Online Appendix

for Gradual Learning from Incremental Actions

Learning process as the continuous limit

Consider a discrete model where the number of agents is n and where the period
length is dt. Let the signal process be such that in each period, each agent who

has stopped generates a normally distributed conditionally iid. signal:

, Lo, dt o3dt
i~ N[ —— .
yt ( n ) n

This normalization keeps the informativeness of the aggregate signal constant
while letting the number of small agents to grow as in Bergemann and Valiméki

(1997).

When the number of agents who has stopped is k& < n, this implies the following

aggregate signal:
iyz ~ N (uwdtg,ozdtg) :

Let ¢ = k/n denote the fraction of agents who have stopped. Now, the signal
process (1) follows once we take the limit when n — oo (and & — oo so that k/n
stays fixed) and dt — 0.

Notice that the limiting distribution for the aggregate signal depends only on
the mean and the variance of y! (the central limit theorem). Hence, the signal
process (1) is also the limiting process for the case where ! is not normally dis-

tributed, including the case where agents communicate through binary signals.

Furthermore, we can rewrite the model so that the individual signals represent
realized payoffs in a model where agents start receiving a stochastic flow payoff
after stopping: 7(0) = 7,(0)e,(0) where €,(0) ~ N (0,0%(mx(0) — 7(0))?). The
noise term is scaled so that every increment in ¢ is equally informative. This
assumption is not necessary: as Section 6 points out, both the analysis and the
qualitative results remain unchanged with heterogeneous informativeness if the
stopping profile is monotone. When we set 7, (0) = rv,(0), the expected stopping

1



payoff is z;vy (0)+(1—x;)vy (0) just like in the main text. Since there are no further
actions after stopping, it does not matter how fast the agents learn privately the
true state after they have stopped: the parameter o can be interpreted to capture

both the noise in the private learning and the noise in communication.

Social optimum: proof of Lemmas 4, 5, 6, and 7

Proof of Lemma 4. Taking the derivative of g(z,q) with respect x gives:

9o(,q) =~ [B”(Q) (962(1 —22)(B(q) — 1)’vr(9)* — 2(1 — 2)2B(q) (B(q) — 1)
% m(@)urg)(1 - 2008(g) = 2) + (1 - 2)(1 - 20)8(0)*v1 (0)?)
+810) (262~ D@ — V2ou(@?H (@) + (1~ 25000
x (201 = 20)000)5'(0) — 20(5(a) = 1wiyla) — (1 = 20)3(0)0}, (o))
+av(o) (401 - 2)on ()8 () (1~ 20)3(0)? + 208(q) + )
— 2(B(0) (1 = 20)(8(a) — Degg() + 20~ )80 0)) ) )|/
(@(B(@) = un(@) + (1 = 2)(50) o (@)*5 (0)]

Both ¢(z, ¢) and g,(z, q) are bounded if their denominators are bounded away

from zero. We show that this is true if ¢ < 1 and 2 < 2¥(q) by showing that it

hold at z = zF:

2P (q)(B(q) — 1)?vu(q) + (1 — 2%(9))(8(¢))*vL(q) <O, (33)

for all ¢ € [0,1). Notice that the left-side is increasing in = and hence (33) implies

the same inequality for all lower x. The condition (33) is equivalent with

B(q)(B(g)vrle) — (B(q) — Dvu(q))
B(q)* v (q) = (B(q) — 1)%vx (q)

which holds as (q) > 1 and vg(q) > 0. We can conclude that g and g, are

>1 <= (8(q) — Dvu(q) >0,

bounded and continuous in both x and ¢ for all (z, ¢) such that ¢ < 1 and z < 2%(q)
and hence ¢ is Lipschitz when we gap ¢ away from 1. The denominator of g(x, q)

is strictly positive.



To see that g(x,q) > 0, it is now enough to show that the numerator of (9) is
strictly positive. First notice that the second term inside the brackets is always
positive but the first term can be negative.'® The first term is scaled by z, while
the second therm is scaled by (1 — x). Therefore, if the numerator is positive at
a belief above the boundary, it must be positive for the belief at the boundary
as well. Since the decentralized belief, 2¥(q), is always above the fully optimal

boundary, we can use it to show that the numerator is positive.

Plugging in 2% (q) to the numerator of (9) and dividing by x(1 — ) gives:

Bla)vr(a) (B'(g) (Bla) — 1) vy () — ((B(g) = 1) B"(q) = 2(3'(0))*) v (q))
B(q)vr(q) + (1 = B(q))va(q)
(1= B(a) varla) (3'(9)B(a)vr,(a) — (B(a)8"(a) —2(8'(2))*) vi (0))
B(q)ve (q) + (1= B(q) va (q) '

Since the denominator is negative (v, < 0 and 5 > 1), this is proportional to

_l’_

[wr(@vi(a) — v (@)vr (@B (0)B(a)(B(a) — 1) — 2vm(@)ve(e)(B'(a))*,
which is always positive because vy (q) > 0 and v (q), vy (q),v7(¢) < 0. Hence,
q(x,q) > 0 for all ¢ € [0,1) and = < 2F(q).

Similar direct calculations show that g, > 0 for all (z,¢) such that ¢ < 1 and
x < 2%(q).

Next, insert 2¥(q) to (9):

—B(1—B)vrv
(5(q), g) = Pt ~B)ou)® </’3'/3(1 — D) (vLvly — vpvn)
g ’ B'BA-Plorvy Bur + (1 — Boy

Bup+(1-B)vy
N By (—28" + (B —1)3") LB Dvrvg(—287 + ﬁﬁ”))
por + (1 = Bon por + (1 = Bvn
vy (2up B — (B — 1)By}) + (B — 1)Bugvly
(8 = 1Dvyg — por)? '

The derivative of the decentralized policy x¥ is

2P e = (9 = D)) + (8~ Dl
(5= Dvn — o) |

5 This follows from v, (q) < 0,v.,(q) < 0,3 (¢) < 0,8(¢q) > 1 and that 8(¢)3"(q) > 2(8'(q))?.




By subtracting 2%’ (¢) from g(z*(q), ¢), we get

g = B'(q)vr(q)vu(q) _
(B(q@)vele) + (1 — B(q))vu(q))?

This expression is strictly positive for ¢ < 1 and goes to zero as ¢ goes to 1 (since

vy (q) = 0). O

E’(

9(z"(q),q) — =

Proof of Lemma 5. If the claim is not true, there must be some z and ¢ > ¢*(x)

such that
Vi(x,q) + zvg(q) + (1 — x)vr(q) > 0. (34)

We show that this leads to a contradiction by showing that (34) implies V,,(z, ¢)+
v (q) — vr(q) > 0, which further implies that (34) holds also for all beliefs in
[z, 2*(q)], including V,(2*(¢),q) + 2*(q)vu(q) + (1 — 2*(g))vr(q) > 0, which con-
tradicts the value matching condition (25).

It remains to show that (34) implies Vi, (z, ¢) +vu(q) —vr(g) > 0. First notice
that V,(x,q) = B,(q)®(z, q¢) + B(q)®,(, ¢), which then together with (34) implies

D, zvg + (1 — x)vg
Bq > —EB — D

where we have left out all dependencies to simplify notation. We now get the

following lower bound:

V;]x +ovg — v = Bq(I)m -+ B(I)qx +vg — v

(I)q(I)m D,
% B—E(va—i-(1—x)vL)+B<I>qx+vH—vL
= 07 [B(®y® — ,0,) + P(vy — vr) — Ou(zvy + (1 — 2)vy)]. (35)

The first term can be simplified as

B(D / CI) / (I)* * 1 % _ (I)* _
7 'B(®,D — D,0,) = Fo_ o5 ®(atvm+ (1 -2 (v —vr)
z(1—2) z(1—2x) (I)ZI(I)* — (I)Z(I);
*(1—a%) P
(1 —x) (ID*CID*[ (@ vm + (1= 2%)ur) (vg — L)),

where the notation ®* refers to ®(z*(q), q).



Now, (35) becomes

*(1—2a%) P

o2y T T vn + (1= a7)os) = (g — vy

1
- 5[@1;(:1:1};1 + (1 = 2)v) — P(vg — v
P

1

= —x(l — l’) (@((ﬁ - 1)1’*1}]{ + 6(1 — J]*)UL) - ((B — 1)5L‘UH + ﬁ(l — l‘)’UL)),

(36)
where we have used the following for both terms inside the brackets:

O(vy —vp) — Pu(zvg + (1 — 2)vy) = vy — o) — @%
—-o
= m((ﬁ — Davy + (1 — x)vy).

(xvg + (1 — x)vy)

To conclude that (36) is larger than 0, notice first that (5 —1)azvy +6(1—x)vy < 0
whenever x < x¥(g) and that it is increasing in z. Then observe that ®/®* € (0, 1)
and hence (8 — 1)zvyg + 5(1 — z)vy, < (D/D*)((8 — 1)z*vy + B(1 — x*)vy).

We conclude that V, +zvy + (1 — z)vy, > 0 implies V,, + vy — v, > 0 and the

proof is complete. O

Proof of Lemma 6. Fixing some (x,q) such that ¢ < ¢* (), differentiating (23)

twice with respect to x, and simplifying gives:

Vie (,q4) = Vi (2,¢" (2)) (37)
+2(q") () (Vo (20" () + 01 (0" (@) = vz (" (x)))
+(g")" (@) (Vg (x,4" () + 2vy (" (2)) + (1 — 2) v}, (¢ (2)))
(@) (@) Vg (2.0 (@) + 20y (¢ (@) + (1 - 2) V), (¢" (2))).

The second term on the right-hand side vanishes by the value-matching condition
(25) and the third term vanishes by the smooth-pasting condition (26). Let us
look at the last term. First, since (25) holds along the boundary (z,q¢* (z)), we

can totally differentiate it with respect to x to get:
0 = Vi (2,q" () + Vg (2,4" (2)) (¢) (2) + v (¢" () = vr (¢ (2))

+[2vy (¢ (2)) + (1= 2)vp (¢" (@) (¢7) ().
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Applying (26), several terms disappear and this reduces to

Vaa (2, " (2)) + avy (¢ (2)) + (1 — 2) v (¢" (2)) = 0.

The last term in (37) vanishes as well, and it follows that V., (x, q) = Vi (2, ¢* (2)).
Since this holds for any ¢ < ¢* (x), it immediately implies that V., (z,¢) =0. O

Proof of Lemma 7. This is by direct computation. Recall that the value function
for ¢ > ¢*(x) is V(x,q) = B(q)®(z, ¢) and hence

Vieg =Bg(0)Pau (2, q) + B(q)Pag(, ).

Plugging in the expressions for B,(q) and B(g) from (20) and (21), multiplying
by r, simplifying, and evaluating at ¢ = ¢*(z) gives:

(B (@) —1)* +a(l-2)

T‘/;:xq (l’, q* (l’)) = IQ (1 _ 11)2 vr (q* (l’))
RN (4 ) = 0" ().

Noting that 8 (¢* (z)) > 1, vr (¢" (z)) < 0, and vy (¢* (x)) — vr (¢* (x)) > 0, it
follows that V., (z,¢* (z)) < 0.

Static implementation: proof of Lemma 3

Proof. We first prove the increasing differences property that is crucial for global
incentive compatibility. Denote by U (9, §) the expected payoff at time ¢ = 0 for
type 6 that reports 6:

U (0.0) - E{e_”@ (2, 3y (6) + (1 - xT@))vL(Q))] ~ Ry (8).

Its partial derivative with respect to 6 is
U1 (6.8) =E|e e, goi () + (1 = 2, 5)01,(6))]. (39)

The property that we want to prove is that U (0, 5) is increasing in 6. To do
that, note that applying the law of iterated expectations, we can write U (6’, §>
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in terms of the initial belief z, as
U, (9, g) = 1o <e_"(5)v}{ 0) |w= H) +(1—z)E (e_”(g)U’L 0) |w= L)
= 200y () E (e_”@) lw = H) + (1 =)0, (A)E (e_”@ lw = L) :

Since v}, (#) > 0 and v}, (#) > 0 (with at least one of the inequalities strict), both
terms in the above expression are positive. Reported type 0 enters the expression
only through the discounting terms E <e_”(5> |w) Since 0" > ¢ implies that
7(0") :=inf{t:qu=1-F (0"} < 7(0) = inf{t:q=1—F(0")} with prob-
ability 1, it follows that E (e_”@) ]w) is strictly increasing in 0 irrespective of
state w, and hence U, («9, é) is strictly increasing in 6 as well.

We now utilize the above property to show that incentive compatibility holds
for all types #. Note first that we used the envlope theorem to set the transfer

payment in (10) so that the value of 0 satisfies:

Wol6) = E|e " (wgon(6) + (1 - 220)ur(6))]| - RO)

= E [ / et (oo (s) + (1 - $r<s>)U’L(8)))d«S] :

[4

Therefore, for arbitrary 6" and 6", we have

Wo(eu) _ WO(Q’) - l:/ 6—7"7'(8) (1‘7(3)1}}{(5) + (1 — J}T(S))U/L(S)))ds} . (39)

a/l

!

We can now write the payoff of type 6 who reports 0 as:
. o 6 . . 0
U(6,6) = U(e,e)+/2 Ur (5.0) ds = Wo (8) + [ U (5.0) ds
< W, (6) +/,6, U, (s,)ds =
= W (9) +E {/; e (xT(s)v}I(s) +(1- $T(s))UIL(S))>d8:|
= Wo(0),
where the inequality uses the property that U (6’, 5) is increasing in 0, the second

last equality uses (38), and the last equality uses (39). This shows that it is
optimal for an arbitrary type 6 to report truthfully.

To see that participation constraint is satisfied it sufficies to note that by

reporting § any type gets a weakly positive payoff.



Dynamic implementation: proof of Proposition 4

Proof. Fix a boundary policy @ with a strictly increasing boundary z (¢) and
7 (q1) = 1. We analyze the optimal stopping problem of arbitrary type 6. We will
show that under PP (z) it is optimal to stop at the first hitting time of the point
(Z(q(0)),q(#)) and the same conclusion holds under P* (q) if (P*g)/ (q) > 0 for
all 0 < ¢ < ¢;. Finally, we show that if (PS)/ (q) < 0 for some ¢, then type 6 (q)

has a profitable deviation to stopping at some (2/,¢') with 2’ < Z (¢), ¢ < q.
Step 1: Optimal stopping when stopping below boundary prohibited

As a preliminary step we confirm that under both PP (z) and P° (q) it is
optimal to stop at (Z (¢ (0)),q(0)) if stopping below the boundary is prohibited.
This restricted stopping problem is still a Markovian stopping problem where the
optimal solution is a first-hitting time of some of the boundary points. Under both
PP (x) and P? (z), stopping at boundary point (7 (¢) , q) entails transfer payment
P(Z(q),q) given in (11), which is designed in such a way that ex-ante expected
payoff is equivalent to reporting 6 (¢) in the static direct mechanism. According to
Lemma 3 it is optimal for 8 to report truthfully in the static direct mechanism and
so it follows that stopping at (Z (¢ (6)), ¢ (0)) is optimal in the restricted stopping

problem.
Step 2: Optimal stopping under dynamic posted price P (z)

We will utilize the property that the stopping value u}’ () is indepenent of ¢ to
show that even if stopping below the boundary is allowed, an agent will optimally
stop at a first-hitting time of some boundary point. For contradiction, assume that
type 0 stops with a strictly positive probability at the first-hitting time of some
point below the boundary and let (2/,¢’) be the "left-most" such point. Formally,
denoting by Fp (z,q) the optimal value function of type 6, let (2/,¢'), 2’ < z (¢'),
be a state point such that F (z',¢') = u} (z') and F (z,q) > u (x) for all points
with ¢ < ¢'.'% We can write Fy (z,q) = By (q) ® (x, q) for some function By (q) so

16 Note that we must have Fy (7 (q),q) > u} (Z(g)) also at all boundary points with ¢ <’
because all those boundary points are visited before point (z’,¢’) and hence otherwise stopping
could not take place with positive probability at (z',¢’) .



that
~—Fy(r,q) = By(q) ®(x,q9) + By (q) Py (v,q)

1—=x

where we have used that ®, (z,q) = ' (¢)In (ﬁ) O (z,q).

Similar to the proof of Proposition 1, we note that the partial of a value
function w.r.t. ¢ must be zero at the boundary z = 7 (¢), i.e. for ¢ < ¢’ we have

(%Fg (2, 4)),—7(y = 0 and so

1—2(
But since ' (¢) < 0 and Z (¢) > x, this implies that

BM®+BM®B%®m(4ﬂﬂa>:u

By @)+ By (a) & (0)n (1) > 0.

and so we have a%Fg (z,q) > 0. This is a contradiction with our assumption that
Fp(2/,q) = uf (2') and Fy (z,q) > u} (z) for all points with ¢ < ¢.

We can conclude that the optimal stopping time must be the first hitting time
of some boundary point. This means that the solution must be the same as if
stopping below the bounday is prohibited. By step 1 above, it is then optimal for
0 to stop at the first-hitting time of point (z (¢ (6)),q(0)).

Step 3: Optimal stopping under simple posted price P° (q)

Since the stopping value uj (x,q) is now a function of ¢ as well as x, the

argument in the second step above does not hold and we will use a more direct
approach. We will first directly show that if P° (q) is increasing everywhere, it is
optimal for type 6 to stop at the first hitting time of point (Z (¢ (0)),q (¢)) that
we denote by
7o o= nf{t: (21, q) = (2 (q(0)),q(0))}.

After that we will show that if (PS)/ (q) < 0 for some ¢, then type 6(q) has a
profitable deviation to stop at some (2, ¢') with ¢’ < ¢ (0), 2’ < Z(¢).

Let us first investigate the implication of the condition (PS )l (g) > 0. We can
write

P%(q) =z (@) v (0(a)) + (1 — 2 (q)) v (0 () — S (a).
9



where S (¢) is the information rent obtained by type 0 (¢q) evaluated at the moment

of stopping;:
82 —r7(s) / / ~
S@=E| [ e (g () + (1= 209) v, (9)) ds [ () |

We next differentiate P° (q) with respect to ¢q. Note first that for any s < 6 (q)

we can write
E|e3 (0),q] = A (@) @ (F(a) . 0) (40)

for some function A, (q). Since ¢; increases at the boundary, the partial derivative
of (40) w.r.t. ¢ must be zero there, i.e.: %E [e_”(s) 1z (q) ,q} = 0. Therefore, the

change of (40) when moving the initial point along the boundary is

din [ —r7(s) ”.f (q) ,Q} _ ;L.E [ —r7(s) |l’, q}x:g(q) 7 (q)
= A (@) ®: (7 (q),9) 7 ()
_ (I)$ (% (q) 7q) =~/ —r7(S) | =
= 0. (@E eV E(q),q].  (41)

Using this, we get:

§'(q) = (55 (q) v (0(9) + (1= () v, (0 () )¢’ (9)

b [ S D () e (2t 5)+ (1= 3000) 6, 4) 2 ) ] s
~ (F @i @)+ 1 -7 @) 6@))0 @+ T 507 @), (42

where the first term is from differentiation with respect to the integral bound and
the second term is from differentiation with respect to the initial point Z (¢) using

(41). The derivative of P (g) with respect to ¢ is then

(P) (a) =2 (a) (vrr (8.(0) — vz (6.(a)))
+ 7 (q) vy (0(q) + (1 =2 (q)) v (0(q)]8 (¢) =5 (q)

My Y -0 (T(q)9) =
= on 0@~ 0(0) - FE DD 7 @
Hence, (PS )/ (g) > 0 is equivalent to
o (0(0)) — v, (0(q)) > 22Z DD g ). (43)
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a condition that we will utilize below.

We now show that it cannot be optimal to stop below the boundary z (¢) for
q < q(0). Fix (x,q) with ¢ < ¢ (0) and < 7 (q). We show that stopping at (x, q)
is dominated by waiting until x hits Z (¢). Denote the value under that stopping
rule by
Ey(w,q) = E | (2,q) 2,q] |

where 7 (7 (¢q)) = inf {t : 2, = T (q)}. Writing Fy (z,q) := Ay (q¢) ® (x,q) and solv-
ing A, (q) from the boundary condition F, (7 (q),q) = u; (Z (q), q) gives us

cb(xvq) ’LLS T

We aim to show that below the boundary, i.e. for z < 7 (¢), we have I (z,q) >

Ee (mv Q) =

u3 (z,q). Let us differentiate these functions with respect to z, and evaluate the

derivative at the boundary:

g (2 )y = v 0) — 2. (0)

and
9 _ %% (Z(9).9) -
oz Lo @l = 3 (0.9 0(Z(q),q)

P, (Z(9).9) . -
= (7 (q).q) [$~(Q) (v (0) — v (0 (q)~)) +(1—2(q)) (v (8) — v (0(q))) + S (q)]
<o (0) SO E W 0y ) P 00 F S - w000 2
= vy (0) — v (0) + (%) (vir (0) —vi (0(q))) + ggg; (v () — vz, (6 (q)))

< Vg (9) — vy (09),

where the first inequality utilizes the fact that (P®)' (¢) > 0 is equivalent to (43)
and the second inequality utilizes the fact that ¢ < ¢ (@) implies that vy (0) —
v (0(q)) < 0and v (0) —vg (0(q)) < 0 with at least one of the inequalities strict

It now follows that

0 J 1 g
o [ (@, 0oy < 5 (6 (#.0)]
and since F, (z,q) is strictly convex in z and positive for x < 7 (¢) while uj (z, )

is linear in x, we have

Fy(e,q) > uf (2.q) for o < (q),
11



and so stopping at (x,q) is strictly dominated by waiting until = hits z (¢). Since
(x,q) was arbitrarily chosen, it can never be optimal to stop strictly below the
boundary for ¢ < ¢ (#). But we know from Step 1 of the proof that stopping at
point (Z (¢ (6)),q(0)) dominates stopping at other boundary points. This implies

that it can never be optimal for § to stop ealier than at 7.

The above argument ruled out stopping below the boundary only for ¢ < ¢ ().
It remains to show that 6 cannot benefit from delaying stopping beyond time 75
to the hitting time of some (x,q) with ¢ > ¢ (0), * < Z(q). For that it sufficies
to show that it is optimal to stop at all boundary points for ¢ > ¢(0), i.e. at
all (Z(q),q) for ¢ > q(0). The proof follows similar reasoning as the proof of

Proposition 1.

Suppose, to the contrary, that there is some (Z (q),q) such that ¢ > ¢(0)
where it is not optimal to stop. At that point we therefore have Fy (% (q),q) >
uf (% (q), q), where Fy (z,q) is the value function under the optimal stopping rule
(whatever that may be). We will show next that this implies that along the
boundary, the rate of change in Fy (Z (¢), q) is higher than in uf (% (¢),q):

TR0 > 10 (30).0). (44)
We prove this separately in two possible cases. First, suppose that it is optimal
to stop for some (2/, q), where 2’ < & (¢). In that case F, (2, ¢) = uj (2/,¢). Since
Fy (z,q) must be strictly convex in  whenever it is optimal to wait (i.e. when
Fy(z,q) > u§ (z,q)), whereas u$ (z, q) is linear in z with slope vy (8) — vy, (8), we

must have
0 r~

o [Fo(@)] ;> vn (0) = ve(6). (45)

z=1(q)
Let us now compare the rates of change in £y (7 (¢), ¢) and u$ (& (¢) , q) along
the boundary. We have

d

— (3 (q),q) =

dq Fy(ea)] - F (@) + 5 Fy(%(q),q)

v=3(q) dq

Fo@a) - @),

0
ox
0
Ox z=x(q)

where we have again utilized the fact that the partial of a waiting value w.r.t ¢
must vanish at the boundary where ¢ is increased, i.e. %ﬁg (Z(q),q) =0.
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The stopping value at (x,q) is

up (2,q) = zvg (0)+ (1 —z)v, (0) — P° (q)
= avy (0)+ (1 —2x)vg ()
—z(q)va (0(g)) — (1 —(q)) v (0(g)) + S (9)

and so at the boundary x = 7 (¢) the stopping value is

up (T(q),q) = (q) (var (0) — v (0(q)))
+(1 =2 (q)) (vr (0) — v (6(q)) + 5 (q)

and we can compute its rate of change along the boundary as:

%ug (#(9),q) = 7' (q) (v (0) — v (0(q)) —vr (0) +vr (6(q)))

— [T (q) vy (0(q)) + (1 =7 (q)) vy, (0()] 0 (q) + 5" (q)

— () Lo (8) — v ~ . P, (2(9),9)
=2 (q) | (ve (0) — oL (0)) — (v (6 (q)) —vr (6(q))) + @(f(q)jq)S(Q) , (46)

where the latter equality uses (42). Using (45) and (43), we then see that (44)
holds.

We move to the second case. Suppose that it is optimal to wait for all (z, q),
where z < Z (¢), in which case F (z,q) > uj (z,q) for all z < & (¢q) and F} (0, q) =

0. In that case, function Fy (z,¢) must take the form

~

Fy(x,q) = A (q) @ (z,q)

for some function Ay (). Our assumption Fy (Z (¢) ,q) > uf (Z (¢) , q) is equivalent

to

~

Ay () ® (2 (q),q) > T (q) (va (0) — v (0 (9)))+(1 =7 (q)) (vi (0) — ve (6 (9)))+5 ()

or
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This implies

= [Blg —1(q)
@) |y (v (0) v (0 a)
B(q) — 2 (q) . @, (2(q).q)
+ R 0 (0) v (0 @) + T IS )|

Noting that ¢ > ¢ (0) means that vy (6)—vy (6 (q)) > 0 and vy, (0) —vy, (6 (q)) > 0,
and comparing the expression above to (46), we note again that (44) holds.
Having proved that Fy (Z (¢),q) > ug (Z (¢) , q) implies (44), we note that this
would imply that Fy (% (¢'),q') > ug (% (¢') , ¢) along the boundary (z (¢'),¢') for
all < ¢ < q,and so Fy (Z (q1),q1) > ug (Z (q1) ,q1). This is a contradiction since
we know that it must be optimal to stop at state point (Z (¢1),¢1). We conclude
that it is optimal to stop at all (Z(q),q), ¢(0) < g < ¢1. It now follows that the
optimal stopping time for € is 7, i.e. the first hitting time of (Z (¢ (0)), ¢ (6)).

As a final point we note that our conclusion hinges critically on the assumption
that <P5>/ (q) > 0 for all ¢. If, in contrast, <P5>/ (q) < 0 for some ¢ € (0,q),
then there is a profitable deviation for type 6 = 0 (¢q) to stop ealier than at time
7,. To see this, note that (PS>/ (¢) < 0 implies that for = 0 (¢), we have

va (0(q)) — v (0(q)) < (q)- (47)

Consider then the value of type 0 (¢) who plans to stop at (Z (¢), q):
Fyq) (2,9) = Aoq) (@) @ (239) -

Since

Foq) (Z(q),q) = ujy (Z(q) )
=vg (0(q)) — v (0(q) — (var (0(q)) — v (0(q)) —S(q) =S (q),

we have



and so

0 _ %, (7(9),9)
Noting that
91 g
o (it @.0)] =i (0(2) =i (0(a).
equation (47) implies
91 s 0 :
7z % (©:9)],_z, < 57 [P (@:0)],_3,

and since ug(q) ((q),q) = Fyq) (T (q),q), it follows that for some z < T (q) we

have
Ug(q) (@, q) > Fyq) (z,9).
By continuity of F' and w, this implies that there is some ¢ < ¢, ' < = (¢'),
such that ug(q) (2',q") > Fyiq (@, q'), and hence type 6 (¢) has a strictly beneficial
deviation to stopping at that state, and that state is reached before 7; with a
strictly positive probability.
We have now shown that Z (¢) can be implemented by the simple posted price

P2 (q) if an only if (P*) (¢) > 0 for all 0 < ¢ < ¢, and the proof is complete.

Revenue maximizing designer: proof of Proposition 5

Proof. Here, we show how to derive the virtual valuation representation for the
designer’s value. Suppose transfers follow an arbitrary policy, P;, adapted to F;.
We denote the realization of P, at time ¢ with p;. The designer’s expected revenue

can be written as

/ ' B[O (a2 (6) + (1 = 2o )un 6) — W6, )| £(0)d0

— ,/; (E [6_”(6) (2r0yom (0) + (1 - ‘”T<5))UL(9))] F8)d6

- /;E[/;(q) o) (IET(S)U}I(S) +(1- xT(S))U’L(s))d«S} f(6)de,

where we have used the envelope theorem for the agent’s value (see Section 4 in

the main text).
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We can use Fubini’s theorem to change the order of integration in the second

term:

/: E[ 0(q) o17(s) (xf(s)v}{(s) + (11— xf(s))v’L(s))ds} f(0)do

1
I

The rest is simply to plug the above expression back into the designer’s payoff

7

QDI

E

e (s iy () + (1 = 20 () f(e)deds}

IQb
<DI

E| [0 (vl (s) + (1= r)0} (5)) (1= F(s))ds].

and to write the integral over quantities rather than types (where we use 1 —

F(0(q)) = q). The profit maximizing designer’s objective becomes

E[/ol e T (@0 (q) + (1 — 22g)) 01 (9))dg

where 7(q) is the stopping time of the ¢ highest type buyer and ¢(q) is his virtual

valuation:

6 () = 1u(0(g)) - v;(e(q))LW)Q))

f(0(q)

Durable goods monopoly

Proposition 7. There exist cutoffs x, € (0,1) and x, € (0,1) such that the
monopoly quantity is larger if the initial belief is below x, and the competitive

market quantity is larger if the initial belief is above xy.

Proof. The existence of z;, < 1 follows from that the continuity of the policy
functions and form that the complete information quantity is larger in the com-
petitive market: ¢©(1) > ¢™ (1), where ¢%(1) solves 6(¢q(1)) = c and ¢ (1) solves
0(¢™ (1)) — (1= F(0(¢" (1)) /f(0(¢™(1))) = c.

The existence of x, > 0 follows from the same argument as that socially
optimal policy is below the decentralized policy (details omitted): 1) To see that
M (0) # 29(0), observe that the smooth pasting and value matching conditions

for both the decentralized and the planner’s policies cannot hold simultaneously

16



when we approach ¢ — 0 along ™. The reason why the same proof works for the
monopolist’s policy as for the planner’s policy is that the monopolist’s flow payoff
is the same as the social planner’s when ¢ = 0. 2) To rule out 2 (0) > z°(0),
notice that the monopolist gets strictly positive profits by selling to some small ¢
whenever the initial belief is above z(0) = z*'*(0). 3) Now, it is enough to use
the continuity and monotonicity of the policy functions the same way as in the
proof of Proposition 3 in the main text to conclude that there exists z, > 0 such

that the monopolists sells more for all beliefs below z,.

Type-dependent informativeness: proof of Proposition 6

Proof. Part (ii): fanatics. Suppose —i'(0)/i(0) € [0, —v(0)/v.(0)].

First, we argue that the socially optimal stopping profile is monotone. We can

use the same argument as in Lemma 2 but we need to normalize the informative-

ness of different agents. We show that for all agents 6,6 € [0, 0] such that 0 > ¢’

and for all realized stopping times ¢, € R, such that ¢t < ¢/,

e—rtvw(e) et v,(0') > e—rt’vw(e) _'_e—rtvw(e)

WO i) i(0) W0y

. When the above condition holds, the planner always wants to implement any

information stock process Z so that higher types stop first. The condition is
equivalent to (e — e)(v,(0)/i(0) — v,(6")/i(¢")) > 0. To see that this is
satisfied, notice that —i'(0)/i(0) € [0, —v}(0)/v.(0)] implies that v,(0)/i(0) is
increasing in 6 for both w € {H, L}.

Now, we can use montonicity and define the planner’s problem as finding the

information stock policy Z that maximixes

E[/l e (wig(s) + (1 — 2)dp(s))ds

z

x, 2 Z} , (48)
where 0,,(2) = v,(h"'(2))). Notice that the problem is equivalent to (4).

All assumptions in Section 2 hold when —i'(6)/i(6) € [0, —v (0)/vL(#)] because
then 0,(z) is decreasing in z for both w € {H, L}, and hence the claim in the

proposition immediately follows for this case.
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Part (i): experts. Suppose i'(0) > 0.

The monotonicity of the stopping profile follows directly from Lemma 2 in
the experts environment because the planner can always decide not to use the
additional information from the higher type 6 in the proof of Lemma 2. Therefore,

we can use (48) as the planner’s objective.

In the experts environment, 9 (2) need not be decreasing and therefore we need
to verify that the policy function x* we get from Proposition 2 is increasing in z and
therefore defines a boundary policy. All other parts of the proof of Proposition 2

remain unchanged even when the stopping payoffs are not monotone.

To show the monotonicity of x*, we redo the part of the proof of Proposition 2

that shows that g(z,z) > 0.

o(z.2) =o(1 = 2) o B(B(=) — Dy(2) — (B(2) — VF"(2) — 2(8'(2)(2))
+ (1= 2)(FRBENE) - (BE)FE) - 25 ()P)n)]/
(a(5() = 178 (2) + (L= 2)(B()P00(2) ) 5(2)
(1= 2) |2 (B ) — D)+ vn (D @0 ()7
= ((B() = DI"() — 23 (2))om (2))
+ (1= 2) (BB W) + v 0 (E)
— (B)8"(2) = 2B )P enl2)) |/
(28) = D2on(z) + (1= 2)(BE)Puu(2))8(2)].
where we use v,,(2) for v, (h~"(2))) and use that ¢/, (z) = v/,(2)h = (2)+v, (2)h " (2).

The expression is otherwise equivalent to g(x,¢) in (9) but with an additional

term in the numerator:

w(1—2)B ()" (2) (B (2) ™) |2(2)(B(2) = Vou(2) + (1 — 2)B(2)vp(2)].
(49)
First, notice that 8/ < 0, h™'' < 0, and h™'" < 0 where the last part follows

from the assumption that we are in the experts environment. The term inside the

brackets is negative for all z < 2#(z) and hence (49) is weakly positive at z*(2).
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Then, g(z,z) > 0 follows from the proof of Proposition 2 for the original model

because the additional term only makes it larger.
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