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Abstract

We introduce a collective experimentation problem where small agents
choose the timing of an irreversible action under uncertainty and public
feedback from their actions arrives gradually over time. We solve the de-
centralized equilibrium where agents maximize their own payoffs and the
socially optimal policy, which internalizes the social value of information.
The latter entails an informational tradeoff where acting today speeds up
learning but postponing capitalizes on the option value of waiting. We show
how different experimentation patterns – including the socially optimal pol-
icy – can be implemented as a decentralized equilibrium by using dynamic
posted price mechanisms. Extending our analysis to revenue maximizing
mechanisms, we study the monopoly pricing of a new durable good under
gradual learning from user experience.
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1 Introduction

Many economic decisions have irreversible effects but must be taken under un-

certainty. A firm considering expanding its production capacity has to address

uncertainty about future demand; a consumer buying a durable good today must

evaluate her needs for it in the future; policy makers have to contemplate irre-

versible impacts of policies that may be hard to predict. If such uncertainties

resolve exogenously over time, the decision maker’s response is to postpone her

actions in order to learn more. But when the actions themselves affect the learning

process, there is a tradeoff between waiting for more information and acting now

to speed up learning for later decisions.

This paper introduces a novel learning problem where an action taken today

has a long-run impact on the flow of information. A continuum of small agents

chooses when to stop – for example, when to adopt an innovation or enter a new

market. An unknown binary state determines if stopping is profitable, so that the

agents would rather stop sooner than later if the state is high. Upon stopping,

each agent contributes to a public information flow about the state that guides

further agents in their stopping decisions. Our main question is how the resulting

path of stopping decisions – the expansion path – is determined on one hand when

agents optimize individually and on the other hand when a planner, perhaps by

means of an appropriate incentive scheme, coordinates the actions.

We identify two effects that shape the socially optimal expansion path. The

information generation effect calls for aggressive expansion in order to improve

information for future decisions. The option value effect calls for cautious expan-

sion in order to have better information for the current decisions. A social planner

balances these two effects, but individual agents internalize only the latter effect

and thus the decentralized equilibrium suffers from informational free-riding. We

characterize both individually and socially optimal behavior in our model and

bridge the gap between the two by developing a dynamic posted-price mechanism

that implements a desired collective outcome in a decentralized fashion.

Our main analytical innovation is to model the path of individual actions as a
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stock process, which controls the speed of learning. Each agent who has stopped

produces a flow of i.i.d. signals conditional on the true state. In continuous

time, the aggregate signal then follows a Brownian motion with an unknown drift,

determined by the realised state, and a signal-to-noise ratio proportional to the

stock of agents who have stopped. Each stopping decision thus has a long-run

effect on information generation. Crucially, learning is gradual in contrast to

the related experimentation literature where an action generates an instantaneous

one-shot signal.

The techniques to solve the decentralized equilibrium and the socially optimal

policy turn out to be quite different. The common challenge is that the problems

are two-dimensional as both the belief and the stock affect the future. Further-

more, the stock and the belief processes are interlinked as the stock determines

the flow of new information. A crucial observation to overcome these difficulties is

that agents’ behavior can be characterized by a belief-dependent threshold in both

solutions. If the current stock is below the assigned level, more agents stop. If

the current stock is above the assigned level, remaining agents wait for a potential

increase in the belief.

We show that the decentralized equilibrium can be solved by analyzing “short-

sighted” agents who optimize their stopping decisions against the assumption that

no agent stops in the future. Intuitively, the result follows because future expan-

sions only take place when the current marginal agent would be willing to stop

too. The equivalence with shortsighted optimization and optimization under cor-

rect expectations is hence an equilibrium property, which holds only because other

agents are solving similar optimal stopping problems, and may be violated with

other (non-equilibrium) stock processes. One implication of the equivalence with

shortsighted optimization is that only past actions affect decisions today. A nat-

ural benchmark for the decentralized equilibrium is a model without learning.

Because of the option value effect, for any given belief fewer agents stop than in

the no-learning benchmark.

Unlike the decentralized equilibrium, the socially optimal policy takes into

account the social value of faster learning. The equivalence with shortsighted
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optimization breaks because the value of information depends on the expected

future actions. Thus, both past and future actions affect socially optimal stop-

ping. Because of the information effect, socially optimal policy favors earlier and

more aggressive expansions than what happens in the decentralized equilibrium.

Compared to the no-learning benchmark, gradual learning tends to first increase

the optimal stock and then to decrease it.

After analyzing the decentralized and optimal solutions separately, we ask how

to implement the optimal policy in a decentralized manner by using transfers.

We show that policies in a broad class – including the social optimum – can be

implemented using dynamic posted prices: anonymous prices that are adjusted

continuously to reflect the news about the state, pinned down by the envelope

theorem. We then show that in many cases the designer can even use simple

posted prices that only depend on the stock of agents who have stopped. The

designer does not need to keep track of beliefs: previous agents’ decisions provide

all the information she needs to set the simple posted prices.

The methodology we develop in this paper potentially applies to many eco-

nomic problems such as pricing in markets, the design of environmental policies,

the adoption of medical treatments and the roll-out of public policies. Towards the

end, we develop two extensions to improve the applicability of the model. First,

we show how to extend the mechanism design approach to revenue maximizing

mechanisms and we apply the result to the durable goods monopolist who is sell-

ing a product of uncertain quality in the presence of learning from past buyers’

experiences. We show that in such markets monopoly power can increase welfare

over a competitive industry. Intuitively, the ability of the monopolist to internal-

ize the informational externality can more than compensate for the loss of surplus

caused by the traditional monopoly distortion. Finally, we extend our model to

cover a case where different agent types are differently informative: high types

may, for example, be experts who quickly discover the quality of an innovation or

in the opposite case they may be fanatics whose informativeness is very low.
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1.1 Related literature

Using the framework of our paper, the previous literature on learning can be

divided based on whether the information generation effect or the option value

effect is present in the model. The current paper is the first to analyze the dual

effect of endogenous learning.

The information generation effect is present, and hence learning increases the

optimal quantities, in papers analyzing classic single agent bandit problems and

experimental consumption (Gittins and Jones 1974, Rothschild 1974, Prescott

1972 and Grossman, Kihlstrom and Mirman 1977). Introducing multiple agents

to these models adds an informational externality that dampens the information

generation effect. Bolton and Harris (1999), Keller, Rady and Cripps (2005) and

Keller and Rady (2010) analyze such models under different assumptions on the

learning technology. Applications include Bergemann and Välimäki (1997, 2000)

and Bonatti (2011) who analyze dynamic pricing. In all of these papers, there

is no option value effect because actions are reversible and hence learning always

increases the level of optimal quantities relative to the no-learning benchmark.

When actions are irreversible but information arrives exogenously rather than

endogenously, only the option value effect is present. Seminal papers in this liter-

ature include McDonald and Siegel (1986), Pindyck (1988), and Dixit (1989) and

the ensuing literature on real options is summarized in Dixit and Pindyck (1994).

A few papers investigate social learning with irreversible actions, which bears

similarities with informational free-riding in our decentralized solution. Frick and

Ishii (2020) analyze the adoption of new technologies using a Poisson process with

instantaneous feedback to model learning. The adoption rate of innovations is

lower than without learning in their model because of the option value effect. An

early paper by Rob (1991) makes a similar observation when analyzing sequential

entry into a market of unknown size. Similarly, in the models of optimal timing

under observational learning, the option value creates an incentive to wait causing

socially inefficient delays (Chamley and Gale 1994, Murto and Välimäki 2011).

Introducing a large player can overturn the effect of social learning and irre-
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versibility on optimal quantities because a large player internalizes the information

generation effect. Che and Hörner (2017) study how a social planner, who designs

a recommendation system for consumers, can mitigate informational free-riding.

Laiho and Salmi (2020) analyze monopoly pricing in a similar setup. Both in Che

and Hörner (2017) and in Laiho and Salmi (2020), the presence of a social planner

or a monopolist induces learning to increase quantities. The crucial difference from

the present paper is that these papers model instantaneous learning from each con-

sumption decision: the planner and the monopolist do not face the option value

effect since they get more information only by attracting new consumers.

Our assumption that learning is gradual implies that past actions matter for

the current information flow. Two contemporaneous papers share this feature

with us, although their models and key tradeoffs are otherwise different from

ours. Liski and Salanié (2020) analyze a single-agent problem where a decision-

maker controls the accumulation of a stock that triggers a one-time catastrophe at

an unknown threshold level. The novel feature in their model is a random delay

between the crossing of the threshold and the onset of the catastrophe. Martimort

and Guillouet (2020) analyze a model with similar features focusing on a time-

inconsistency problem under their assumptions. In these papers learning is about

an unknown tipping point, whereas in our paper it is about a fixed unknown state.

Our paper is also related to the literature on dynamic mechanism design, espe-

cially in the context of optimal stopping. Board (2007), Kruse and Strack (2015)

and Board and Skrzypacz (2016) analyze implementation of stopping rules for

agents, whose private types evolve exogenously over time. In contrast, we analyze

implementation in a game with externalities. In our model the private types are

fixed over time, but agents optimize against a common state variable that evolves

endogenously over time.
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2 Model

2.1 Actions and payoffs

A unit mass of small agents choose when, if ever, to take an irreversible action

(to stop). We index individual agents by their type θ and assume that θ is dis-

tributed according to a continuously differentiable distribution function F with a

full support on Θ := [θ, θ]. Time t is continuous and goes to infinity.

An agent’s stopping payoff, vω(θ), depends on the state of the world ω ∈

{H,L} such that the payoff is higher in the high state of the world for all types:

vH(θ) ≥ 0 > vL(θ).1 Payoffs are continuously differentiable and increasing in type:

v′ω(θ) ≥ 0 for ω ∈ {H,L} where the inequality is strict for at least one ω = H or

ω = L. The realized payoff for an agent of type θ, who stops at time t, is e−rtvω(θ)

where r is the common discount rate. An agent’s outside option is zero and we

normalize vH(θ) = 0 so that θ is the lowest type who would ever want to stop.

The model is equivalent to a setting where agents receive a flow of state dependent

payoffs πω(θ) = rvω(θ) at every instant after stopping.

Agents are risk-neutral and maximize their expected discounted stopping pay-

offs. The agents do not know the state of the world ω but learn about it over time

as we will describe next.

2.2 Learning

The key idea of gradual learning is that every agent who has stopped generates a

flow of conditionally independent public signals. Therefore, we consider endoge-

nous learning from the stock of stopped agents: let qt denote the stock (measure)

of agents who have stopped by time t.

Specifically, the public learns about the state by observing a Brownian diffusion

dyt = qtµωdt+ σ
√
qtdwt, (1)

1The analysis easily extends to the case where vL(θ) > 0 for some types. The only change is
that all types, who get a positive stopping payoff in both states of the world, stop immediately.
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where we normalize µH = 1/2 and µL = −1/2 and where wt is a standard Wiener

process. Signal process (1) is the limit of a model where qt is composed of dis-

crete units that produce conditionally independent noisy signals over time and

where the total informativeness is normalized to stay constant. The signals can

be interpreted as realized individual payoffs (see Online Appendix).2

We denote by xt the public posterior belief xt = Pr(ω = H|Ft), where Ft is

the natural filtration generated by the signal process (1). The unconditional law

of motion for the public belief follows from Bayes’ rule:

dxt =
√
qt
σ
xt(1− xt)dwt. (2)

In equation (2), the term
√
qt
σ

is the signal-to-noise ratio of the process (1) and

determines how fast the belief converges to the truth. Hence, the higher the stock

of stopped agents the more informative the public signals. In Section 6, we extend

the model to allow for a more general relationship between the stock qt and the

signal-to-noise ratio.

2.3 Solution concepts

We use the term policy for a description of how the stock qt evolves over time. A

policy Q = {qt}t≥0 is an increasing stochastic process adapted to Ft. Notice that

the signal process itself depends on the evolution of qt, so that in effect we are

defining policy Q jointly with signal process Y .

Individual agents take the policy Q as given when they choose their stopping

strategies. A strategy for an agent of type θ is a stopping time τ(θ) adapted to

Ft. The payoff to type θ adopting τ(θ) under Q is

E
[
e−rτ(θ)vω(θ)

∣∣∣Q] , (3)

where the vertical line notation means that the expectation is for some fixed

process Q.
2See Bergemann and Välimäki (1997, 2000), Bolton and Harris (1999), Moscarini and Smith

(2001), and Bonatti (2011) for other applications and further discussion. The difference to these
papers is that they do not consider learning from the stock but from the flow of new actions.
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We say that a stopping profile T = {τ(θ)}θ∈Θ is consistent with Q if

Pr
[∫

Θ
1(τ(θ) ≤ t)dF (θ) = qt

∣∣∣Q] = 1

for all t. In other words, T is consistent with Q if the measure of agents that it

commands to stop always matches the policy.

It is convenient to define solution concepts directly in terms of a policy rather

than in terms of a stopping profile. We consider two solution concepts:

Definition 1. A policy QE is a decentralized equilibrium if there exists a profile

T E such that i) it is consistent with QE and ii) τE(θ) maximizes (3) for each θ

when Q = QE.

Definition 2. A policy Q∗ is socially optimal if there exists a profile T ∗ such that

i) it is consistent with Q∗ and ii)

E
[∫ θ

θ
e−rτ

∗(θ)vω(θ)dF (θ)
∣∣∣Q∗] ≥ E

[∫ θ

θ
e−rτ(θ)vω(θ)dF (θ)

∣∣∣Q] ,
for any policy Q and profile T = {τ(θ)}θ∈Θ consistent with Q.

3 Analysis

Our objective is to analyze how gradual learning affects stopping decisions. First,

we discuss some common properties that hold regardless of whether stopping times

are individually or socially optimal and present the no-learning benchmark. Then,

we solve both the (unique) decentralized equilibrium and the socially optimal

policy. Lastly, we compare the decentralized equilibrium and the socially optimal

solution to the no-learning benchmark and provide comparative statics results on

the effects of learning.

3.1 Higher types stop first

In principle, we can implement a policy Q by many different stopping profiles.

However, because the stopping payoffs are increasing in θ, higher type agents

want to stop whenever a lower type agent wants to stop, which leads to monotone

stopping profiles:
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Lemma 1. If T = {τ (θ)}θ∈Θ maximizes (3) for each θ for given process Q, then

Pr
[
τ (θ) ≤ τ (θ′)

∣∣∣Ft;Q] = 1

whenever θ > θ′.

Monotone stopping times are also socially optimal:

Lemma 2. Any stopping profile T = {τ (θ)}θ∈Θ consistent with Q satisfies:

E
[∫ θ

θ
e−rτ(θ)vω (θ) dF (θ)

∣∣∣Ft;Q
]
≤ E

[∫ θ

θ
e−rτ

mon(θ)vω (θ) dF (θ)
∣∣∣Ft;Q

]
,

where τmon (θ) := inf {t : qt ≥ 1− F (θ)}.

We prove both Lemma 1 and Lemma 2 in Appendix A.

As it is without loss of generality to restrict attention to monotone stopping

profiles, there is a one-to-one mapping between the stock qt and the largest type θt
who has not stopped: qt = 1− F (θt). It is useful to let the stock be a function of

the current highest type, q(θ) := 1− F (θ), which has an inverse (current highest

type): θ(q) := {θ : 1 − F (θ) = q}. With slight notational abuse, we use vω(q) to

denote the stopping payoff of type θ(q).

3.2 Boundary policies

This subsection discusses the dynamics in our model. It turns out that both

solutions can be characterized as boundary policies:

Definition 3. A policy Q is a boundary policy if there exists a continuous function

q̃ : [0, 1] → [0, 1] such that qt = q̃(maxs∈[0,t] xs) where q̃ is strictly increasing for

all x such that q̃(x) > 0.

A boundary policy is Markovian: agents’ stopping decisions depend only on

the stock and the belief. Because stopping is irreversible, the stock at time t is

determined by the highest belief reached up to t. A boundary policy hence divides

the stock-belief state space into two regions: in the expansion region, more agents

stop until the stock equals q̃(x) and in the waiting region, everyone waits.
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Figure 1: Dynamics in the waiting and expansion regions of the state space.

A boundary policy is fully characterized by the inverse of q̃, a policy function

x̃ : [0, 1] → [0, 1], which maps the stock to the cutoff belief. It turns out that

it is easier to use policy functions to characterize our solutions than functions q̃.

Figure 1 illustrates a boundary policy and the implied dynamics in the state space.

Above the boundary, the stock increases (horizontal movement in the figure) and

below it, the stock stays constant and only the belief moves (vertical movement).

As soon as the belief hits the boundary from below, the quantity is pushed towards

right along the boundary. The expansions in the stock are immediate (depicted by

solid arrows in the figure), whereas the belief fluctuates according to the diffusion

process (2) (dashed arrows). Apart from the possible initial jump, the stock

process stays below the boundary and is continuous almost surely.

It is useful to note that since a boundary policy is Markovian in the stock-

belief state space, we can express an individual agent’s best-response to such a

policy as an optimally chosen stopping region in the state space. We utilize this

in establishing the existence and uniqueness of a decentralized equilibrium.

3.3 No-learning benchmark

We start our analysis with the benchmark case without learning, which allows us

to disentangle how learning affects the decentralized equilibrium and the socially

optimal solution.
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When there is no learning but the common belief stays constant, the agents’

stopping problem is static. An agent stops if and only if his type is so high that

the expected payoff is positive: xvH(θ) + (1−x)vL(θ) ≥ 0. Hence, the no-learning

policy is characterized by the following cutoff:

xstat(q) = −vL(q)
vH(q)− vL(q) ,

where vω(q) := vω(θ(q)).

Individual optimization and socially optimal policies coincide when there is no

learning.

3.4 Decentralized equilibrium

We next characterize the decentralized equilibrium defined in Definition 1. An

optimal stopping time for an individual agent trades off the cost of waiting with

the option value of waiting. Because the belief process changes endogenously as

the stock of stopped agents increases, waiting not only brings more information but

also faster learning. Despite this, we show that we can solve equilibrium stopping

times by first solving a sequence of stopping problems where each agent finds the

optimal time to stop when the stock is fixed. That is, we fix qt = q̂ for all t and

find the optimal stopping time for type θ(q̂) (pinned down by Lemma 1), assuming

that qt is constant and equal to q̂. This problem is a one-dimensional stopping

problem and can be solved using standard techniques in the literature (Dixit and

Pindyck (1994), see Appendix B for details). We show that the equilibrium in the

original problem corresponds to this “shortsighted” problem in which agents do

not take future stopping decisions by other agents into account.3

The intuition for the equivalence between the shortsighted problem and the

original problem is the following: because later expansions in the stock happen

only when it is optimal for lower type agents to stop, all higher type agents strictly

prefer stopping always when the stock expands (skimming property). Hence,
3Our method to solve the decentralized equilibrium is inspired by Leahy (1993) who shows

that under exogenous uncertainty the competitive equilibrium behavior coincides with that of
‘myopic’ investors who ignore the effect the future investments have on the price.
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higher type agents want to stop even before the expansion, which means that

future expansions do not change the optimal stopping times. In Appendix B, we

formalize this argument to get the following result:

Proposition 1. There is a unique decentralized equilibrium, which is characterized

by an increasing policy function xE:

xE(q) := −β(q)vL(q)
(β(q)− 1) vH(q)− β(q)vL(q) ,

where β(q) := 1
2

(
1 +

√
1 + 8rσ2

q

)
.

According to Proposition 1, an agent of type θ waits until the belief reaches

the cutoff xE(q(θ)). The decentralized equilibrium is thus a boundary policy: the

policy function xE defines a boundary so that whenever the belief is about to cross

the boundary, more agents stop.

Notice that the cutoff xE(q) is increasing in the signal precision (decreasing in

σ), which means that a better learning technology decreases the stock of agents

who are willing to stop at any given belief. The no-learning benchmark is a special

case of the decentralized equilibrium as we take σ →∞, which directly gives:

Corollary 1. For all beliefs in (xstat(0), 1), the stock of stopped agents is strictly

smaller in the decentralized equilibrium than in the no-learning benchmark.

The intuition behind Corollary 1 is that agents want to free-ride on the infor-

mation provided by other agents. Proposition 1 implies that in the decentralized

equilibrium only past stopping decisions affect individual agents’ behavior because

from an individual agents perspective past actions determine the speed of learn-

ing. In the next section, we analyze the socially optimal policy which takes into

account the informational externality between agents. The solution then takes

into account how both past and future stopping decisions affect learning.

3.5 Social optimum

Next, we consider the problem in Definition 2 where a benevolent social planner

seeks to maximize agents’ expected joint payoff. This problem is identical to a

problem of a single decision maker who controls a path of incremental expansions.
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From Lemma 2, we know that the skimming property holds for the social

optimum and hence the problem is reduced to finding the policy Q that maximizes

the expected social welfare. We denote the planner’s payoff in state (x, q) as

U(Q;x, q) = E
[ ∫ 1

q
e−rτ(s)(xvH(s) + (1− x)vL(s))ds

∣∣∣∣x, q;Q]. (4)

The planner’s problem is then to find supQ U(Q;x, q). By applying Itô’s lemma

and using the properties of the Brownian motion, we have the following Hamilton-

Jacobi-Bellman (HJB) equation for the planner’s problem:

rV (x, q) = max
q∗≥q

(
r
∫ q∗

q
(xvH(s) + (1− x)vL(s))ds+ 1

2Vxx(x, q
∗)x

2(1− x)2

σ2 q∗
)
.

(5)

We solve the planner’s problem by showing that the HJB equation is solved by a

boundary policy that cuts the state space into an expansion region and a wait-

ing region. A verification argument then shows that our candidate solution also

maximizes the original objective (4).

The optimal policy could in principle consist of several waiting and expansion

regions. We proceed by guessing that there is only one expansion and only one

waiting region and then later verify this guess (in Appendix C). Let x∗ : [0, 1] →

[0, 1] denote our candidate for the socially optimal policy, which we derive next.

Function x∗ splits the state space in two so that for a given q the planner waits for

beliefs x < x∗(q) and expands for beliefs x ≥ x∗(q). Since the planner internalizes

the value of information for further decisions, we should intuitively expect the

socially optimal expansion region to be larger than in the case of decentralized

equilibrium, i.e. x∗(q) < xE(q). We shall verify that this property indeed holds.

We start by solving the value function that solves the HJB equation (5). In the

waiting region below x∗, the value consists of the value of potential future actions

and can be solved as:4

V (x, q) = B(q)Φ(x, q), (6)

4We have discarded the other root of the characteristic equation as we must have that the
value converges to the static solution as x→ 0 and x→ 1.

14



where

Φ(x, q) :=xβ(q)(1− x)1−β(q) and β(q) := 1
2

(
1 +

√
1 + 8rσ2

q

)
.

The next step is to find functions B and x∗ that maximize the right-side of

the HJB equation. To characterize these, we apply value matching and smooth

pasting conditions, which are necessary for the optimality of policy x∗. Be-

cause the planner controls the intensity of experimentation, the conditions ap-

ply to a marginal increase of the stock q. The value matching condition is thus

Vq(x∗(q), q) = −x∗(q)vH(q)− (1−x∗(q))vL(q) and the smooth pasting condition is

Vqx(x∗(q), q) = −vH(q) + vL(q). Notice that the HJB equation consists of only fu-

ture, not past, stopping payoffs and therefore the value matching condition equals

the marginal value of increasing the stock with the lost stopping payoff.

Using Equation (6), we can write the value matching and smooth pasting

conditions as

x∗(q)vH(q) + (1− x∗(q))vL(q) +Bq(q)Φ(x∗(q), q) +B(q)Φq(x∗(q), q) =0, (7)

vH(q)− vL(q) +Bq(q)Φx(x∗(q), q) +B(q)Φqx(x∗(q), q) =0. (8)

Our candidate policy x∗ must balance the direct payoff effect, the first term in both

equations, against both the option value of waiting and the value of information

generation. The last two show up in the latter terms of each equation as the

derivatives of the value function.

We show in Appendix C that the system (7) - (8) can be transformed into a

non-linear differential equation that defines our candidate policy x∗:

x∗′(q) = g(x∗(q), q), (9)

where

g(x, q) =x(1− x)
[
x
(
β′(q)(β(q)− 1)v′H(q)− ((β(q)− 1)β′′(q)− 2(β′(q))2)vH(q)

)
+ (1− x)

(
β′(q)β(q)v′L(q)− (β(q)β′′(q)− 2(β′(q))2)vL(q)

)]
/[(

x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q)
)
β′(q)

]
.
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The appropriate initial condition for the differential equation is x∗(1) = 1 because

the solution must equal the no-learning benchmark when the belief equals one.

The denominator of function g is zero at (1, 1) and hence a potential singularity

problem arises. However, we show in Appendix C that the initial value problem

has a unique solution below the decentralized solution i.e. a solution satisfying

x∗(q) ≤ xE(q) for all q ∈ [0, 1].5 We then verify that together with the value

function in (6) this candidate policy x∗ solves the HJB equation, and we further

verify that it also maximizes the original objective (4). In the process, we show

that the policy function x∗ is continuous and strictly increasing in q and hence

satisfies the requirements for a boundary policy.

Proposition 2. The socially optimal policy is a boundary policy characterized by

the unique solution to the initial value problem x∗′(q) = g(x∗(q), q) and x∗(1) = 1

such that the solution is always below the decentralized solution: x∗(q) ≤ xE(q) for

all q ∈ [0, 1].

Proposition 2 confirms that we can solve the potentially complicated history-

dependent problem with a simple boundary policy. However, unlike the decentral-

ized equilibrium, we cannot solve the planner’s problem in closed form because

the planner is truly forward-looking. For the socially optimal policy, both past

and future actions are relevant. The past generates information that is useful

in evaluating the right decision today, whereas future decisions can be based on

information generated by today’s action. A socially optimal policy balances the

resulting tradeoff between the efficient use of information (option value effect) and

the efficient production of information (information generation effect).

Figure 2 provides a numerical example of the effects of the signal precision.

The smaller the noise parameter σ is, the more precise the signals are. Better

learning technology decreases the cutoff belief x∗(q) when the stock is small and

increases it when the stock is high. This arises because improved learning amplifies

both information generation and option value effects. The former dominates in

the beginning, when the existing stock is low and there are many uncommitted
5To see that the uniqueness can only hold in a restricted domain, note that g(1, q) = 0 and

hence the initial value problem has a trivial solution x(q) = 1 for all q ≤ 1.
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Figure 2: Socially optimal policy x∗(q) for different σ when vH(q) = 1− q, vL(q) = −1/2, and
r = 0.1.

agents who benefit from more information. Conversely, the option value effect

dominates later when there are few such agents. Notice that the policies with

learning (finite σ) are first below and later above the policy without learning

(σ = ∞). Hence, gradual learning may either increase or decrease expansions

as the informational tradeoff suggests. The following proposition generalizes this

observation (see Appendix C for the proof).

Proposition 3. There exists x ∈ (xstat(0), 1) and x ∈ [x, 1) such that the optimal

stock is strictly larger than the no-learning benchmark for all beliefs in (x∗(0), x)

and strictly lower for all beliefs in (x, 1).

Figure 3 illustrates the relationship between the solutions. Gradual learning

first increases and then decreases optimal expansions. The decentralized policy is

everywhere above the other policies.

4 Mechanism design

In this section, we bridge the gap between individual optimization and the socially

optimal policy by analyzing how a designer can implement policies – including the

socially optimal policy – with transfers. We present our analysis in steps starting

with static implementation before moving on to dynamic implementation. We
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Figure 3: Different policies when vH(q) = 1− q, vL(q) = −1/2, σ = 0.5, and r = 0.1.

conclude by analyzing revenue maximizing mechanisms.

4.1 Static implementation by a direct mechanism

As a building block towards dynamic implementation, we first consider static

direct implementation. This means that all transactions between the designer

and the agents take place at time 0: the designer announces a policy Q to be

implemented and offers a menu {τ (θ) , P0 (θ)}θ∈Θ, where an agent who reports θ

pays an upfront transfer P0 (θ) and gets as an allocation an obligation to stop at

time τ (θ) = inf{t : qt = 1− F (θ)}.

We now outline the steps to pin down transfers that implement a given bound-

ary policy Q and the associated monotone stopping profile as a Bayes-Nash equi-

librium.6 Let W0(θ) be the time-0 value of an agent θ under policy Q. Requiring

truthful reporting to be optimal, we can use the envelope theorem of Milgrom and

Segal (2002) to write out an agent’s value (and setting W0(θ) = 0):

W0(θ) =
∫ θ

θ
W ′

0(s)ds = E
[∫ θ

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
,

where τ(θ) = inf(t : qt = 1−F (θ)) and the expectation is taken over belief process

X induced by policy Q. An ex-ante transfer rule, P0 : [θ, θ]→ R, where each type
6This ex-ante implementation applies even if the policy Q is not a boundary policy.
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θ is assigned a given stopping rule at time 0, is hence pinned down as

P0(θ) = E
[
e−rτ(θ)(xτ(θ)vH(θ) + (1− xτ(θ))vL(θ))

]
(10)

−E
[∫ θ

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
,

an expression that is easy to compute numerically for a fixed Q.

To finish the argument, we have to check that incentive compatibility holds

globally. This can be done by noting that we associate policy Q with a monotone

stopping profile where higher type agents always stop before lower type agents. We

show formally in the Online Appendix that this implies an increasing differences

property that guarantees global incentive compatibility.

Lemma 3. Given a boundary policy Q, a direct mechanism {τ (θ) , P0 (θ)}θ∈Θ,

where an agent reporting type θ pays transfer P0 (θ) defined in (10) and commits

to stopping at time τ (θ) = inf{t : qt = 1− F (θ)}, satisfies incentive compatibility

and participation constraints for every type.

4.2 Dynamic implementation by posted prices

In the previous section, we reduced the dynamic problem into a static one by

assuming that a report made at time 0 involves a commitment to follow a pre-

specified stopping rule. However, committing to such behavior is not likely to be

feasible in practice. We next investigate how to implement the same policy by a

posted price that postpones the transaction and type revelation to the moment

when the agent stops.

As a preliminary step, consider a restricted dynamic implementation where the

agents are only allowed to choose amongst the stopping times {τ(θ)}θ∈Θ where

the state hits boundary points (x̃ (q) , q) for some q. Denote by P (x̃ (q) , q) the

payment requested at the moment of stopping from an agent who chooses to stop

at the boundary point (x̃ (q) , q). To guarantee that agent θ(q) wants to stop

exactly at (x̃ (q) , q) rather than some other boundary point (x̃ (q′) , q′), we can

design the payment P (x̃ (q) , q) so that from an ex-ante perspective it replicates
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the corresponding static payment P0 (θ (q)) for type θ (q):

P (x̃ (q) , q) = x̃(q)(vH(θ(q)) + (1− x̃(q))vL(θ(q)))

− E
[ ∫ θ(q)

θ
e−r(τ(s)−τ(θ(q)))

(
x̃τ(s)v

′
H(s) + (1− x̃τ(s))v′L(s))

)
ds

∣∣∣∣x(q), q
]
. (11)

Since this satisfies

E
[
e−rτ(θ)P (x̃(q), q)

∣∣∣∣x0, q0

]
= P0(θ(q)),

an agent who intends to stop at (x̃ (q) , q) is ex-ante indifferent between paying

P0 (θ(q)) at time zero and paying P (x̃ (q) , q) at the moment of stopping. As long

as the agents are not allowed to stop outside of the stopping boundary, incentive

compatibility continues to hold in this restricted dynamic implementation.

It remains to be shown that the agents do not have an incentive to stop below

the boundary when allowed to do so.7 We consider here two natural transfer

schemes that coincide with P (x̃(q), q) at the boundary but differ below it.

By a dynamic posted price, we refer to a transfer that is a function of the

current belief and hence continuously responds to news about the state. The

dynamic posted price, PD (x), is fully pinned down by (11) as the two transfer

schemes must coincide at boundary points:

PD (x) :=

 P (x, q̃ (x)) for x ≥ x̃ (0)

P (x̃ (0) , 0) for x < x̃ (0)
(12)

where q̃ (x) : [x̃ (0) , 1] −→ [0, q1] is the inverse of x̃ (·). We allow for the possibility

that the designer wants to implement a restricted maximal stock, i.e. q1 < 1.

If agent θ stops at state (x, q), his stopping payoff is

uDθ (x) = xvH (θ) + (1− x) vL (θ)− PD (x) .

The term PD (x) makes the optimal stopping problem more complicated than

the corresponding problem in the context of the decentralized equilibrium. Yet,

without even explicitly solving the individual agents’ stopping problems we can
7A trivial but non-practical way to do this is to fix the transfer payment to be arbitrarily

high whenever x < x̃ (q) making the cost of stopping prohibitive below the boundary.
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prove that this pricing rule is immune to deviations to stopping in state (x, q)

that is not on the intended boundary and hence it dynamically implements the

intended policy.

When using the dynamic posted price rule (12), the designer needs to contin-

uously observe the news process and carry out detailed Bayesian calculation to

adjust the transfer. To make the job of the designer easier and the commitment

assumption more palatable we consider as an alternative simple posted prices that

depend only on the stock q. For example, a seller of a new durable good could set

the price based on the cumulative past sales instead of reviews or other feedback

from past buyers. As with the dynamic posted price, we set the simple posted

price P S (q) to coincide with (11) at boundary points:

P S (q) := P (x̃ (q) , q) for q ∈ [0, q1]. (13)

Now agents face an optimal stopping problem where the stopping payoff depends

on q as well as x:

uSθ (x, q) = xvH (θ) + (1− x) vL (θ)− P S (q) .

An important property of this scheme is that the stopping payoff changes abruptly

at the boundary. Whether the transfer is increasing or decreasing turns out to be

critical for providing sufficient stopping incentive at the boundary without inviting

deviations to stop below it. If the transfer is increasing, even a slight postponement

would make stopping more expensive for the agent at the boundary, providing

an additional incentive to stop at the boundary relative to the states below it.

However, if the transfer is decreasing, stopping at the boundary is less attractive

as a delay would be rewarded with a reduction in transfer payment. As a result, if

the decreasing simple posted price scheme is such that an agent is willing to stop

at the boundary, he wants to stop even before reaching it.

We summarize our findings in the proposition below:

Proposition 4. Let Q denote a boundary policy with a strictly increasing policy

function x̃ and x̃ (q1) = 1. Then:

• Q can be implemented by a dynamic posted price PD (x) in (12).
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• Q can be implemented by a simple posted price P S (q) in (13) if and only if(
P S
)′

(q) ≥ 0 for all q ∈ [0, q1].

The proof of Proposition 4 is in the Online Appendix. The key issue is to rule

out deviations to stop too early below the intended stopping boundary. We show

that we can always rule such deviations out for the dynamic posted price, but

in the case of the simple posted price they are ruled out if and only if P S (q) is

everywhere increasing in q. As a part of the next subsection, we give an example

where P S (q) is not everywhere increasing.

4.3 Socially optimal transfers

Now we are ready to connect decentralized optimization and the socially optimal

policy and demonstrate the properties of socially optimal transfers. The left panel

of Figure 4 depicts the socially optimal boundary policy x̃ for stopping payoffs

vH(q) = 1 − q, vL(q) = −η − q, where the three cases correspond to different

values for parameter η which increases the cost of stopping in the low state. The

right panel shows the corresponding socially optimal transfer function P (x̃ (q) , q)

as a function of q. We see that P (x̃ (q) , q) is always negative: the designer pays

each agent so that they internalize the information generation effect. The optimal

transfer goes smoothly to zero when q approaches 1 because the information gen-

eration effect disappears and the decentralized and the optimal policies coincide

even without transfers. These properties hold generally for the socially optimal

transfer.

We know from Proposition 4 that we can always use a dynamic posted price to

implement the policy, but a simple posted price works only if P S (q) := P (x̃(q), q)

is monotone. In this example, the optimal policy can only be implemented with

simple posted prices when the risk parameter is large enough. That is, transfers

are non-monotone when η = 0.2, but motone when η = 0.4 or η = 0.6. The

transfer rule becomes non-monotone When η is small because the highest types

are almost willing to stop even without transfers whereas lower types need larger

transfers as they get a large negative payoff if ω = L and need to be compensated
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Figure 4: The left panel shows the socially optimal policy for different values of η. The right
panel shows the corresponding transfers. vH(q) = 1− q, vL(q) = −η − q, r = 0.1, σ = 1.

for the option value of waiting.

4.4 Revenue maximizing designer

In this section, we show how the techniques that we developed extend to the case

of a revenue maximizing designer. We then use the results in Section 5 to solve

the problem of a durable good monopolist. Throughout we assume that the type

distribution F is twice continuously differentiable and has monotone hazard rate.

Consider a designer whose objective is to maximize the expected sum of trans-

fers, E [
∫∞

0 e−rtPtdqt], where Pt is the transfer that the agent pays if he stops at

time t. Using the techniques in the previous section, the incentive compatible

posted price is pinned down by (11). To back out the incentive compatible rev-

enue, we change the order of integration to get a virtual surplus representation for

the designer’s payoff (see Online Appendix for the proof):8

Proposition 5. Incentive compatibility implies that the designer’s expected rev-

enue is:

E
[ ∫ ∞

0
e−rtPtdqt

]
= E

[ ∫ θ

θ
e−rτ(θ)φω(θ)dθ

]
, (14)

where φ(θ) is the virtual stopping payoff: φω(θ) := vω(θ)− v′ω(θ)1−F (θ)
f(θ) .

8The approach extends a result in our earlier paper Laiho and Salmi (2020) and shares similar

features with Board (2007) who analyzes the optimal sale of options.
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Now, we can solve the revenue maximizing designer’s problem by using Propo-

sition 2 if we replace the stopping payoffs with virtual stopping payoffs and use a

different initial value: x∗(q1) = 1 where q1 solves φH(θ(q1)) = 1. Here the mono-

tone hazard rate condition is important as it guarantees that the virtual valuation

is increasing in θ and hence the problem satisfies all our assumptions in Section 2.

Because we know that the planner’s solution is a boundary policy, Proposition 4

guarantees that posted prices are without loss of generality and hence the revenue

maximizing mechanism can be implemented.

5 Durable goods monopoly

We apply our results to analyze durable good monopoly when there is uncertainty

about the product quality. We first solve the monopolist’s problem under com-

mitment and then compare it to the socially optimal solution and the perfectly

competitive solution.

The model is as follows. Neither the monopolist nor the buyers know the true

quality of the product, ω ∈ {H,L}, but they observe a public signal process (1),

generated by past sales, qt. Each buyer wants to purchase one unit and exits after

purchase. Similar to the general model a buyer’s utility from consumption depends

on his private type, θ ∈ [θ, θ], and the common quality: E[u(θ, ω)] = E[1ω=H · θ] =

xtθ, where xt is the current belief that the quality is high. In addition, we assume

that the type distribution satisfies the conditions in Section 4.4. The monopolist

faces marginal cost of production c > 0 and commits to a pricing scheme, Pt.

We can use Proposition 5 from Section 4.4 to write the monopolist’s objective

by using the expected virtual valuation net of the cost of production. Then,

posted prices from Equation (11) can be used to implement the desired policy.

The monopolist’s problem becomes a special case of the model in Section 2 where

vH(θ) = θ−(1−F (θ))/f(θ)−c and vL(θ) = −c. This allows us to use Proposition 2

to characterize the profit maximizing policy:

Corollary 2. The monopolist’s policy is to sell when the belief is above xM(q)

and to wait when it is below. The policy xM is characterized by xM(qM) = 1 and
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xM
′(q) = g(q, xM(q)), where qM solves θ(qM)− (1−F (θ(qM)))/f(θ(qM)) = c and

g is given in (9).

We contrast the monopoly solution with the planner’s socially optimal solution

and the competitive market equilibrium. The planner’s solution can be found by

applying Proposition 2 for the case where vH(q) = θ(q)− c and vL(q) = −c:

Corollary 3. The social planner’s policy xP is characterized by xP (qP ) = 1 and

xP
′(q) = g(q, xP (q)), where qP solves θ(qP ) = c and g is given in (9).

Suppose next that there are no barriers of entry to the market so that the price

equals the marginal cost: Pt = c. An individual buyer’s purchasing problem then

coincides with the decentralized equilibrium in Section 3.4, with vH(q) = θ(q)− c

and vL(q) = −c, and we have the following corollary to Proposition 1:

Corollary 4. The competitive market policy is

xC(q) = β(q)c
(β(q)− 1)θ(q) + c

.

The planner’s solution and the competitive equilibrium are the socially optimal

and the decentralized solutions of the same problem, whereas the monopoly solu-

tion uses different stopping payoffs. This difference leads to different inefficiencies

in monopoly and competitive markets.

Figure 5: Different solutions for uniform (0, 1) types, c = 0.2, r = 0.1, and σ = 0.5.

In the numerical example of Figure 5, the monopolist’s and the competitive

policies are everywhere above the planner’s policy: both markets require ineffi-

ciently high belief for new consumers to purchase the product. The monopoly
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policy is first below and then above the competitive policy. This is because the

information generation effect encourages the monopolist to sell in the beginning

and because early sales do not generate large information rents to other buyers.

Later on, the monopolist reduces sales as the option value effect gets stronger and

because later sales impose information rents to higher type buyers. The competi-

tive market ignores the information generation effect but is otherwise efficient and

therefore competitive sales are larger for high beliefs. We show in Online Appendix

that this comparison holds for all type distributions and parameter values.

Notice that because the monopolist sells to lower type buyers only if the belief

increases, the implied prices can be non-monotone. Endogenous learning favors

introductory offers, and even pricing below the marginal cost because incentives to

generate information are the strongest in the beginning. However, prices are still

inefficiently high. The monopolist’s incentives to generate information are weaker

than the planner’s because the monopolist cannot capture all the value from the

buyers. This creates a distortion at the top of the type distribution, which is not

present when the quality is known. In other words, a higher initial belief is needed

for the monopolist to be willing to launch the product: xM(0) > xP (0).

As a final remark, notice that a regulator can implement the socially efficient

consumption in both monopoly and competitive markets by using appropriate

subsidies but the subsidy schemes differ qualitatively. To encourage the monopolist

to sell more, the regulator should use back-loaded subsidy that increases over sales:

s(x, q) = x(1 − F (θ(q)))/f(θ(q)). A back-loaded subsidy scheme incentivizes the

monopolist to sell the socially optimal amount because she internalizes the benefits

of information generation. If the market is competitive, however, the subsidy must

be front-loaded because competition eliminates dynamic incentives (see Figure 4

in Section 4.3).
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6 Type-dependent informativeness: experts ver-

sus fanatics

Our baseline model assumes that all agents are equally informative: one unit of

the stock q produces the same (marginal) amount of information. However, this

might not necessarily be true in many applications of our model. For example, first

buyers might be fans of the product whose experience matters less for the general

population. Or conversely, the first units might be acquired by experts who are

able to deduce the true value of the product much more quickly than average users.

In this subsection, we show that as long as we can ensure that agents’ stopping

decision are monotone so that higher types stop first, the analysis in the baseline

model is still valid.

Let the marginal informativeness of agent θ be i(θ) > 0 so that the total

“information stock” at time t is zt :=
∫
θ∈St i(θ)dF (θ) where St is the set of agents

who have stopped by time t. The evolution of the news process Yt is then given

by dyt = ztµωdt + σ
√
ztdwt. The two especially interesting cases are when the

high types are more informative, i′(θ) > 0 (“experts”), and when the low types

are more informative, i′(θ) < 0 (“fanatics”). Throughout we assume that function

i is continuously differentiable.

Notice first that the stopping profile in the decentralized equilibrium must be

monotone in type because individual agents ignore the effect their stopping has on

information, and thus Lemma 1 holds as in the baseline model. Because of this,

we have a one-to-one relationship between the stock and the information stock:

zt = h(qt) where h is an “informativeness” function that satisfies h′(q) = i(θ(q)).

The analysis of the decentralized equilibrium then stays essentially the same as

before.9

The socially optimal stopping profile is monotone in the experts environment

as both the marginal informativeness and the stopping payoff are increasing in the

type. It is also monotone in the fanatics environments when marginal informative-
9We only need to adjust β function (plug in h(q) instead of q). With this change Proposition 1

still characterizes decentralized behavior.
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ness is not changing too extremely (see Online Appendix). In these cases, we can

solve the socially optimal solution with a change of variables. Consider a problem

that is otherwise identical to the problem solved in Section 3.5 but where the stock

process Q is replaced with the information stock process Z and where the stopping

payoffs are scaled so that they take into account how many agents need to stop

to increase the information stock by one unit: v̂ω(z) := vω(h−1(z))h−1′(z). We

show in Online Appendix that solving this problem solves the planner’s original

problem when infomativeness of stopping is type-dependent:10

Proposition 6. Suppose either condition (i) or condition (ii) holds:

(i) Marginal informativeness is increasing in type (experts).

(ii) Marginal informativeness is decreasing in type (fanatics) but informativeness

does not change too extremely: −i
′(θ)
i(θ) ≤

−v′L(θ)
vL(θ) holds for all θ.

Then the socially optimal policy is characterized by x∗(z(q)) where x∗ is as defined

in Proposition 2.

When high types are extremely fanatical, we may run into trouble: because

low types are more informative, the social planner may want to use them first

for experimentation. If we restrict to monotone allocations over types, the pol-

icy function may be non-increasing because the scaled payoffs are non-monotone.

Essentially the social planner may want to bunch some agents to stop together

because lower types may have a larger social value of stopping.

Figure 6 illustrates how heterogeneous informativeness affects the socially opti-

mal policy. As before, the comparison between optimal quantities depends on the

informational tradeoff between option value and information generation effects.

The information generation effect is more pronounced for low q in the expert en-

vironment, while it is more pronounced for higher q in the fanatics environment.

We see this in Figure 6 as the solution in the expert environment is first below

and then quickly rises above the fanatics solution. The expert environment favors
10The key steps are to show that the optimal stopping profile is monotone in type and that

the policy function x∗ is monotone in z.
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Figure 6: Socially optimal policies for experts (concave h(q) = 3/2q − 1/2q2) and fanatics
(convex h(q) = 1/2q + 1/2q2) when vH(q) = 1− q, vL(q) = −0.4− q, σ = 0.5, and r = 0.1.

relatively early expansions because the high types produce more information than

in the fanatics environment.

7 Concluding remarks

The main contribution of this paper is to develop a methodology for analyzing

implications of irreversibility and gradual learning. We demonstrate this in the

context of pricing new durable goods, but gradual learning is present in many

other contexts that we do not explicitly model in this paper. We conclude by

pointing out some potential avenues for further applications.

In markets for new products and services, firms investing in productive capi-

tal face uncertainty about market demand. Learning the true long-term demand

takes time because of noise in consumer behavior and because the initial capacity

may be too low to capture all important market segments. In the language of our

model, the total capital installed is the stock variable that facilitates market exper-

imentation and generates revenue. If learning were exogenous, the decentralized,

or competitive, equilibrium corresponds to the social optimum, as established by

Leahy (1993). With endogenous learning, this correspondence is no longer true

because of the informational externality (see the difference between Proposition 1

and Proposition 2). Studying interactions between payoff externalities and infor-

mational externalities in the context of an oligopolistic market structure points to
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another avenue to extend our work.

Our methodology can be applied to analyze adoption patterns of new technolo-

gies in a much broader sense than industry investment. Think of, for example,

new medical devices and treatments. While they go through rigorous testing be-

fore approved for use, there are numerous examples of products which have been

withdrawn due to concerns for the well-being of patients.11 In many cases, the true

effectiveness of new products is only learned gradually from experience. Similarly,

R&D or development aid projects tie resources for many years and information

about the outcomes arrives gradually over different stages of the project.

Many actions beyond adopting new technology have uncertain and irreversible

consequences. One example is the emissions of pollution which affect the environ-

ment. Once created, it is hard to reduce a stock of emissions. A prominent example

is the regulation of anthropogenic greenhouse gases whose effects on the climate

and society remain uncertain despite considerable research effort. Arguably, we

can learn the true effects only gradually from experience. Our mechanism design

approach is a useful starting point for designing environmental regulation that

takes into account both informational and environmental externalities.12

There are many sources of irreversibility in public policy making. Policies

themselves may be hard to change because of political uncertainty, potential legal

consequences, or legislative lags. But even if changed, a policy may have already

affected many people. As a concrete example, consider educational policy, such

as the maximal size of a class room, which has an irreversible impact on children.

Later labor market outcomes and other information we collect from each cohort

helps to evaluate the educational policy at the time when they went to school,

independent of whether the norms have changed since then. The trade-off that

our framework addresses is how to balance the value of information generation

and the risk of irreversible negative consequences.
11See for example DePuy hip replacement recall or for example the FDA list of recalled medical

devices for 2018.
12Liski and Salanié (2020) analyze the optimal policy in a different model that focuses on

the possibility of a one-time catastrophe that is triggered once the emission stock exceeds an
unknown threshold.
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Appendix

A Monotonicity

Proof of Lemma 1

Proof. Let policy Q be fixed. Type θ wants to stop at time t if

xtvH(θ) + (1− xt)vL(θ) ≥ E[e−r(τ−t)(xτvH(θ) + (1− xτ )vL(θ))|Ft;Q],

for all stopping rules τ . Or equivalently,

vL(θ)(1− xt − E[e−r(τ−t)(1− xτ )|Ft;Q]) + vH(θ)(xt − E[e−r(τ−t)xτ |Ft;Q]) ≥ 0.

The left-hand side is increasing in θ because expressions (1−xt−E[e−r(τ−t)(1−

xτ )]) and (xt−E[e−r(τ−t)xτ ]) are positive (follows from that xτ is a martingale and

e−r(τ−t) < 1) and vω is increasing. Therefore, if type θ wants to stop, type θ′ > θ

wants to stop too.

Proof of Lemma 2

Proof. T and T mon are both consistent with Q. We show that monotone stopping

ordering maximizes ex post welfare for all realized paths of (X,Q). The claim

follows once we show that for all types θ, θ′ ∈ [θ, θ] such that θ > θ′ and for all

realized stopping times t, t′ ∈ R+ such that t ≤ t′,

e−rtvω(θ) + e−rt
′
vω(θ′) ≥ e−rt

′
vω(θ) + e−rtvω(θ′).

The above condition is equivalent with (e−rt − e−rt′)(vω(θ) − vω(θ′)) ≥ 0, which

necessarily holds as t ≤ t′ and vω(θ) ≥ vω(θ′) by assumption if θ > θ′.
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B Decentralized equilibrium

Proof of Proposition 1

Proof. As a preliminary step, we analyze the optimal stopping problem of type

θ when the stock qt is fixed at some q forever. We denote by F θ (x; q) the value

function of this problem where the bar indicates that the stock is fixed. By

applying Itô’s lemma and using the properties of the Brownian motion, we get the

following Hamilton-Jacobi-Bellman (HJB) equation for the agent’s value before

stopping:

rF θ(x; q) = ∂2

∂x2F θ(x; q)x
2(1− x)2

2σ2 q.

We can solve this second order ODE with a parameter q in closed form: F θ(x; q) =

Bθ(q)Φ(x, q), where Bθ(q) is an unknown constant that depends on the parameter

q and Φ(x, q) := xβ(q)(1− x)1−β(q) and β(q) := 1
2

(
1 +

√
1 + 8rσ2

q

)
.13

The unknown constant Bθ(q) can be solved together with the optimal stopping

belief x̂θ(q). At the time of stopping, the standard optimality conditions value

matching and smooth pasting must hold:

x̂θvH(θ) + (1− x̂θ)vL(θ) = Bθ(q)Φ(x̂θ, q), (15)

vH(θ)− vL(θ) = Bθ(q)Φx(x̂θ, q). (16)

Solving the pair of equations yields the following cutoff belief:

x̂θ(q) = β(q)vL(θ)
β(q)vL(θ) + (1− β(q))vH(θ) .

When qt = q forever, it is optimal for θ to stop if and only if xt ∈ [x̂θ (q) , 1].

Note that for all θ ∈
[
θ, θ

]
, x̂θ (q) is continuous and strictly increasing in q. The

relationship between xE in Proposition 1 and x̂θ satisfies x̂θ (q) > xE(q) for q <

q (θ), x̂θ (q) = xE (q) for q = q (θ), and x̂θ (q) < xE (q) for q > q (θ). See Figure 7.

We now start with the uniqueness part of Proposition 1. Assume that Q

is a decentralized equilibrium. By Lemma 1 the optimized stopping times are
13We have discarded the other root of the proposed solution as we must have that the value

converges to the static solution as x→ 0 and x→ 1.
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Figure 7: Optimal stopping for type θ.

monotone in θ. Hence, in equilibrium, θ cannot stop before qt reaches q (θ), nor

can she delay stopping until qt has reached a level higher than q (θ). Take some

history ht such that qt = q (θ) and denote by Fθ (ht) the equilibrium continuation

value of type θ. It follows that the optimized continuation value for θ at q (θ)

cannot exceed the continuation value of the constrained problem where qt stays

fixed at q forever, i.e. we have Fθ (ht) = F θ (x; q (θ)). Any policy other than

stopping at threshold x̂θ (q (θ)) = xE (q (θ)) would give Fθ (ht) < F θ (x; q) and so

stopping at the threshold is a necessary condition in a decentralized equilibrium.

Since this holds for all types θ, we can conclude that if a decentralized equilibrium

exists, then it must be the cutoff policy in Proposition 1.

Next, we show that the policy in Proposition 1 is indeed a decentralized equi-

librium. Fix policy Q to be the cutoff policy in Proposition 1, and consider optimal

stopping for θ against it. Note that Q defines a feasible region X in (x, q)-space

such that (xt, qt) ∈ X for all t > 0: X =
{

(x, q) : 0 ≤ q ≤ 1, 0 < x ≤ xE (q)
}
.

Since Q is a Markovian process, an optimal stopping rule against it can be ex-

pressed as some stopping region Sθ ⊆ X in the feasible region. Denote by Fθ (x, q)

the value function under optimally chosen stopping region Sθ:

Fθ (x, q) = E
(
e−rτ(Sθ)uθ

(
xτ(Sθ)

) ∣∣∣∣x, q) ,
where τ(Sθ) = inf (t : (xt, qt) ∈ Sθ) is the time of hitting Sθ and uθ (x) := xvH (θ)+

(1− x) vL (θ) is the stopping value. Clearly, Fθ (x, q) = uθ (x) whenever (xt, qt) ∈
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Sθ. At and above the boundary xE (q), where qt increases, we must have:

∂

∂q
[Fθ (x, q)]x≥xE(q) = 0. (17)

The plan for the rest of the proof is to show that the optimal stopping region

Sθ is the shaded region in Figure 7, i.e.

Sθ =
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
. (18)

As a first step, we note that it can never be optimal to stop for q < q (θ).

This follows from the observation that for q < q (θ) any (x, q) ∈ X satisfies

x < x̂θ (q), i.e. it is not optimal to stop even assuming qt to stay fixed forever.

The continuation value in the equilibrium where qt may increase in the future must

be at least as high as the continuation value in the problem where qt stays fixed

forever. Hence, F θ (x; q) > uθ (x, q) implies Fθ (x, q) > uθ (x, q) for all x < x̂θ (q)

and so it cannot be optimal to stop.

As a second step, we will show that when q ≥ q (θ), it is always optimal to stop

at the boundary of X, i.e. at x = xE (q). Suppose, to the contrary, that there is

some (x, q) /∈ Sθ, where x = xE (q) and q ≥ q (θ). This amounts to assuming that

Fθ(xE (q) , q) > uθ(xE (q)), and we will show that this leads to a contradiction.

First, suppose that it is optimal to stop at some (x′, q), where x′ < xE (q). In

that case Fθ (x′, q) = uθ (x′). Since Fθ (x, q) is convex in x and we necessarily have

Fθ (x, q) ≥ uθ (x) for all x ∈ (x′, xE(q)), we get that

∂

∂x
[Fθ (x, q)]x=xE(q) ≥ vH (θ)− vL (θ) = ∂

∂x
[uθ (x)]x=xE(q) (19)

Now, suppose that it is optimal to wait for all (x, q), where x < xE (q), in

which case Fθ (x, q) > uθ (x) for all x < xE (q) and Fθ (0, q) = 0. In that case,

following the same argument as with the value function F θ(x; q) for fixed q, the

value function Fθ (x, q) must take the form Fθ (x, q) = Aθ (q) Φ (x, q) for some func-

tion Aθ (q) and hence ∂
∂x

[Fθ (x, q)]x=xE(q) = Aθ (q) Φx

(
xE (q) , q

)
. Our assumption

Fθ(xE(q), q) > uθ(xE (q)) is equivalent to

Aθ (q) Φ
(
xE (q) , q

)
> xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ) ,
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which further implies
∂

∂x
[Fθ (x, q)]x=xE(q) >

Φx (x (q) , q)
Φ (x (q) , q)

[
xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ)

]
= β (q)− xE (q)

(1− xE (q)) vH (θ) + β (q)− xE (q)
xE (q) vL (θ) .

The last expression is greater than vH (θ)− vL (θ) if and only if

x′ ≥ β (q) vL (θ)
β (q) vL (θ) + (1− β (q)) vH (θ) = x̂θ (q) ,

which is the case if and only if q ≥ q (θ). Therefore, we may conclude that (19)

holds in this case too.

Given that (19) holds, the rate of change in Fθ (x, q) along the boundary is
d

dq
Fθ
(
xE (q) , q

)
= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) + ∂

∂q
[Fθ (x, q)]x=xE(q)

= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) ≥ [vH (θ)− vL (θ)] d

dq
xE (q) = d

dq
uθ
(
xE (q)

)
,

where the second term of the first line disappears by (17) and where the inequality

is implied by (19).

But if Fθ(xE(q), q) > uθ(xE(q)) implies d
dq
Fθ
(
xE (q) , q

)
≥ d

dq
uθ
(
xE (q)

)
, then

it must further imply Fθ(xE(q′), q′) > uθ(xE(q′)) for all q′ ∈ [q, 1], and in particular

Fθ(xE(1), 1) > uθ(xE(1)). But xE(1) = 1, so this yields Fθ(xE(1), 1) > vH(θ),

which is a contradiction since the value cannot be higher than the stopping payoff

under certainty of state ω = H.

We conclude that it is optimal to stop at all boundary points for q > q (θ). To

see that this implies that it is also optimal to stop within the whole shaded region

in Figure 7, i.e.
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
∈ Sθ, note that qt can only

increase if xt reaches xE (q). Since θ stops at latest when xt reaches xE(q), the

optimal continuation value Fθ (x, q) cannot exceed the corresponding value with q

fixed, i.e. F θ (x; q). To reach that value, θ must stop at all points
[
x̂θ (q) , xE (q)

]
.

We have now shown that the stopping rule defined in (18) maximizes (3) for

policy Q. Since qt can only increase at the boundary points xE(q), the first point

in Sθ ever reached is (x̂θ (q (θ)) , q (θ)) and so the optimal stopping rule commands

θ to stop exactly when qt reaches 1−F (θ) and is therefore consistent with Q. We

can conclude that Q is a decentralized equilibrium.
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C Socially optimal policy

We use the derivatives of Φ(x, q) in many proofs of this section:

Φ =
(

x

1− x

)β(q)
(1− x),Φq = Φβ′(q) ln

(
x

1− x

)
,

Φx =Φ(β(q)− x)
x(1− x) ,Φxx = Φβ(q) (β(q)− 1)

x2(1− x)2 ,

Φqx =Φβ′(q)x−1(1− x)−1

1 + (β(q)− x) ln
(

x

1− x

),
Φxxq =Φ β′(q)

x2(1− x2)

[
β(q) + (β(q)− 1)(1 + β(q) ln

(
x

1− x

)
)
]
.

Deriving the differential equation

We first show that the value matching and smooth pasting conditions, (7) and

(8), imply the differential equation in (9). Solving (7) and (8) for Bq(q) and B(q)

yields

Bq (q) = A1 (x∗(q), q)x∗(q) + A2 (x∗(q), q) , (20)

B (q) = U1 (x∗(q), q)x∗(q) + U2 (x∗(q), q) , (21)

where

A1 (x, q) : = −Φqx (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

A2 (x, q) : = Φqx(x, q)(−vL(q)) + Φq (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U1 (x, q) : = Φx (x, q) (vH(q)− vL)
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U2 (x, q) : = −Φx (x, q) (−vL(q))− Φ (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) .

Differentiating (21) with respect to q and using the chain rule gives

Bq (q) =
[
U1
x (x∗(q), q)x∗′(q) + U1

q (x∗(q), q)
]
x∗(q) + U1 (x∗(q), q)x∗′(q)

+ U2
x (x∗(q), q)x∗′(q) + U2

q (x∗(q), q) (22)

Equating (20) and (22), solving for x∗′(q), and simplifying yields the expression

(9) in the text.

Any solution that satisfies the differential equation (9) must be continuous.
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Proof of Proposition 2

The proof contains three parts. In part 1, we show that the initial value problem

(9) has a unique solution x∗(q) with the property x∗(q) < xE(q) for all q < 1.

We also show that x∗(q) is continuous and strictly increasing and hence defines

a boundary policy. In part 2, we show that our candidate policy x∗(q) satisfies

the HJB equation (5). In part 3, we verify that the solution to the HJB equation

solves the original problem.

Part 1: solution to the initial value problem (9)

We first establish some key properties of function g in (9):

Lemma 4. For all (x, q) such that q < 1 and x ≤ xE(q), function g(x, q) in (9)

is strictly positive and strictly increasing in x and it is Lipschitz continuous for

all q ∈ [0, q1] if q1 < 1 and for all x ≤ xE(q). Furthermore, g(xE(q), q) > xE
′(q)

for q < 1 and limq→1 g(xE(q), q) = xE
′(1).

See Online Appendix for the proof.

The singularity at (1,1) prevents us from directly applying the Picard-Lindelöf

theorem to show the existence and uniqueness of a solution to the initial value

problem (9). Instead, we note that the requirements for the Picard-Lindelöf the-

orem are satisfied for all initial conditions x(q1) = x1 where x(q1) ≤ xE(q1) and

q1 < 1, and hence each such initial value problem defines a unique solution. Since

g is increasing in x, these solutions diverge when approaching (1, 1) and hence

at most one path can approach (1, 1) from below the decentralized policy. The

fact that limq→1 g(xE(q), q) = xE
′(1) implies that there is a path that approaches

(1, 1) from the same direction as the decentralized policy xE(q) and the fact that

g(xE(q), q) > xE
′(q) for q < 1 implies that such a path must be strictly below the

decentralized solution for all q < 1. It follows that the initial value problem has a

unique solution below the decentralized solution.

We have now shown that the initial value problem (9) has a unique solution

x∗ such that x∗(q) ≤ xE(q) for all x ≤ q. This solution x∗(q) is continuous and

37



strictly increasing in q, and it is our candidate policy.

Part 2: our candidate x∗ solves the HJB equation

Fix x∗(q) to be the candidate policy defined in the proposition and let q∗ (x) be its

inverse with the convention q∗ (x) = 0 for x ≤ x∗ (0). Its associated value function

is

V (x, q) =


∫ q∗(x)
q (xvH (s) + (1− x) vL (s)) ds+ V (x, q∗ (x)) , for q < q∗ (q)

B (q) Φ (x, q) , for q ≥ q∗ (x) ,
(23)

where B(q) is given by (21). By construction, for q ≥ q∗ (x), V (x, q) satisfies

rV (x, q) = 1
2Vxx (x, q) x

2 (1− x)2

σ2 q (24)

and at the boundary q = q∗ (x), the value matching and smooth pasting conditions

(7) and (8) hold:

Vq (x, q∗ (x)) + xvH (q∗ (x)) + (1− x) vL (q∗ (x)) = 0, (25)

Vqx (x, q∗ (x)) + vH (q∗ (x))− vL (q∗ (x)) = 0. (26)

Differentiating (24) with respect to q, we have

rVq (x, q) = 1
2Vxx (x, q) x

2 (1− x)2

σ2 + 1
2Vxxq (x, q) x

2 (1− x)2

σ2 q, (27)

which allows us to re-write (25) as:

r [xvH (q∗ (x)) + (1− x) vL (q∗ (x))] + 1
2Vxx (x, q∗ (x)) x

2 (1− x)2

σ2

+1
2Vxxq (x, q∗ (x)) x

2 (1− x)2

σ2 q = 0. (28)

We next state three lemmas that concern the partials of the value function be-

low, above, and at the boundary, respectively. All proofs are in Online Appendix.

Lemma 5. For q ≥ q∗ (x), we have Vq (x, q) + xvH (q) + (1− x) vL (q) ≤ 0.

Lemma 6. For q < q∗ (x), we have Vxx (x, q) = Vxx (x, q∗ (x)), Vqq (x, q) =

Vqq (x, q∗ (x)), and Vxxq (x, q) = 0.
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Lemma 7. For q = q∗ (x), we have Vxxq (x, q) < 0.

We are now ready to show that our candidate policy satisfies the HJB-equation

(5), which we re-write here using notation q′ instead of q∗ for the maximizer (this

is to avoid confusion with boundary q∗ (x)):

rV (x, q) = max
q′>q

(
r
∫ q′

q
(xvH (s) + (1− x) vL (s)) ds+ 1

2Vxx (x, q′) x
2 (1− x)2

σ2 q′
)
.

(29)

The right-hand side of this equation is a continuous function in q′ and its derivative

with respect to q′ is

r (xvH (q′) + (1− x) vL (q′)) + 1
2Vxx (x, q′) x

2 (1− x)2

σ2 + 1
2Vxxq (x, q′) x

2 (1− x)2

σ2 q′.

(30)

Let us inspect the sign of this for different values of q′. For q′ ≥ q∗ (x), we can use

(27) to write (30) as

r (xvH (q′) + (1− x) vL (q′)) + rVq (x, q) ,

which is negative by lemma 5. It follows that whenever q ≥ q∗ (x), the right-hand

side of (29) is maximized by choosing q′ = q, i.e. keeping q fixed.

For q′ < q∗ (x), we can use lemma 6 to write (30) as

r (xvH (q′) + (1− x) vL (q′)) + 1
2Vxx (x, q∗ (x)) x

2 (1− x)2

σ2 ,

which is decreasing in q′. Moreover, combining (28) and Lemma 7 we can conclude

that it is positive in the limit q′ → q∗ (x), and hence it is positive for all q′ <

q∗ (x). Since the right-hand side of (29) is continuous, and its derivative is positive

(negative) for q′ < q∗ (x) (q′ ≥ q∗ (x)), it is maximized at q′ = q∗ (x) if q < q∗ (x).

We have now shown that for any x ∈ (0, 1), the right-hand side of the HJB

equation is maximized by choosing q′ = max{q, q∗(x)}. Furthermore, since V (x, q)

satisfies (24) for q ≥ q∗ (x), the left- and right-hand sides of (29) coincide with

this choice of q′. Hence, we have shown that V (x, q) defined in (23) satisfies the

HJB-equation.
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Part 3: verification

The verification of the solution follows from the standard arguments in the liter-

ature (see e.g. Fleming and Soner (2006)). Let V ∗ solve the HJB equation (5)

and let q∗(x, q) = max{q, q∗(x)} be the corresponding q∗. Then, let T ≥ t be the

time at which the game ends (we will take the limit as T goes to infinity). From

generalized Itô’s formula we have14

e−rTV ∗(xT , qT ) = e−rtV ∗(xt, qt)−
∫ T

t
e−rsrV ∗(xs, qs)ds+

∫ T

t
e−rsV ∗x (xs, qs)dxs

+
∫ T

t
e−rsV ∗q (xs, qs)dqs + 1

2

∫ T

t
e−rsV ∗xx(xs, qs)d[x]s + 1

2

∫ T

t
e−rsV ∗qq(xs, qs)d[q]s

+
∫ T

t
e−rsV ∗qs(xs, qs)d[q, x]s

where d[x]t and d[q]t are the quadratic variations of x and q and d[x, y]t is their

quadratic covariation. The process Qt has bounded variation and hence d[q]t =

d[x, y]t = 0. Notice also that dxt = xt(1 − xt)σ−1√qtdwt and d[x]t = x2
t (1 −

xt)2σ−2qtdt. We can further simplify the equation by noting that V ∗q dq = −(xvH(q)+

(1−x)vL(q))dq. The HJB equation gives an upper bound for qs
σ2x

2
s(1−xs)2V ∗xx(xs, qs)−

rV ∗(xs, qs) ≤
∫ q∗(xs,qs)
qs

(xvH(q) + (1− x)vL(q))dq, which equals zero for almost all

s. Combining gives:

e−rTV ∗(xT , qT ) ≤ e−rtV ∗(xt, qt)−
∫ T

t
e−rs(xsvH(qs) + (1− xs)vL(qs)))dqs

+
∫ T

t
e−rsVx

∗(xs, qs)
√
qs
σ
xs(1− xs)dws. (31)

Because the game ends at time T , V ∗(xT , qT ) = 0. Taking conditional expec-

tations , multiplying by −ert and simplifying then gives

V ∗(xt, qt) ≥ E

 ∫ T

t
e−r(t−s)(xsπH(qs) + (1− xs)πL(qs))ds|Ft

. (32)

The value is bounded and therefore clearly satisfies the transversality condition:

limT→∞ E[e−rTV ∗(xT , qT )] = 0. Hence, the limit of the right-hand side of (31) is

well defined as T →∞. Therefore, we have that V ∗(x, q) ≥ maxQ U(Q;x, q) even

as T →∞.
14To see that V ∈ C2 check Vx at the boundary. The continuity of Vxx and Vqq follows from

Lemma 6 and the continuity of Vq and Vqx are implied by the value matching and smooth pasting
conditions.
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The last step is to use the fact that Q, induced by policy x∗, achieves the

pointwise maximum of the HJB-equation and thus the inequalities above become

equalities: V ∗(x, q) = maxQ U(Q;x, q). Our solution solves the original problem.

Proof of Proposition 3

Proof. First, we can use that we have proved that x∗(0) < xE(0) = xstat(0) in

the proof of Proposition 2 together with the continuity of the policy functions

to get that there exists q > 0 such that xstat(q) > x∗(q) for all q < q. As

the policy functions are strictly increasing and continuous, the stocks q∗(x) and

qstat(x) are pinned down as the inverse of the policy functions for all x ≥ x∗(0) and

x ≥ xstat(0) respectively. In addition, q∗(x) = 0 for all x ≤ x∗(0) and qstat(x) = 0

for all x ≤ xstat(0), and hence q∗ and qstat are continuous.

Let x := xstat(q) > xstat(0) where the inequality follows from xstat being strictly

increasing. Then, qstat(x) < q∗(x) for all x ∈ [xstat(0), x) by that q∗ and qstat are

the inverse functions of x∗ and xstat. Furthermore, qstat(x) = 0 < q∗(x) for all

x ∈ [x∗(0), xstat(0)], which completes the proof.

Next, we show the other direction by showing that x∗(1) = xstat(1) = 1 and

x∗q(1) < xstatq (1). The first part is immediate. For the second part, use Lemma 4

and the uniqueness of the solution to get x∗q(1) = xEq (1). Now it is enough to show

that the derivative of the equilibrium is smaller than of the static solution:

xEq(1)− xstatq(1) =(β − 1)βvLv′H
(βvL)2 − vLv

′
H

(vL)2 = −vLv
′
H

βv2
L

< 0.

The static and optimal solutions meet at q = 1 but the optimal solution reaches

the point above the static solutions. Hence, by continuity there must exist q < 1

such that x∗(q) > xstat(q) for all q ∈ (q, 1), which then further implies the existence

of x < 1 by the same argument as used above for x.
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