BΦβ′
x(1− x) = Φβ′

x(1− x)
Φ∗x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)

Φ∗xqΦ∗ − Φ∗qΦ∗x

= x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)],

where the notation Φ∗ refers to Φ(x∗(q), q).
Now, (25) becomes

x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)] (26)

− 1
Φ[Φx(xvH + (1− x)vL)− Φ(vH − vL)]

= 1
x(1− x)

( Φ
Φ∗ ((β − 1)x∗vH + β(1− x∗)vL)− ((β − 1)xvH + β(1− x)vL)

)
,

where we have used the following for both terms inside the brackets:

Φ(vH − vL)− Φx(xvH + (1− x)vL) = Φ(vH − vL)− Φ β − x
x(1− x)(xvH + (1− x)vL)

= −Φ
x(1− x)((β − 1)xvH + β(1− x)vL).

To conclude that (26) is larger than 0, notice first that (β−1)xvH+β(1−x)vL < 0
whenever x < xE(q) and that it is increasing in x. Then observe that Φ/Φ∗ ∈ (0, 1)
and hence (β − 1)xvH + β(1− x)vL < (Φ/Φ∗)((β − 1)x∗vH + β(1− x∗)vL).

We conclude that V ∗q + xvH + (1− x)vL > 0 implies V ∗xq + vH − vL > 0 and the
proof is complete.

Proof of Lemma 8. By definition of function Φ (x, q), the following holds for all
x > 0, q > 0:

rB (q) Φ (x, q) = 1
2B (q) Φxx (x, q) x

2 (1− x)2

σ2 q.
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Differentiating w.r.t. q, the following holds as well:

r (Bq (q) Φ (x, q) +B (q) Φq (x, q)) = 1
2B (q) Φxx (x, q) x

2 (1− x)2

σ2

+ 1
2 (Bq (q) Φxx (x, q) +B (q) Φxxq (x, q)) x

2 (1− x)2

σ2 q

= r
B (q) Φ (x, q)

q
+ 1

2 (Bq (q) Φxx (x, q) +B (q) Φxxq (x, q)) x
2 (1− x)2

σ2 q.

In particular, this holds for any q > 0, x = x∗ (q):

r (Bq (q) Φ (x∗ (q) , q) +B (q) Φq (x∗ (q) , q)) = r
B (q) Φ (x∗ (q) , q)

q

+ 1
2 (Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)) x

∗ (q)2 (1− x∗ (q))2

σ2 q. (27)

From (19), we have

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q))+r (Bq (q) Φ (x∗ (q) , q) +B (q) Φq (x∗ (q) , q)) = 0,
(28)

and so combining (27) and (28) we get

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q)) + r
B (q) Φ (x∗ (q) , q)

q
(29)

+1
2 (Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)) · x

∗ (q)2 (1− x∗ (q))2

σ2 q = 0.

Plugging in (14) and (15) for B (q) and Bq (q), we get by direct computation at
x = x∗ (q):

Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)

= x∗ (q) (β (q)− 1)2 vH (q)− (1− x∗ (q)) (β (q))2 vL (q)
x∗ (q)2 (1− x∗ (q))2 . (30)

Rearranging the equation that defines the policy function xE(q) of the decen-
tralized equilibrium in Proposition 1, we have

xE (q) (β (q)− 1) vH (q)−
(
1− xE (q)

)
β (q) vL (q) = 0.

We have shown in Part 1 of the Appendix C.2 that x∗ (q) < xE (q). Noting
that β(q) > 1, vH (q) > 0 and vL (q) < 0, it follows that

x∗ (q) (β (q)− 1)2 vH (q)− (1− x∗ (q)) (β (q))2 vL (q) < 0

and so it follows from (30) that

Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q) < 0. (31)

5



Combining (29) and (31) gives

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q)) + r
B (q) Φ (x∗ (q) , q)

q
> 0,

which is equivalent to

xvH (q∗ (x)) + (1− x) vL (q∗ (x)) + B (q∗ (x)) Φ (x, q∗ (x))
q∗ (x) > 0

for all x for which q∗ (x) > 0.
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