Gradual Learning from Incremental Actions

Tuomas Laiho, Pauli Murto, Julia Salmi*

February 26, 2024

Abstract

We introduce a collective experimentation problem where a continuum of agents choose the timing of irreversible actions under uncertainty and where public feedback from the actions arrives gradually over time. The leading application is the adoption of new technologies. The socially optimal expansion path entails an informational trade-off where acting today speeds up learning but postponing capitalizes on the option value of waiting. We contrast the social optimum to the decentralized equilibrium where agents ignore the social value of information they generate. We show that the equilibrium can be obtained by assuming that agents ignore the future actions of other agents, which lets us recast the complicated two-dimensional problem as a series of one-dimensional problems.

JEL classification: C61, C73, D82, D83

Keywords: social learning, experimentation, optimal stopping, technology adoption

*Laiho: Ministry of Finance, Finland (tuomas.s.laiho@gmail.com), Murto: Aalto University School of Business (pauli.murto@aalto.fi, http://www.aalto-econ.fi/murto/), Salmi: University of Copenhagen (julia.salmi@econ.ku.dk, https://sites.google.com/view/juliasalmi). We thank Aislinn Bohren, Martin Cripps, Rahul Deb, Francesc Dilme, Nils Christian Framstad, Dino Gerardi, Yingni Guo, Daniel Hauser, Jan Knoepfler, Matti Liski, Erik Madsen, Helene Mass, Konrad Mierendorff, Francesco Nava, Mariann Ollar, Marco Ottaviani, Sven Rady, Peter Norman Sørensen, Roland Strausz, Juuso Toikka, Christian Traeger, Juuso Välimäki, and various seminar and conference audiences for their helpful comments. This project has received financial support from ERC grant no. 683031 through PI Bård Harstad (Laiho), Academy of Finland (Murto), and from Emil Aaltosen Foundation, OP Group Research Foundation, Yrjö Jahnsson Foundation, and ERC grant no. 682417 through PI Vasiliki Skreta (Salmi).
1 Introduction

Innovation adoption decisions have long-run consequences that can be observed only gradually over time. In this paper we analyze how such endogenous gradual learning shapes the socially optimal expansion path and we contrast this to a situation where adoption decisions are decentralized.

Consider an individual firm contemplating whether to invest in a novel production technology or an individual consumer contemplating whether to purchase a novel durable good. Each new adopter begins to observe how well the technology functions in different situations and whether technical problems emerge over time. The experiences of the adopters spill over to potential future adopters through private communications, social media, or platforms that collect reliability statistics. An individual who has not yet made an adoption decision utilizes such information in deciding whether and when to adopt the new technology herself. Since past adopters continue to produce information over time, the current efficacy of learning is increasing in the number of past adopters.

This paper introduces a model to analyze how endogenous gradual learning affects incremental actions with uncertain consequences. The key feature of the model is that each individual action has a long-run impact on the flow of information that is publicly observed.

In the model, a continuum of small agents decide whether and when to take an irreversible action (e.g. adopt the new innovation). We refer throughout the paper to the action as a decision to “stop”. An unknown binary state determines if stopping is profitable for the agents. Crucially, learning is gradual: upon stopping, each agent initiates a persistent flow of information that other agents observe over time. This is in contrast to the standard experimentation models where an action generates an instantaneous one-time signal and further actions are needed to learn more.\(^1\)

\[^{1}\text{In reality individual adoption decisions are often costly to reverse, if not entirely irreversible, which is enough to add persistence in the social learning. We look at the extreme case of such persistence - adoption decisions that are infinitely costly to reverse - to understand clearly the theoretical implications of irreversibility and gradual learning.}\]
Our main question is how the incremental path of stopping decisions— the adoption path—is determined on the one hand in a decentralized equilibrium where agents optimize individually and on the other hand when a central planner coordinates the actions to maximize the expected welfare summed over the agents. The contribution of this paper is twofold. First, we develop a novel methodological approach with suitable solution techniques. Second, we analyze new economic phenomena that arise in environments with endogenous gradual learning. We show that the combination of gradual learning and irreversible decisions creates a new trade-off for the socially optimal expansions: the information generation effect calls for aggressive expansion in order to improve information for future decisions and the option value effect calls for cautious expansion in order to have better information for the current decisions. A social planner trades off these two effects dynamically over time, but individual agents internalize only the latter effect and thus the decentralized equilibrium suffers from informational free-riding. This informational trade-off would not arise in a model where learning is instantaneous rather than gradual because there would then be no scope for improving information by delaying adoption.\(^2\)

We approach experimentation under gradual learning by modeling the cumulative path of individual actions as a stock process, which controls the speed of learning. The micro-foundation for our specification is that each agent who has stopped produces a persistent stream of i.i.d. signals conditional on the true state. In continuous time, this leads to an aggregate signal that follows a Brownian motion with an unknown drift, determined by the true state, and a signal-to-noise ratio that is increasing in the stock of agents who have stopped. Each stopping decision thus affects information generation gradually over time.

The techniques to solve the decentralized equilibrium and the socially optimal policy turn out to be quite different. The common challenge is that the problems are two-dimensional, as both the current belief about the state and the stock affect the optimal decisions. Furthermore, the stock and the belief processes are interlinked as the stock determines the flow of new information. We show that the

\(^2\)Papers studying instantaneous learning include Bonatti (2011), Che and Hörner (2017), Frick and Ishii (2023), and Laiho and Salmi (2023).
decentralized equilibrium can be solved by analyzing the optimal stopping decisions of agents who ignore that the other agents stop in the future, i.e. they take the stock as fixed on the current level. This property turns the two-dimensional problem into a series of one-dimensional stopping problems. Our proof for the equivalence between the two stopping problems builds on the fact that information arrives smoothly over time under gradual learning.

Unlike the decentralized equilibrium, the socially optimal policy takes into account the social value of faster learning. Optimization under the assumption that the stock remains fixed does not work because the value of information depends on the expected future actions. We cannot solve the optimal policy in closed form, but we derive a non-linear differential equation that determines the policy and allows us to characterize it. Because of the information generation effect, socially optimal policy favors earlier and more aggressive expansions than what happens in the decentralized equilibrium. The difference between the two is especially pronounced when the learning technology is good and learning could potentially be fast. Compared to the no-learning benchmark, gradual learning tends to increase the socially optimal stock for low beliefs and decrease it for high beliefs due to the informational trade-off between information generation and the option value of waiting.

Solving the social planner’s problem is an important part of our contribution. The problem is of independent interest also because it can be interpreted as the canonical problem of a single decision maker choosing how to expand a capital stock over time under uncertainty. We discuss this alternative interpretation in Appendix C.1. The key difference to existing literature in this area (see e.g. Dixit and Pindyck (1994)) is that in our model the uncertainty is resolved endogenously, which is the source of disparity between the social optimum and the decentralized equilibrium.

In the last part of the paper, we show how a central planner can implement the social optimum, or any other policy, as a decentralized equilibrium by using anonymous instruments such as posted prices, taxes, or subsidies. We use mechanism design techniques to pin down a dynamic transfer rule that incentivizes each
individual agent to stop at the desired moment.

1.1 Related literature

Using the framework of our paper, the previous literature on learning can be organized based on whether the information generation effect or the option value effect is present in the model. The current paper is the first to analyze the interaction of these effects.

The information generation effect is present in papers analyzing classic single-agent bandit problems and experimental consumption (Gittins and Jones 1974, Rothschild 1974, Prescott 1972 and Grossman, Kihlstrom and Mirman 1977). Introducing multiple agents to these models adds an informational externality that dampens the information generation effect. Bolton and Harris (1999), Keller, Rady and Cripps (2005) and Keller and Rady (2010) analyze such models under different assumptions on the learning technology. Applications include Bergemann and Välimäki (1997, 2000) and Bonatti (2011) who analyze dynamic pricing. The option value effect does not arise in these papers because actions are reversible, and hence, learning always increases the level of optimal quantities relative to the no-learning benchmark. Strulovici (2010) shows that also collective decision making by voting has the effect of reducing experimentation below the socially optimal level.

When actions are irreversible but information arrives exogenously rather than endogenously, only the option value effect is present. Seminal papers in this literature include McDonald and Siegel (1986), Pindyck (1988), and Dixit (1989) and the ensuing literature on real options is summarized in Dixit and Pindyck (1994). One can see our solution to the social planner’s problem as extending the real options literature to endogenous learning.

A few papers investigate social learning with irreversible actions, which bears similarities with informational free-riding in our decentralized solution. Frick and Ishii (2023) analyze the adoption of new technologies using a Poisson process with instantaneous feedback. Free riding on the information generated by others results
in an inefficiently low rate of innovations in equilibrium. Because feedback from
past actions is instantaneous, endogenous learning does not create an option value
effect for the social planner. Hence, there is no informational trade-off, unlike in
the present paper with gradual learning.

Frick and Ishii (2023) analyze the adoption of new technologies using a Pois-
son process with instantaneous feedback to model learning. Because feedback
from past actions is instantaneous, endogenous learning does not create an option
value effect for the social planner, and hence no informational trade-off on the
social level, unlike in the present paper with gradual learning. In equilibrium,
there is no information generation effect, but free-riding on the information gen-
erated by others creates an option value effect, resulting in an inefficiently low
rate of innovations. An early paper by Rob (1991) makes a similar observation
when analyzing sequential entry into a market of unknown size. Similarly, in the
models of optimal timing under observational learning, the option value creates
an incentive to wait causing socially inefficient delays (Chamley and Gale 1994,
Murto and Välimäki 2011).

Introducing a large player can overturn the effect of social learning and irre-
versibility on optimal quantities because a large player internalizes the information
generation effect. Che and Hörner (2017) study how a social planner, who designs
a recommendation system for consumers, can mitigate informational free-riding.
Laiho and Salmi (2023) analyze monopoly pricing in a similar setup. Both in
Che and Hörner (2017) and in Laiho and Salmi (2023), the presence of a social
planner or a monopolist induces information generation effect. The crucial differ-
ence from the present paper is that the papers model instantaneous learning from
each consumption decision: the planner and the monopolist do not face the option
value effect since they get more information only by attracting new consumers.
More generally, there is no informational trade-off under instantaneous learning,
regardless of whether actions are reversible or irreversible.

Our assumption that learning is gradual implies that past actions matter for
the current information flow. Two contemporaneous papers share this feature
with us, although their models and key trade-offs are otherwise different from
Liski and Salanié (2020) analyze a single-agent problem where a decision-maker controls the accumulation of a stock that triggers a one-time catastrophe at an unknown threshold level. The novel feature in their model is a random delay between the crossing of the threshold and the onset of the catastrophe. Martimort and Guillouet (2020) analyze a model with similar features focusing on a time-inconsistency problem under their assumptions.

Finally, the present paper is related to the literature on innovation adoption. Traditionally, the theoretical literature has focused on explaining adoption patterns through non-informational (Mansfield (1961), Farrell and Saloner (1986), and Jovanovic and Lach (1989)) or purely exogenous channels (Jensen (1982)). The few exceptions are Frick and Ishii (2023) (discussed above), Young (2009), and Wolitzky (2018). In Young (2009) and Wolitzky (2018), adopters are myopic, and hence, the option value effect does not arise. There is vast empirical evidence for social learning in innovation adoption, including Foster and Rosenzweig (1995), Duflo and Saez (2003), Munshi (2004), Bandiera and Rasul (2006), and Conley and Udry (2010). The present paper contributes to this literature by proposing a tractable model that matches the key characteristic in the studied real-life settings: gradual learning from others' outcomes.

2 Model

2.1 Actions and payoffs

A unit mass of small agents choose when, if ever, to take an irreversible action (to stop). We index individual agents by their type \(\theta \) and assume that \(\theta \) is distributed according to a continuously differentiable distribution function \(F \) with a full support on \(\Theta := [\underline{\theta}, \overline{\theta}] \). Time \(t \) is continuous and goes to infinity.

An agent’s stopping payoff, \(v_\omega(\theta) \), depends on the state of the world \(\omega \in \{H, L\} \) such that the payoff is higher in the high state of the world for all types: \(v_H(\theta) \geq \ldots \)

3The findings in Foster and Rosenzweig (1995), Munshi (2004), and Bandiera and Rasul (2006) support the importance of the option value effect and informational free-riding: individuals with good prospects to learn from others are less likely to be early adopters.
0 > v_L(\theta).^4 Payoffs are continuously differentiable with bounded derivatives and increasing in type: for each \(\theta \in \Theta \), \(v'_\omega(\theta) \geq 0 \) for both \(\omega \in \{H, L\} \) and \(v'_\omega(\theta) > 0 \) for at least one \(\omega = H \) or \(\omega = L. \)\(^5\) The realized payoff for an agent of type \(\theta \), who stops at time \(t \), is \(e^{-rt}v_{\omega}(\theta) \) where \(r \) is the common discount rate. The payoff of not stopping (i.e., stopping at \(t = \infty \)) is zero. We normalize \(v_H(\theta) = 0 \) so that type \(\theta \) is indifferent between stopping and never stopping if he is sure that \(\omega = H \); types lower than \(\theta \) would be redundant since they would never want to stop.

Agents are risk-neutral and maximize their expected discounted stopping payoffs. The agents do not know the state of the world \(\omega \) but learn about it over time as we will describe next.

2.2 Learning

The key idea of gradual learning is that every agent who has stopped generates a flow of conditionally independent public signals. Therefore, we consider exogenous learning from the stock of stopped agents: let \(q_t \) denote the stock (measure) of agents who have stopped by time \(t \).

Specifically, the public learns about the state by observing a Brownian diffusion:\(^6\)

\[
dy_t = q_t \mu_\omega dt + \sigma \sqrt{q_t} dw_t, \tag{1}
\]

where we normalize \(\mu_H = 1/2 \) and \(\mu_L = -1/2 \), \(\sigma > 0 \) is the standard deviation of the process, and \(w_t \) is a standard Wiener process. Signal process (1) is the limit of a model where \(q_t \) is composed of discrete units that produce conditionally independent noisy signals over time and where the total informativeness per unit of \(q \) is normalized to stay constant. The signals can be for example interpreted as

\(^4\)The analysis easily extends to the case where \(v_L(\theta) > 0 \) for some types. The only change is that all types, who get a positive stopping payoff in both states of the world, stop immediately.

\(^5\)This assumption ensures that the stopping payoff is strictly increasing in type for any interior belief about the state.

\(^6\)The process is otherwise equivalent to the learning processes in Bolton and Harris (1999) and in Moscarini and Smith (2001) but learning is from the stock of cumulative actions instead of being from the flow of new actions. Note that this formulation gives rise to a bounded rate of learning even when all the agents have stopped, i.e. when \(q_t = 1 \).
realized individual payoffs (see Appendix A).\footnote{See Bergemann and Välimäki (1997, 2000), Bolton and Harris (1999), Moscarini and Smith (2001), and Bonatti (2011) for other applications and further discussion. The difference to these papers is that they do not consider learning from the stock but from the flow of new actions.}

We denote by x_t the public posterior belief $x_t = Pr(\omega = H|F_t)$, where F_t is the natural filtration generated by the signal process (1). The unconditional law of motion for the public belief follows from Bayes’ rule:

$$dx_t = \frac{\sqrt{q_t}}{\sigma}x_t(1 - x_t)d\tilde{w}_t,$$ \hspace{1cm} (2)

where \tilde{w}_t is a standard Wiener process. In equation (2), the term $\frac{\sqrt{q_t}}{\sigma}$ is the signal-to-noise ratio of the process (1) and determines how fast the belief converges to the truth. Hence, the higher the stock of stopped agents, the more informative the public signals.

2.3 Solution concepts

We use the term \textit{policy} for a description of how the stock q_t evolves over time. A policy $Q = \{q_t\}_{t \geq 0}$ is an increasing stochastic process adapted to F_t. Notice that the signal process itself depends on the evolution of q_t, so that in effect we are defining policy Q jointly with signal process Y.

Individual agents take the policy Q as given when they choose their stopping strategies. A strategy for an agent of type θ is a stopping time $\tau(\theta)$ adapted to F_t. Type θ solves:

$$\sup_{\tau(\theta)} \mathbb{E} \left[e^{-rt(\theta)} \nu_\omega(\theta) \big| Q \right],$$ \hspace{1cm} (3)

where the vertical line notation means that the expectation is for some fixed process Q.

We say that a stopping profile $\mathcal{T} = \{\tau(\theta)\}_{\theta \in \Theta}$ is \textit{consistent with} Q if

$$Pr \left[\int_\theta^q 1(\tau(\theta) \leq t) dF(\theta) = q_t | Q \right] = 1$$

for all t. In other words, \mathcal{T} is consistent with Q if the measure of agents that it commands to stop always matches the policy.
It is convenient to define solution concepts directly in terms of a policy rather than in terms of a stopping profile. We consider two solution concepts. In a decentralized equilibrium agents optimize individually taking the policy as given:

Definition 1. A policy Q^E is a decentralized equilibrium if there exists a profile T^E such that i) it is consistent with Q^E and ii) $\tau^E(\theta)$ solves (3) for each θ when $Q = Q^E$.

The socially optimal policy maximizes the expected total welfare:

Definition 2. A policy Q^* is socially optimal if there exists a profile T^* such that i) it is consistent with Q^* and ii)

$$\mathbb{E} \left[\int_{\theta} e^{-r\tau^*(\theta)}v_\omega(\theta)dF(\theta) \bigg| Q^* \right] \geq \mathbb{E} \left[\int_{\theta} e^{-r\tau(\theta)}v_\omega(\theta)dF(\theta) \bigg| Q \right],$$

for any policy Q and profile $T = \{\tau(\theta)\}_{\theta \in \Theta}$ consistent with Q.

In section 3.5 we recast this as a control problem for the stock process $\{q_t\}$. This control problem is of independent interest for various applications as a single-agent experimentation model, as we discuss in appendix C.1.

3 Analysis

Our objective is to analyze how gradual learning affects stopping decisions. First, we discuss some common properties that hold regardless of whether stopping times are individually or socially optimal and present the no-learning benchmark. Then, we solve both the (unique) decentralized equilibrium and the socially optimal policy. Lastly, we compare the decentralized equilibrium and the socially optimal solution to the no-learning benchmark and provide comparative statics results on the effects of learning.

3.1 Higher types stop first

In principle, one can implement a policy Q by many different stopping profiles. However, because the stopping payoffs are increasing in θ, in equilibrium higher
type agents want to stop whenever a lower type agent wants to stop, which leads to monotone stopping profiles:

Lemma 1. If \(T = \{ \tau(\theta) \}_{\theta \in \Theta} \) maximizes (3) for each \(\theta \) for given process \(Q \), then

\[
\Pr \left[\tau(\theta) \leq \tau(\theta') \mid \mathcal{F}_t; Q \right] = 1
\]

whenever \(\theta > \theta' \).

Also socially optimal stopping order is monotone:

Lemma 2. Any stopping profile \(T = \{ \tau(\theta) \}_{\theta \in \Theta} \) consistent with \(Q \) satisfies:

\[
\mathbb{E} \left[\int_{\theta}^{\theta'} e^{-r\tau(\theta)} v_\omega(\theta) dF(\theta) \big| \mathcal{F}_t; Q \right] \leq \mathbb{E} \left[\int_{\theta}^{\theta'} e^{-r\tau_{\text{mon}}(\theta)} v_\omega(\theta) dF(\theta) \big| \mathcal{F}_t; Q \right],
\]

where \(\tau_{\text{mon}}(\theta) := \inf \{ t : q_t \geq 1 - F(\theta) \} \).

We prove both Lemma 1 and Lemma 2 in Appendix A. The lemmas mean that it is without loss of generality to restrict attention to stopping profiles where the agents stop in a descending order by type. It follows that there is a one-to-one mapping between the stock \(q_t \) and the largest type \(\theta_t \) who has not stopped: \(q_t = 1 - F(\theta_t) \). Throughout the paper we use notation \(q(\theta) := 1 - F(\theta) \) to denote the stock as a function of the current highest type, which has an inverse (current highest type): \(\theta(q) := \{ \theta : 1 - F(\theta) = q \} \). With a slight notational abuse, we use \(v_\omega(q) \) to denote the stopping payoff of type \(\theta(q) \).

3.2 Boundary policies

This subsection discusses the dynamics in our model. It turns out that both solutions can be characterized as boundary policies:

Definition 3. A policy \(Q \) is a boundary policy if there exists a continuous function \(\tilde{q} : [0, 1] \rightarrow [0, 1] \) such that \(q_t = \tilde{q}(\max_{s \in [0,t]} x_s) \) where \(\tilde{q} \) is strictly increasing for all \(x \) such that \(\tilde{q}(x) > 0 \).

A boundary policy is Markovian: agents’ stopping decisions depend only on the stock and the belief. Because stopping is irreversible, the stock at time \(t \) is
determined by the highest belief reached up to t. A boundary policy hence divides the stock-belief state space into two regions: in the *expansion region*, more agents stop until the stock equals $\tilde{q}(x)$ and in the *waiting region*, everyone waits.

![Figure 1: Dynamics in the waiting and expansion regions of the state space.](image)

A boundary policy is fully characterized by the inverse of \tilde{q}, an increasing *policy function* $\tilde{x} : [0, 1] \rightarrow [0, 1]$, which maps the stock to the cutoff belief.\(^8\) It turns out that it is easier to use policy functions to characterize our solutions than functions \tilde{q}. Figure 1 illustrates a boundary policy and the implied dynamics in the state space. Above the boundary, the stock increases (horizontal movement in the figure) and below it, the stock stays constant and only the belief moves (vertical movement). As soon as the belief hits the boundary from below, the quantity is pushed towards right along the boundary. The expansions in the stock are immediate (depicted by solid arrows in the figure), whereas the belief fluctuates according to the diffusion process (2) (dashed arrows). Apart from the possible initial jump, the stock process stays below the boundary and is continuous almost surely.

It is useful to note that since a boundary policy is Markovian in the stock-belief state space, we can express an individual agent’s best-response to such a policy as an optimally chosen stopping region in the state space. We utilize this in establishing the existence and uniqueness of a decentralized equilibrium.

\(^8\)We use the term *policy* to describe a stock process Q that can depend on the news process in an arbitrary way. The term *policy function* defined here refers to the characterization of a particular type of policy – a boundary policy – in the (q, x)-space.
3.3 No-learning benchmark

We start our analysis with the benchmark case without learning, which allows us to disentangle how learning affects the decentralized equilibrium and the socially optimal solution.

When there is no learning but the common belief stays constant, the agents’ stopping problem is myopic. An agent stops if and only if his type is so high that the expected payoff is positive: \(xv_H(\theta) + (1 - x)v_L(\theta) \geq 0 \), or \(x \geq \frac{-v_L(\theta)}{v_H(\theta) - v_L(\theta)} \). Hence, the policy function associated with the no-learning benchmark is given by:

\[
x_{\text{myop}}(q) = \frac{-v_L(q)}{v_H(q) - v_L(q)},
\]

where \(v_\omega(q) := v_\omega(\theta(q)) \).

Individually optimal and socially optimal policies coincide when there is no learning.

3.4 Decentralized equilibrium

We next characterize the decentralized equilibrium defined in Definition 1. An optimal stopping time for an individual agent trades off the cost of waiting with the option value of waiting. Because the belief process changes endogenously as the stock of stopped agents increases, waiting not only brings more information but also faster learning. Despite this, we show that we can solve equilibrium stopping times by first solving a sequence of stopping problems where each agent finds the optimal time to stop when the stock is fixed. That is, we fix \(q_t = \hat{q} \) for all \(t \) and find the optimal stopping time for type \(\theta(\hat{q}) \) assuming that \(q_t \) is constant and equal to \(\hat{q} \). This one-dimensional stopping problem can be solved using standard techniques in the literature (see e.g. Dixit and Pindyck (1994) and the team problem in Bolton and Harris (1999)). We show that an equilibrium in the original problem is obtained by solving the problem with fixed stock separately for each individual type and tying these solutions together.\(^9\) In effect this pins

\(^9\)Our method to solve the decentralized equilibrium is inspired by a model of industry level investments by Leahy (1993) who shows that under exogenous uncertainty the competitive equi-
uniquely down a necessary condition for the threshold belief at which the ‘next’ agents stops, given the current stock q_t, and hence the procedure also establishes the uniqueness of the equilibrium. Intuitively, uniqueness arises because actions are strategic substitutes: an agent is less willing to stop if many other agents stop because then information arrives faster.

We elaborate here further the intuition for the equivalence between the problem with fixed stock and the original problem. Consider the problem of type θ who is considering whether or not to stop today. By Lemma 1, later expansions in the stock will only take place when some lower type $\theta' < \theta$ finds it optimal to stop, in which case it is also optimal for the higher type θ to stop. In other words, future expansions only take place under circumstances where θ wants to stop in any case, and therefore those expansions have no bearing on the marginal consideration for stopping today. Hence, today’s continuation value of the marginal type is the same in equilibrium as it is in the problem where stock is fixed. As this intuition suggests, the optimality of ignoring future changes in the stock is an equilibrium property and may well be violated against other (non-equilibrium) stock processes. The intuition does not rely on the properties of the learning process in any way, and therefore we expect the result to generalize to other processes as such. In Appendix B, we formalize the argument to get the following result:

Proposition 1. There is a unique decentralized equilibrium, which is a boundary policy characterized by a strictly increasing policy function x^E:

$$x^E(q) := \frac{-\beta(q)v_L(q)}{(\beta(q) - 1)v_H(q) - \beta(q)v_L(q)},$$

where $\beta(q) := \frac{1}{2} \left(1 + \sqrt{1 + \frac{8\sigma^2}{q}}\right)$.

Equilibrium behavior coincides with that of ‘myopic’ investors who ignore the effect the future investments have on the price.

One critical assumption for the result is that agents are infinitesimally small, which implies that an individual deviation will not influence the stock process. Suppose, to the contrary, that there are N players and by stopping a player causes a discrete jump in the stock. With incomplete information (i.e. if players’ types are private information), the result would not carry over, which we can deduce from the model analyzed by Décamps and Mariotti (2004). With complete information, we believe that this property would continue to hold (see e.g. Cetemen, Urgun and Yariv (2023) for a similar equilibrium property in another context), but contrary to our setup there might be multiple equilibria.
According to Proposition 1, an agent of type \(\theta \) waits until the belief reaches the cutoff \(x^E(q(\theta)) \), which is precisely the optimal stopping threshold for the agent of type \(\theta \) who assumes that the stock remains fixed at \(q(\theta) \) forever. The term \(\beta(q) \) reflects the cost of waiting for information. We have \(\beta(q) > 1 \) for all \(q \), but \(\lim_{q \to \infty} \beta(q) = 1 \). The threshold \(x^E(q(\theta)) \) is decreasing in \(\beta(q) \), which in turn is increasing in \(\sigma \) and \(r \) and decreasing in \(q \).

The decentralized equilibrium is a boundary policy: whenever the belief is about to cross the boundary \(x^E(q) \), more agents stop. Notice that \(x^E(q) \) is increasing in the signal precision (decreasing in \(\sigma \)), which means that a better learning technology decreases the stock of agents who are willing to stop at any given belief. This is because the better the learning technology, the greater the option value of waiting and hence the higher the belief threshold at which an agent stops. Figure 2 depicts the policy for different values of \(\sigma \). The no-learning benchmark is a special case of the decentralized equilibrium as we take \(\sigma \to \infty \), which directly gives (by using that \(\beta(q) > 1 \)):

Corollary 1. The policy function in the decentralized equilibrium is strictly higher than the no-learning benchmark: \(x^E(q) > x^{myop}(q) \) for all \(\sigma \geq 0 \) and all \(q \geq 0 \).

Notice that the limit \(\sigma \to 0 \) corresponds to the case, where the state will be revealed immediately. In that limit, \(x^E(q) \to 1 \) for all \(q > 1 \). The agents who learn very quickly stop only once they are sure that the state is good.

3.5 Social optimum

We now consider the problem in Definition 2 where a benevolent social planner seeks to maximize agents’ expected joint payoff. The problem is identical to a problem of a single decision maker who controls a path of incremental expansions. We briefly discuss this alternative specification in Appendix C.1.

From Lemma 2, we know that the skimming property holds for the social optimum and hence the problem is reduced to finding the policy \(Q \) that maximizes the expected social welfare. We use notation \(U(Q; x, q) \) to denote the expected total payoff of agents that have not yet stopped, given current state \((x, q) \) and
Figure 2: Equilibrium policy $x^E(q)$ for different σ when $v_H(q) = 1 - q$, $v_L(q) = -1/2$, and $r = 0.1$.

given a policy Q:

$$U(Q; x, q) = \mathbb{E} \left[\int_{q}^{1} e^{-r \tau(s)} (x_{\tau(s)}v_H(s) + (1 - x_{\tau(s)})v_L(s))ds \bigg| x, q; Q \right]. \quad (4)$$

The planner’s problem is then equivalent to solving $\sup_Q U(Q; x, q)$ for all (x, q). By applying Itô’s lemma and using the properties of the Brownian motion, we get the following Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem:

$$rV(x, q) = \max_{q' \geq q} \left(r \int_{q}^{q'} (xv_H(s) + (1 - x)v_L(s))ds + \frac{1}{2} V_{xx}(x, q') \frac{x^2(1 - x)^2}{\sigma^2} q' \right). \quad (5)$$

We will solve the planner’s problem by showing that the HJB equation is satisfied by a particular boundary policy that cuts the state space into an expansion region and a waiting region. A verification argument then shows that the candidate solution obtained in this way also maximizes the original objective (4).

We derive here heuristically the solution to the HJB equation (the formal proof and the verification argument are in Appendix C). In principle the optimal policy could consist of several waiting and expansion regions. We start by guessing that there is only one expansion and only one waiting region. Let $x^*: [0, 1] \to [0, 1]$ denote our candidate solution, which splits the state space in two so that for a given q the planner waits for beliefs $x < x^*(q)$ and expands for beliefs $x \geq x^*(q)$. Since the planner internalizes the value of information for further decisions, we
should intuitively expect the socially optimal expansion region to be larger than in the case of decentralized equilibrium, i.e. $x^*(q) < x^E(q)$. We shall verify that also this property indeed holds.

We first pin down the functional form for the value function that solves the HJB equation (5) in the waiting region, i.e. below x^*. There it should be optimal to choose $q' = q$ and hence (5) reduces to a differential equation:

$$rV(x, q) = \frac{1}{2} V_{xx}(x, q) \frac{x^2(1 - x)^2}{\sigma^2} q.$$

This has a closed form solution:

$$V(x, q) = B(q) \Phi(x, q),$$

where $B(q)$ is a function yet to be determined and

$$\Phi(x, q) := x^{\beta(q)} (1 - x)^{1 - \beta(q)}$$ and $\beta(q) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{8r\sigma^2}{q}} \right)$ as in Proposition 1.

The value function (6) captures the option value of the future actions for the planner in state (x, q).

The next step is to find functions B and x^* that make sure that the right-side of the HJB equation is maximized everywhere. To do this, we first derive heuristically two additional conditions that will pin down a candidate for B and x^*, and prove the optimality of the candidate afterwards. To understand these conditions, imagine the social planner solving the problem in small successive steps, where each step consists of choosing the optimal time to add the next increment dq to the current stock q. The planner’s value function $V(x, q)$ encompasses the values of options to all future stock increments. At the time of adding dq, the planner obtains direct payoff increment $(x(q)v_H(q) - (1 - x(q))v_L(q))dq$, but at the same time foregoes the option to add that increment at some later moment thus inducing a change $V_q(x, q)dq$ in the value function. Requiring these to be in balance at the moment of hitting the threshold $x^*(q)$ gives a condition analogous to the value-matching condition in the literature of optimal stopping:

\footnote{We have discarded the other root of the characteristic equation, $\tilde{\Phi}(x, q) := x^{1 - \beta(q)} (1 - x)^{\beta(q)}$, as we must have that the value converges to the static solution as $x \to 0$ and $x \to 1$.}
V_q(x^*(q), q) + x^*(q)v_H(q) + (1 - x^*(q))v_L(q) = 0. This is an accounting equation that would have to hold irrespective of whether stock increment is undertaken at the optimal time instant or not, so we need a second condition to guarantee the optimality of the timing. Analogous to the smooth-pasting optimality condition in the literature of optimal stopping, we require that derivatives with respect to x of the two terms match at the threshold x^*(q):

\[V_qx^*(q, q) + v_H(q) - v_L(q) = 0. \]

Using Equation (6), we can write these two conditions as

\[x^*(q)v_H(q) + (1 - x^*(q))v_L(q) + B_q(q)\Phi(x^*(q), q) + B(q)\Phi_x(x^*(q), q) = 0, \] (7)

\[v_H(q) - v_L(q) + B_q(q)\Phi_x(x^*(q), q) + B(q)\Phi_{xx}(x^*(q), q) = 0. \] (8)

Since we have derived conditions (7) - (8) heuristically, we proceed in the spirit of guess-and-verify: we use them to pin down a candidate policy, but we will not rely on them when we prove the optimality of the candidate.

We show in Appendix C that the system (7) - (8) can be transformed into a non-linear differential equation that defines our candidate policy x^*:

\[x^{*'}(q) = g(x^*(q), q), \] (9)

where

\[
g(x, q) = x(1 - x) \left[x(\beta'(q))(\beta(q) - 1)v_H(q) - ((\beta(q) - 1)\beta''(q) - 2(\beta'(q))^2)v_H(q) \right] \\
+ (1 - x) \left[(\beta'(q)\beta(q)v_L(q) - (\beta(q)\beta''(q) - 2(\beta'(q))^2)v_L(q)) \right] / \left[(x(\beta(q) - 1)^2v_H(q) + (1 - x)(\beta(q))^2v_L(q))\beta'(q) \right].
\]

The appropriate initial condition for the differential equation is x^*(1) = 1 because the solution must equal the no-learning benchmark when the belief equals one.

The denominator of function g is zero at (1, 1) and hence a potential singularity problem arises. However, we show in Appendix C that the initial value problem has a unique solution that satisfies x^*(q) ≤ x^E(q) for all q ∈ [0, 1] (proof of Lemma 5 in Appendix C.4). This solution is our candidate for social optimum.

We then take the following steps in Appendix C. First, we verify that, together

12See Dixit and Pindyck (1994), chapter 11.1A or Pindyck (1988) for a more formal justification of analogous conditions in a model with an exogenous stochastic process.
with the value function in (6), the candidate solves the HJB equation. We then further verify that it also maximizes the original objective (4). In the process, we show that \(x^*(q) \) is continuous and strictly increasing in \(q \) and hence satisfies the requirements for a boundary policy. We have:

Proposition 2. The socially optimal policy \(x^* \) is a boundary policy that satisfies \(x^*(q) \leq x^F(q) \) for all \(q \in [0, 1] \). It solves the initial value problem (9) with initial value \(x^*(1) = 1 \).

Proposition 2 confirms that we can solve the potentially complicated history-dependent problem with a simple boundary policy. However, unlike the decentralized equilibrium, we cannot solve the planner’s problem in closed form because the planner is truly forward-looking. For the socially optimal policy, both past and future actions are relevant. The past generates information that is useful in evaluating the right decision today, whereas future decisions can be based on information generated by today’s action. The socially optimal policy balances the resulting trade-off between the efficient use of information (option value effect) and the efficient production of information (information generation effect). In decentralized equilibrium the agents only account for the former effect, so it is the information generation effect that induces the social planner to adopt faster than the decentralized equilibrium.

![Figure 3](image-url)
Figure 3: Socially optimal policy \(x^*(q) \) for different \(\sigma \) when \(v_H(q) = 1 - q \), \(v_L(q) = -1/2 \), and \(r = 0.1 \).

Figure 3 provides a numerical example of the effects of the signal precision.
The smaller the noise parameter σ is, the more precise the signals are. Better learning technology decreases the cutoff belief $x^*(q)$ when the stock is small and increases it when the stock is high. This arises because improved learning amplifies both information generation and option value effects. The former dominates in the beginning, when the existing stock is low and there are many uncommitted agents who benefit from more information. Conversely, the option value effect dominates later when there are few such agents. Notice that the policies with learning (finite σ) are first below and later above the myopic policy without learning ($\sigma = \infty$). Hence, gradual learning may either increase or decrease expansions as the informational trade-off suggests. The following proposition generalizes this observation (see Appendix C.5 for the proof).

Proposition 3. There exists $x \in (x^{myop}(0), 1)$ and $\bar{x} \in [x, 1)$ such that the socially optimal stock is strictly larger than the no-learning benchmark for all beliefs in $(x^*(0), \bar{x})$ and strictly lower for all beliefs in $(\bar{x}, 1)$.

Figure 4 illustrates the relationship between the solutions. Compared to the no-learning benchmark, gradual learning first increases and then decreases optimal expansions over time. The decentralized policy requires a higher belief for further expansions than the other policies.

![Figure 4: Different policies when $v_H(q) = 1 - q$, $v_L(q) = -1/2$, $\sigma = 0.5$, and $r = 0.1$.](image)

Finally, it is illuminating to look at what happens to the actual speed of learning when the learning technology improves. To do that, let $q^*_\sigma(x)$ and $q^E_\sigma(x)$ denote the socially optimal and the decentralized stocks for signal precision σ.

20
Proposition 4. (a) The socially optimal signal-to-noise ratio explodes as noise vanishes: $\sqrt{q^*_x(x)/\sigma} \to \infty$ as $\sigma \to 0$ for all $x \in (0, 1)$. (b) The signal-to-noise ratio in decentralized equilibrium stays bounded as noise vanishes: $\sqrt{q^E_x(x)/\sigma} \to a(x)$ as $\sigma \to 0$ where $a(x) = 0$ for all $x \leq x^{\text{stat}}(0)$ and $a(x) \in (0, \infty)$ for all $x \in (x^{\text{stat}}(0), 1)$.

Learning gets arbitrarily fast in the socially optimal solution when the learning technology improves, whereas learning remains slow in the decentralized equilibrium. The latter is caused by informational free-riding: no-one wants to be the first one to stop if information arrives fast. This result suggests that the signal precision σ is an important determinant of welfare implications of the model. In Appendix C.6, we prove Proposition 4 and derive the functional form for $a(x)$.

3.6 Adoption path and long-run distribution of the stock

Our model generates an S-shaped adoption path. We do not have a closed form solution for the expected stock at a given time, but it is straightforward to generate one by simulation. Figure 5 shows the simulated average stock both in the decentralized equilibrium and in the social optimum, conditional on $\omega = H$. The adoption is first slow but then gets faster due to faster learning. Eventually, adoption slows as the marginal agent’s valuation gets lower and the option value effect increases.

One can compute explicitly the probability distribution of the stock in the long-run for any boundary policy, including the decentralized equilibrium and social optimum. Since the long-run stock $q_\infty := \lim_{t \to \infty} q_t$ is equal to the value of the boundary policy $\tilde{q}(\cdot)$ evaluated at the historical maximum value of the process x_t, we can do this by analyzing the distribution for the maximum value of the belief process x_t. Here we utilize the belief process being a martingale with a continuous path that eventually converges to truth. Note that if $\omega = H$, then the stock q_t must converge to 1 as the agents learn that stopping is profitable, whereas if $\omega = L$, the long run stock remains random as some fraction of the agents will have stopped by mistake.
Figure 5: Expected adoption paths conditional on $\omega = H$. Parameters: $v_H(q) = 1 - q$, $v_L(q) = -1/2$, $\sigma = 0.5$, $r = 0.12$, $x_0 = 0.15$, $q_0 = 0.01$.

Proposition 5. Take an arbitrary boundary policy $\tilde{q}(x)$ with inverse $\tilde{x}(q)$ and assume that the initial stock satisfies $q_0^+ := \max (q_0, \tilde{q}(x_0)) > 0$.\(^\text{13}\) The probability distribution of the long-run stock is given by:

\[
\Pr (q_\infty \leq q \mid \omega = L) = \begin{cases}
0 & \text{if } q < q_0^+ \\
\frac{x(q) - x_0}{x(q)(1-x_0)} & \text{if } q_0^+ \leq q < \tilde{q}(1) \\
1 & \text{if } q \geq \tilde{q}(1)
\end{cases}
\]

\[
\Pr (q_\infty \leq q \mid \omega = H) = \begin{cases}
0 & \text{if } q < \tilde{q}(1) \\
1 & \text{if } q \geq \tilde{q}(1)
\end{cases}
\]

Since the socially optimal policy function is always below the decentralized equilibrium policy function, i.e. $x^s(q) < x^E(q)$ for all q, the long-run stock tends to be higher in social optimum than in equilibrium:

Corollary 2. The long-run stock in social optimum dominates the long-run stock in decentralized equilibrium in the sense of first-order stochastic dominance.

\(^{13}\)If $q_0^+ = 0$, i.e. $x_0 \leq \tilde{x}(0)$ and $q_0 = 0$, then $q_t \equiv 0$ for all $t \geq 0$ and no learning will ever take place.
3.7 Mechanism design

We have seen that the social planner’s solution and the decentralized equilibrium differ from each other. In this section we bridge this gap by showing how to implement a given policy in a decentralized manner with anonymous posted prices.\footnote{Depending on the context and sign, these can also be interpreted as taxes or subsidies.}

A posted price rule $P : [0, 1] \times [0, 1] \to \mathbb{R}$ defines a transfer payment that an agent has to pay to the designer if willing to stop at a given state. With such a policy in place, the stopping payoff for an agent of type θ who decides to stop in state (x, q) is

$$u_\theta(x, q) = xv_H(\theta) + (1 - x)v_L(\theta) - P(x, q).$$

Let Q be an arbitrary boundary policy with policy function \bar{x} satisfying $\bar{x}(q_1) = 1$ and its inverse $\bar{q}(x) : [0, 1] \to [0, q_1]$ with the convention $\bar{q}(x) = 0$ for $x \leq \bar{x}(0)$. Note that we allow here for the possibility that the designer wants to implement a restricted maximal stock $q_1 < 1$. The following proposition characterizes a posted price rule that implements Q:

Proposition 6. Fix a boundary policy Q with policy function \bar{x}. Then there exists a posted price rule P such that Q is a decentralized equilibrium of the game where the stopping payoff is given by (10). For states along the stopping boundary, the posted price rule is uniquely pinned down by

$$P(\bar{x}(q), q) = \bar{x}(q)(v_H(\theta(q)) + (1 - \bar{x}(q))v_L(\theta(q)))
- \mathbb{E}\left[\int_{\theta}^{\theta(q)} e^{-r(\tau(s) - r(\theta(s)))} \left(\bar{x}(q(s))v_H'(s) + (1 - \bar{x}(q(s)))v_L'(s)\right) ds \bar{x}(q), q\right].$$

(11)

For states away from the boundary, the posted price rule is not uniquely determined, but one valid rule is the following:

- For states $x > \bar{x}(q)$, set $P(x, q) = P(x, \bar{q}(x)).$

- For states $x < \bar{x}(q)$, set $P(x, q) = v_H(\bar{x}(q)).$

We prove the proposition in Appendix D. The posted price at the boundary is pinned down by the envelope theorem of Milgrom and Segal (2002) and we verify
that incentive compatibility holds globally along the stopping boundary. Below the boundary, the designer only needs to make sure that the transfer payment is high enough to make the cost of stopping prohibitive, which is trivially accomplished by setting the payment at $v_H(\theta)$. Above the boundary, one must guarantee that those agents needed for the state to move immediately to the boundary do indeed want to stop, and $P(x, q) = P(x, \tilde{q}(x))$ is one way to accomplish that.

4 Concluding remarks

Modeling gradual arrival of endogenous information enables the analysis of various real-life situations where the long-run consequences of a decision determine its profitability. Because gradual learning creates a novel informational trade-off on the social level between information generation and the option value of waiting, it dramatically shapes the incentives of experimentation.

Our model of gradual learning has also technical appeal as a tool for applied work. As demonstrated in this paper, the decentralized equilibrium can be solved in closed form and mechanism design techniques can be utilized to conduct policy analysis. We also believe that the solution method can be extended to richer environments, such as models where the stock controls a generic state process or where the actions of other players affect the profitability of stopping directly through payoff externalities.

An important takeaway from the paper is that the signal precision has subtle implications for learning and welfare. We show that even if signals get arbitrarily precise, learning remains slow in the equilibrium. This contrasts with the socially optimal solution, in which the true state is learned arbitrarily fast as the learning technology improves. As a result, the equilibrium welfare loss is particularly severe if the learning technology is good.

As a final point note that irreversibility of actions is a crucial assumption in our model. The conclusions in models with fully reversible actions such as Bonatti (2011) are significantly different. A natural extension to our model would be to analyze what happens if stopping decisions are partially reversible. While
we believe that many of the qualitative properties of our results stay the same, pursuing such an extension is beyond the scope of this paper.
Appendix

A Additional material for Sections 2 and 3.1

A.1 Learning process as the continuous limit

Consider a discrete model where the number of agents is n and where the period length is dt. Let the signal process be such that in each period, each agent who has stopped generates a normally distributed conditionally iid. signal:

$$y^i_{t} \sim N \left(\frac{\mu_{\omega} dt}{n}, \frac{\sigma^2 dt}{n} \right).$$

This normalization keeps the informativeness of the aggregate signal constant while letting the number of small agents to grow as in Bergemann and Välimäki (1997).

When the number of agents who has stopped is $k \leq n$, this implies the following aggregate signal:

$$\sum_{i=1}^{k} y^i_{t} \sim N \left(\frac{\mu_{\omega} dt k}{n}, \frac{\sigma^2 dt k}{n} \right).$$

Let $q = k/n$ denote the fraction of agents who have stopped. Now, the signal process (1) follows once we take the limit when $n \to \infty$ (and $k \to \infty$ so that k/n stays fixed) and $dt \to 0$.

Notice that the limiting distribution for the aggregate signal depends only on the mean and the variance of y^i_{t} (the central limit theorem). Hence, the signal process (1) is also the limiting process for the case where y^i_{t} is not normally distributed, including the case where agents communicate through binary signals.

Furthermore, we can rewrite the model so that the individual signals represent realized payoffs in a model where agents start receiving a stochastic flow payoff after stopping: $\pi_{t}(\theta) = \pi_{\omega}(\theta) + \epsilon_{t}(\theta)$ where $\epsilon_{t}(\theta) \sim N \left(0, \sigma^2(\pi_{H}(\theta) - \pi_{L}(\theta))^2 \right)$. The noise term is scaled so that every increment in q is equally informative.

This assumption is not necessary: we analyze in Online Appendix the case of heterogeneous informativeness and show that both the analysis and the qualitative results remain unchanged if the stopping profile is monotone. When we set
\(\pi_\omega(\theta) = rv_\omega(\theta)\), the expected stopping payoff is \(x_t v_H(\theta) + (1 - x_t) v_L(\theta)\) just like in the main text. Since there are no further actions after stopping, it does not matter how fast the agents learn privately after they have stopped: the parameter \(\sigma\) can be interpreted to capture both the noise in the private learning and the noise in communication.

A.2 Proof of Lemma 1

Proof. Let policy \(Q\) be fixed. Type \(\theta\) wants to stop at time \(t\) if

\[
x_t v_H(\theta) + (1 - x_t) v_L(\theta) \geq \mathbb{E}[e^{-r(\tau-t)}(x_\tau v_H(\theta) + (1 - x_\tau) v_L(\theta)) | F_t; Q],
\]

for all stopping rules \(\tau\). Or equivalently,

\[
v_L(\theta)(1 - x_t - \mathbb{E}[e^{-r(\tau-t)}(1 - x_\tau)] | F_t; Q) + v_H(\theta)(x_t - \mathbb{E}[e^{-r(\tau-t)} x_\tau] | F_t; Q) \geq 0.
\]

The left-hand side is increasing in \(\theta\) because expressions \((1 - x_t - \mathbb{E}[e^{-r(\tau-t)}(1 - x_\tau)])\) and \((x_t - \mathbb{E}[e^{-r(\tau-t)} x_\tau])\) are positive (follows from that \(x_\tau\) is a martingale and \(e^{-r(\tau-t)} < 1\)) and \(v_\omega\) is increasing. Therefore, if type \(\theta\) wants to stop, type \(\theta' > \theta\) wants to stop too. \(\square\)

A.3 Proof of Lemma 2

Proof. \(T\) and \(T^{\text{mon}}\) are both consistent with \(Q\). We show that monotone stopping ordering maximizes \(\text{ex post}\) welfare for all realized paths of \((X, Q)\). The claim follows once we show that for all types \(\theta, \theta' \in [\underline{\theta}, \bar{\theta}]\) such that \(\theta > \theta'\) and for all realized stopping times \(t, t' \in \mathbb{R}_+\) such that \(t \leq t'\),

\[
e^{-rt} v_\omega(\theta) + e^{-rt'} v_\omega(\theta') \geq e^{-rt'} v_\omega(\theta) + e^{-rt} v_\omega(\theta').
\]

The above condition is equivalent with \((e^{-rt} - e^{-rt'}) (v_\omega(\theta) - v_\omega(\theta')) \geq 0\), which necessarily holds as \(t \leq t'\) and \(v_\omega(\theta) \geq v_\omega(\theta')\) by assumption if \(\theta > \theta'\). \(\square\)
B Decentralized equilibrium

B.1 Proof of Proposition 1

We will show that the policy in Proposition 1 is a decentralized equilibrium. Fix policy Q to be the boundary policy in Proposition 1 and consider optimal stopping of type θ against it. Except possibly at the initial time $t = 0$, the state (x_t, q_t) will remain in set X that we call the feasible region:

$$X := \{(x, q) : 0 \leq q \leq 1, 0 < x \leq x^E(q)\}.$$

Since Q is a Markovian process, we can express the stopping problem of type θ as a Markovian problem, where the task it to choose optimally a stopping set $S_\theta \subseteq X$ in the feasible region. (We will also check at the end that the optimal behavior outside of X is consistent with the initial jump at time $t = 0$.) Denote by $F_\theta(x, q)$ the value function under optimally chosen stopping set S_θ:

$$F_\theta(x, q) = E\left(e^{-r\tau(S_\theta)}u_\theta(x_{\tau(S_\theta)})\mid x, q\right),$$

where $\tau(S_\theta) = \inf\{t : (x_t, q_t) \in S_\theta\}$ is the first hitting time of S_θ and $u_\theta(x) := xv_H(\theta) + (1 - x)v_L(\theta)$ is the stopping value at belief x.

Before analyzing the shape of the optimal stopping set, we can already conclude some basic properties of $F_\theta(x, q)$. In the stopping set, $(x, q) \in S_\theta$, we must have $F_\theta(x, q) = u_\theta(x)$. In the continuation set, $(x, q) \in X \setminus S_\theta$, the properties of $F_\theta(x, q)$ are determined by the infinitesimal generator of the process $(x_t, q_t)_{t \geq 0}$. Althought the process is two-dimensional, q_t increases only when x_t hits new historical record values and the set of such times is of zero measure. The process q_t is hence constant almost everywhere and the infinitesimal generator of (x_t, q_t) in the interior of $X \setminus S_\theta$ reduces to that of the process x_t as if q_t is fixed. We can write the infinitesimal generator of x_t as (see e.g. Peskir, Shiryaev and Shirayev (2006)):

$$\frac{x^2(1 - x)^2}{2\sigma^2} \frac{\partial^2}{\partial x^2}.$$

It follows that the Hamilton-Jacobi-Bellman equation for the agent’s value in the interior of $X \setminus S_\theta$ takes the form:

$$rF_\theta(x, q) = \frac{x^2(1 - x)^2}{2\sigma^2} q \frac{\partial^2 F_\theta(x, q)}{\partial x^2}.$$
This is a partial-differential equation of $F_\theta(x,q)$, but it only involves derivatives with respect to x, and we can write its general solution in closed form as:

$$F_\theta(x,q) = A_\theta(q) \Phi(x,q) + B_\theta(q) \tilde{\Phi}(x,q),$$ \hspace{1cm} (12)

where $A_\theta(q)$ and $B_\theta(q)$ are functions of q (we index by θ to emphasize where dependence on type enters), and where

$$\Phi(x,q) = x^{\beta(q)} (1 - x)^ {1-\beta(q)},$$
$$\tilde{\Phi}(x,q) = x^{1-\beta(q)} (1 - x)^{\beta(q)},$$
$$\beta(q) = \frac{1}{2} \left(1 + \sqrt{1 + \frac{8r\sigma^2}{q}}\right).$$

At the boundary $x^E(q)$, the stock q_t increases instantaneously as x hits new record values. Whenever such a boundary point is in the continuation region, the following condition of *normal reflection* must hold (Peskir, Shiryaev and Shirayev (2006)).

$$\frac{\partial}{\partial q} [F_\theta(x,q)]_{x=x^E(q)} = 0.$$ \hspace{1cm} (13)

As a preliminary step, we solve an auxiliary optimal stopping problem, where the stock is assumed to be fixed at $q_t \equiv q$ forever:

Lemma 3. Assume that the stock is fixed at $q_t \equiv q$ forever. Then, it is optimal for θ to stop if and only if $x_t \geq \tilde{x}_\theta(q)$, where

$$\tilde{x}_\theta(q) = \frac{\beta(q)v_L(\theta)}{\beta(q)v_L(\theta) + (1 - \beta(q))v_H(\theta)}.$$

The corresponding value function is

$$T_\theta(x;q) = \begin{cases}
 u_\theta(x) & \text{if } x \geq \tilde{x}_\theta(q), \\
 (x_{x_{\theta}(q)})^{\beta(q)} \left(\frac{1-x}{1-x_{\theta}(q)}\right)^{1-\beta(q)} u_\theta(x_{\theta}(q)) & \text{if } x < \tilde{x}_\theta(q),
\end{cases}$$

where $u_\theta(x) := xv_H(\theta) + (1 - x)v_L(\theta)$ is the stopping value at belief x.

\hspace{1cm} 15When the boundary $x^E(q)$ is hit, the time path of q_t is not differentiable; the time derivative dq/dt is unbounded. Therefore, if it were to be the case that $\frac{\partial}{\partial q} [F_\theta(x,q)]_{x=x^E(q)} \neq 0$, then the expected instantaneous rate of change in the value function, $E\left[\frac{dF_\theta(x,q)}{dt} \right]$, would explode at the moment of hitting the boundary.
Proof. This is a standard one-dimensional optimal stopping problem and it is well known that the solution is some stopping threshold that we denote $\hat{x}_\theta(q)$. The value function, denoted $F_\theta(x; q)$, must take the form (12) when $x < \hat{x}_\theta(q)$. If it is certain that $\omega = L$, then the option to stop is worthless and we get the boundary condition $F_\theta(0; q) = 0$. This implies $B_\theta(q) = 0$. The value-matching condition $F_\theta(\hat{x}_\theta(q); q) = u_\theta(\hat{x}_\theta(q))$ and the smooth-pasting condition $\frac{\partial}{\partial x} F_\theta(\hat{x}_\theta(q); q) = \frac{\partial}{\partial x} u_\theta(\hat{x}_\theta(q))$ uniquely determine the remaining constant $A_\theta(q)$ and the stopping threshold $\hat{x}_\theta(q)$ and we get the formulas given in the Lemma.

The lemma says that it is optimal to wait below $\hat{x}_\theta(q_t)$ if q_s is assumed fixed for all $s > t$. If we relax this assumption and allow q_s to increase arbitrarily for $s > t$, then waiting at time t becomes even more desirable. This is because higher future values of q_s means improved future learning, which in turn will increase the value of waiting relative to immediate stopping. The lemma therefore implies that no matter what policy we have, it can never be optimal for θ to stop if $x_t < \hat{x}_\theta(q_t)$:

Lemma 4. If the current belief satisfies $x_t < \hat{x}_\theta(q_t)$, then stopping immediately is strictly dominated for type θ.

Proof. Assume that the current belief is $(x_t, q_t) = (x, q)$, where $x < \hat{x}_\theta(q)$. Consider a simple strategy such that θ stops as soon as x_t hits $\hat{x}_\theta(q)$ (no matter how q_t evolves). For a moment, assume that the stock is fixed at $q_s = q$ for all $s > t$. Then by Lemma 3, this simple strategy gives value

$$F_\theta(x; q) = \left(\frac{x}{\hat{x}_\theta(q)} \right)^{\beta(q)} \left(\frac{1 - x}{1 - \hat{x}_\theta(q)} \right)^{1 - \beta(q)} u_\theta(\hat{x}_\theta(q)).$$

On the other hand, if we keep the threshold $\hat{x}_\theta(q)$ as above, but assume that the current stock is fixed at a higher level, $q_s = q' > q$ for all $s > t$, then the value of this simple strategy gives

$$\left(\frac{x}{\hat{x}_\theta(q)} \right)^{\beta(q')} \left(\frac{1 - x}{1 - \hat{x}_\theta(q)} \right)^{1 - \beta(q')} u_\theta(\hat{x}_\theta(q)) > \left(\frac{x}{\hat{x}_\theta(q)} \right)^{\beta(q)} \left(\frac{1 - x}{1 - \hat{x}_\theta(q)} \right)^{1 - \beta(q)} u_\theta(\hat{x}_\theta(q)) = F_\theta(x; q),$$
where the inequality follows from $\beta(q)$ being decreasing in q. In other words, the value of such a simple threshold strategy is increasing in the learning speed determined by q. It then follows that for an arbitrary Q (where $q_t = q$ and $q_s \geq q$ for $s > t$), the value of the simple strategy of stopping at threshold $\hat{x}_\theta(q)$ is weakly higher than $\overline{F}_\theta(x; q)$. This means that $F_\theta(x, q) \geq \overline{F}_\theta(x; q)$, where $F_\theta(x, q)$ is the value of θ under optimal stopping rule (instead of the simple strategy). Since we assumed $x < \hat{x}_\theta(q)$, we have $\overline{F}_\theta(x; q) > u_\theta(x)$ by Lemma 3, and therefore also $F_\theta(x, q) > u_\theta(x)$. Hence, stopping immediately cannot be optimal for θ.

With these preliminary results in place, we now consider the optimal stopping policy of θ against Q. Our plan is to show that the optimal stopping region S_θ is the dark blue shaded region in Figure 6, i.e.

$$S_\theta = \left\{ (x, q) : q \geq q(\theta), x \in [\hat{x}_\theta(q), x^E(q)] \right\}. \quad (14)$$

As a first step, we note that it cannot be optimal for θ to stop at any $(x, q) \in X$ with $q < q(\theta)$. This follows directly from Lemma 4 above. Since all $(x, q) \in X$ with $q < q(\theta)$ satisfy $x < \hat{x}_\theta(q)$, it is strictly dominant for θ to wait.

As a second step, we will show that when $q \geq q(\theta)$, it is always optimal to stop at the boundary of X, i.e. at $x = x^E(q)$. Suppose, to the contrary, that there is some $(x, q) \not\in S_\theta$, where $x = x^E(q)$ and $q \geq q(\theta)$. This amounts to assuming that
\[F_\theta(x^E(q), q) > u_\theta(x^E(q)). \] We will show below that this implies
\[
\frac{\partial}{\partial x}[F_\theta(x, q)]_{x=x^E(q)} \geq \frac{\partial}{\partial x}[u_\theta(x)]_{x=x^E(q)},
\] which, as we will further show below, leads to a contradiction.

There are two possible cases that we consider separately. First, suppose that even though \((x^E(q), q) \notin S_\theta\), it is optimal to stop at some lower belief, i.e. there is some \(x' < x^E(q)\) such that \((x', q) \in S_\theta\) (let \(x'\) denote the highest such belief). In that case \(F_\theta(x', q) = u_\theta(x')\). The continuation value \(F_\theta(x, q)\) takes the form (12) in the interval \((x', x^E(q))\) with boundary condition \(F_\theta(x', q) = u_\theta(x')\). Direct calculations show that \(F_\theta(x, q)\) is convex in \(x\) on the interval. Since we also necessarily have \(F_\theta(x, q) \geq u_\theta(x)\) for all \(x \in (x', x^E(q))\), (15) follows.

Second, suppose that it is optimal to wait for all \((x, q)\), where \(x < x^E(q)\), in which case \(F_\theta(x, q) > u_\theta(x)\) for all \(x < x^E(q)\). The continuation value must vanish as \(x \to 0\), and the corresponding boundary condition \(F_\theta(0, q) = 0\) implies that the term \(B_\theta\) in (12) vanishes. Hence, the value function \(F_\theta(x, q)\) takes the form \(F_\theta(x, q) = A_\theta(q) \Phi(x, q)\) for some function \(A_\theta(q)\) and hence \(\frac{\partial}{\partial x}[F_\theta(x, q)]_{x=x^E(q)} = A_\theta(q) \Phi_x(x^E(q), q)\). Our assumption \(F_\theta(x^E(q), q) > u_\theta(x^E(q))\) is equivalent to
\[
A_\theta(q) \Phi(x^E(q), q) > x^E(q) v_H(\theta) + \left(1 - x^E(q)\right) v_L(\theta),
\]
which further implies
\[
\frac{\partial}{\partial x}[F_\theta(x, q)]_{x=x^E(q)} > \frac{\Phi_x(x(q), q)}{\Phi(x(q), q)} \left[x^E(q) v_H(\theta) + \left(1 - x^E(q)\right) v_L(\theta)\right] = \frac{\beta(q) - x^E(q)}{(1 - x^E(q))} v_H(\theta) + \frac{\beta(q) - x^E(q)}{x^E(q)} v_L(\theta).
\]
The last expression is greater than \(v_H(\theta) - v_L(\theta)\) if and only if
\[
x^E(q) \geq \frac{\beta(q) v_L(\theta)}{(1 - \beta(q)) v_H(\theta)} = \tilde{x}_\theta(q),
\]
which is the case if and only if \(q \geq q(\theta)\). Noting that \(\frac{\partial}{\partial x}[u_\theta(x)]_{x=x^E(q)} = v_H(\theta) - v_L(\theta)\), we may conclude that (15) holds in this case too.

Given that (15) holds, the rate of change in \(F_\theta(x, q)\) along the boundary is
\[
\frac{d}{dq}[F_\theta(x^E(q), q)] = \frac{\partial}{\partial x}[F_\theta(x, q)]_{x=x^E(q)} \frac{d}{dq} x^E(q) \geq \frac{\partial}{\partial x}[u_\theta(x)]_{x=x^E(q)} \frac{d}{dq} x^E(q) = \frac{d}{dq} u_\theta(x^E(q)),
\]
32
where the last term of the first line disappears by (13) and where the inequality follows from (15).

We have now shown that \(F_\theta(x^E(q), q) > u_\theta(x^E(q)) \) implies \(\frac{d}{dq} F_\theta(x^E(q), q) \geq \frac{d}{dq} u_\theta(x^E(q)) \). Applying this iteratively to all \(q' > q \), we conclude that this implies further that \(F_\theta(x^E(q'), q') > u_\theta(x^E(q')) \) for all \(q' \in [q, 1] \), and in particular \(F_\theta(x^E(1), 1) > u_\theta(x^E(1)) \). We know that \(x^E(1) = 1 \), so this yields \(F_\theta(1, 1) > v_H(\theta) \). This is a contradiction, because \(v_H(\theta) \) is the stopping payoff under certainty of state \(\omega = H \), which is clearly an upper bound for the value function for \(\theta \).

We conclude that it is optimal to stop at all boundary points for \(q > q(\theta) \). To see that this implies that it is also optimal to stop within the whole dark blue shaded region in Figure 6, i.e. \(\{(x, q) : q \geq q(\theta), x \in \hat{x}_\theta(q), x^E(q)\} \in S_\theta \), note that \(q_t \) can only increase if \(x_t \) reaches \(x^E(q) \). Since \(\theta \) stops at latest when \(x_t \) reaches \(x^E(q) \), the optimal continuation value \(F_\theta(x, q) \) cannot exceed the corresponding value with \(q \) fixed, i.e. \(F_\theta(x, q) \). To achieve that value, \(\theta \) should optimize as if \(q \) is fixed, i.e. stop at all points \(\hat{x}_\theta(q), x^E(q) \).

We have now shown that the stopping rule defined in (14) maximizes (3) for policy \(Q \). Since \(q_t \) can only increase at the boundary points \(x^E(q) \), the first point in \(S_\theta \) ever reached is \(\hat{x}_\theta(q(\theta)), q(\theta) \) and so the optimal stopping rule commands \(\theta \) to stop exactly when \(q_t \) reaches \(1 - F(\theta) \) and is therefore consistent with \(Q \). Since the initial state point \((x_0, q_0) \) may be above the boundary, we must also check the optimal behavior of \(\theta \) for initial state points \((x_0, q_0) \notin X \). If \((x_0, q_0) \notin X \), then \(Q \) commands the stock to jump instantaneously to point \(q_0^+ := \{q : x^E(q) = x_0\} \).

The point \((x_0, q_0^+) \) is in the optimal stopping region of \(\theta \) if and only if \(x_0 \geq \hat{x}_\theta(q(\theta)) \), and therefore it is optimal for \(\theta \) to stop at time \(t = 0 \) if \((x_0, q_0) \notin X \) and \(x_0 \geq \hat{x}_\theta(q(\theta)) \). We conclude that the optimal stopping region of \(\theta \) contains also the light shaded region in Figure 6. This means that the initial jump from \((x_0, q_0) \) to \((x_0, q_0^+) \) is consistent with all types \(\theta \geq \theta(q_0^+) \) optimally stopping at \(t = 0 \).

Collecting all this together, we can conclude that \(Q \) is a decentralized equilibrium.

It remains to prove the uniqueness part of the proposition, i.e. that no other equilibrium policies exist than the boundary policy defined in the proposition. For this it suffices to show that in any equilibrium \(q_t \) cannot increase at state points.
where \(x_t < x^E (q_t) \) and \(q_t \) cannot stay put at state points where \(x_t > x^E (q_t) \).

Take some decentralized equilibrium policy and some arbitrary history \(h_t \) with current state \((x_t, q_t)\). Since by Lemma 1 optimized stopping times are monotone in \(\theta \), it must be that types \(\theta > \theta (q_t) \) have stopped while types \(\theta < \theta (q_t) \) have not yet stopped at \(h_t \). We now show that for the cutoff type \(\theta (q_t) \) both waiting above the boundary \(x^E (q_t) \), and stopping below the boundary \(x^E (q_t) \), are inconsistent with \(Q \) being an equilibrium.

Consider first the case where the state after history \(h_t \) satisfies \(x_t < x^E (q_t) \). But then \(x_t < \tilde{x}_\theta (q_t) \) for all types \(\theta \leq \theta (q_t) \) (this is because \(\tilde{x}_\theta (q_t) = x^E (q_t) \) and \(\tilde{x}_\theta (q_t) \) is decreasing in \(\theta \)). By Lemma 4 it is strictly dominant for all types who have not yet stopped to wait. We conclude that \(q_t \) cannot increase at \(h_t \).

Consider next the case where the state after history \(h_t \) satisfies \(x_t > x^E (q_t) \). For contradiction, suppose that it is optimal for the cut-off type \(\theta (q_t) \) to wait, i.e. it is optimal to choose some stopping time \(\tau \) that gives

\[
\mathbb{E} \left(e^{-r \tau} u_{\theta(q_t)} (x_t) \mid h_t \right) > u_{\theta(q_t)} (x_t).
\]

By Lemma 1, equilibrium stopping times are monotone in \(\theta \) and so the lower types must wait even longer, i.e. optimal stopping times for types \(\theta < \theta (q_t) \) satisfy \(\tau (\theta) \geq \tau \) a.s. But this means that \(q_t \) stays fixed until \(\tau \), and hence the same stopping time \(\tau \) would give type \(\theta (q_t) \) a payoff strictly higher than \(u_{\theta(q_t)} (x_t) \) also in the auxiliary problem analyzed in Lemma 3, where \(q_t \) is fixed by assumption. Since we have \(x_t > x^E (q_t) = \tilde{x}_{\theta(q_t)} (q_t) \), this is a contradiction with Lemma 3. We conclude that it cannot be optimal for the cut-off type \(\theta (q_t) \) to delay stopping. Since this conclusion holds for the cut-off type in any state value \((x_t, q_t)\) satisfying \(x_t > x^E (q_t) \), the only policy consistent with players choosing optimally their stopping times is the one where \(q_t \) jumps immediately to the boundary point \(q \) satisfying \(x^E (q) = x_t \). \(\square \)
C Socially optimal policy

C.1 Interpretation as a single-agent experimentation problem

Suppose a decision maker chooses quantity $q_t \in [0, \overline{q}]$ over continuous time t. Quantity expansions are irreversible so that $q_t \geq q_{t'}$ for all $t > t'$. The decision maker discounts the future with rate $r > 0$. Just as in the main model, the unknown state of the world can be either high or low, $\omega \in \{L, H\}$, with belief x_t. Information about the state arrives according to Process (1). Given the processes for the quantity, Q_t, and the belief, X_t, the decision maker’s payoff is

$$
E \left[\int_0^\infty e^{-rt} (x_t \pi_H(q_t) + (1-x_t)\pi_L(q_t)) \, dt \right],
$$

where $\pi_\omega(q_t)$ is the decision maker’s flow payoff in state ω. We assume that it is twice differentiable and strictly concave and that $\pi'_H(0) > 0$, $\pi'_L(0) < 0$, and $\pi'_H(q) < 0$ for q above some \overline{q}.

The model captures situations where a single firm or government controls incremental investments in a new technology or expansion to a new market and learns gradually from its own experiences. For such applications, one may want to interpret the flow payoffs to include the sunk cost of the investment such that $\pi_\omega(q_t) = \hat{\pi}_\omega(q_t) - rC$ where $\hat{\pi}_\omega(q_t)$ is the utility from the new technology and C is the lump-sum cost per unit of capital. Similarly, R&D or development aid projects tie resources for many years and information about the outcomes arrives gradually over different stages of the project. In addition, the model applies to policy making more broadly. As a concrete example, consider educational policy, such as the maximum size of a classroom, which has an irreversible impact on children. Later labor market outcomes and other information we collect from each cohort helps to evaluate the educational policy at the time when they went to school, independent of whether the norms have changed since then. Similarly, the model maps to the optimal level of emissions under uncertainty about the environmental damage. Once created, it is hard to reduce a stock of emissions. Arguably, we can learn the true effects of emissions only gradually from experience.
Notice that the decision maker’s objective is identical to the planner’s problem analyzed in Section 3.5 when using $r^{-1} \pi_\omega(q)$ as $v_\omega(q)$. The results and the solution technique developed in this paper apply to the decision maker’s expansion problem as such.

C.2 Omitted calculations

We use the derivatives of $\Phi(x, q)$ in many proofs of this section:

\begin{align*}
\Phi &= \left(\frac{x}{1-x}\right)^{\beta(q)} (1-x), \quad \Phi_q = \Phi \beta'(q) \ln \left(\frac{x}{1-x}\right), \\
\Phi_x &= \Phi \frac{\beta(q)-x}{x(1-x)}, \quad \Phi_{xx} = \Phi \frac{\beta(q)(\beta(q) - 1)}{x^2(1-x)^2} = \Phi \frac{2r\sigma^2}{x^2(1-x)^2 q}, \\
\Phi_{qx} &= \Phi \beta'(q) x^{-1} (1-x)^{-1} \left[1 + (\beta(q) - x) \ln \left(\frac{x}{1-x}\right) \right], \\
\Phi_{xxq} &= \Phi \frac{\beta'(q)}{x^2(1-x)^2} \left[\beta(q) + (\beta(q)-1)(1+\beta(q)) \ln \left(\frac{x}{1-x}\right) \right].
\end{align*}

Deriving the differential equation

We first show that the conditions (7) and (8) imply the differential equation in (9). Solving (7) and (8) for $B_q(q)$ and $B(q)$ yields

\begin{align*}
B_q(q) &= A^1(x^*(q), q) x^*(q) + A^2(x^*(q), q), \\
B(q) &= U^1(x^*(q), q) x^*(q) + U^2(x^*(q), q),
\end{align*}

where

\begin{align*}
A^1(x, q) &:= \frac{-\Phi_{qq}(x, q) (v_{H}(q) - v_{L}(q))}{\Phi(x, q) \Phi_{qx}(x, q) - \Phi_q(x, q) \Phi_x(x, q)}, \\
A^2(x, q) &:= \frac{\Phi_{qq}(x, q) (-v_{L}(q)) + \Phi_q(x, q) (v_{H}(q) - v_{L}(q))}{\Phi(x, q) \Phi_{qx}(x, q) - \Phi_q(x, q) \Phi_x(x, q)}, \\
U^1(x, q) &:= \frac{\Phi_x(x, q) (v_{H}(q) - v_{L}(q))}{\Phi(x, q) \Phi_{qx}(x, q) - \Phi_q(x, q) \Phi_x(x, q)}, \\
U^2(x, q) &:= \frac{-\Phi_x(x, q) (-v_{L}(q)) - \Phi(x, q) (v_{H}(q) - v_{L}(q))}{\Phi(x, q) \Phi_{qx}(x, q) - \Phi_q(x, q) \Phi_x(x, q)}.
\end{align*}
Differentiating (17) with respect to q and using the chain rule gives

$$B_q(q) = \left[U^1_2(x^*(q), q) x''(q) + U^1_1(x^*(q), q) x''(q) \right] x^*(q) + U^1_1(x^*(q), q) x''(q)$$

$$+ U^2_2(x^*(q), q) x''(q) + U^2_1(x^*(q), q)$$

(18)

Equating (16) and (18), solving for $x''(q)$, and simplifying yields the expression (9) in the text.

Any solution that satisfies the differential equation (9) must be continuous.

C.3 Proof of Proposition 2

The proof contains three parts. In part 1, we show that the initial value problem (9) has a solution $x^*(q)$ that we take as our candidate for socially optimal policy. The candidate is continuous and strictly increasing and hence defines a boundary policy. In part 2, we show that our candidate policy $x^*(q)$ satisfies the HJB equation (5). In part 3, we verify that the solution to the HJB equation solves the original problem.

Part 1: solution to the initial value problem (9)

We first establish some key properties of function g in (9) (all proofs of the lemmas are in Appendix C.4):

Lemma 5. For all (x, q) such that $q < 1$ and $x \leq x^E(q)$, function $g(x, q)$ in (9) is strictly positive and strictly increasing in x and it is Lipschitz continuous for all $q \in [0, q_1]$ if $q_1 < 1$ and for all $x \leq x^E(q)$. Furthermore, $g(x^E(q), q) > x^{E'}(q)$ for $q < 1$ and $\lim_{q \to 1} g(x^E(q), q) = x^{E'}(1)$.

The singularity at $(1,1)$ prevents us from directly applying the Picard-Lindelöf theorem to show the existence and uniqueness of a solution to the initial value problem (9). Instead, we note that the requirements for the Picard-Lindelöf theorem are satisfied for all initial conditions $x(q_1) = x_1$ where $x(q_1) \leq x^E(q_1)$ and $q_1 < 1$, and hence each such initial value problem defines a unique solution. Since g is increasing in x, these solutions diverge when approaching $(1, 1)$ and hence
at most one path can approach \((1, 1)\) from below the decentralized policy. The fact that \(\lim_{q \to 1} g(x^E(q), q) = x^E(1)\) implies that there is a path that approaches \((1, 1)\) from the same direction as the decentralized policy \(x^E(q)\) and the fact that \(g(x^E(q), q) > x^E'(q)\) for \(q < 1\) implies that such a path must be strictly below the decentralized solution for all \(q < 1\). It follows that the initial value problem has a unique solution below the decentralized solution.

We have now shown that the initial value problem (9) has a unique solution \(x^*\) such that \(x^*(q) \leq x^E(q)\) for all \(x \leq q\). This solution \(x^*(q)\) is continuous and strictly increasing in \(q\), and it is our candidate policy.

Part 2: our candidate \(x^*\) solves the HJB equation

Fix \(x^*(q)\) to be the candidate policy defined in Part 1 and let \(q^*(x)\) be its inverse with the convention \(q^*(x) = 0\) for \(x \leq x^*(0)\). By construction of this policy, the value function of the planner following \(x^*\) is:

\[
V^*(x, q) = \begin{cases}
\int_0^{x^*(q)} (xv_H(s) + (1 - x) v_L(s)) \, ds + B(q^*(x)) \Phi (x, q^*(x)) & \text{for } q < q^*(x) \\
B(q) \Phi (x, q) & \text{for } q \geq q^*(x),
\end{cases}
\]

(19)

where \(\Phi (x, q) = x^{\beta(q)} (1 - x)^{1-\beta(q)}\) and \(B(q)\) is given by (17), which simplifies to:

\[
B(q) = \frac{x^*(q) (\beta(q) - 1) v_H(q) + (1 - x^*(q)) \beta(q) v_L(q)}{\Phi (x^*(q), q) \beta'(q)}.
\]

(20)

Recall also that we have derived \(x^*(q)\) and \(B(q)\) utilizing conditions (7) - (8), which must therefore hold. We rewrite them for convenience as:

\[
V_q^*(x^*(q), q) + x^*(q)v_H(q) + (1 - x^*(q))v_L(q) = 0, \tag{21}
\]
\[
V_{qq}^*(x^*(q), q) + v_H(q) - v_L(q) = 0. \tag{22}
\]

We next state three lemmas that state some further properties of the value function (19) that hold below, above, and at the boundary, respectively. These are derived from (19) - (22) and are proved in a separate section, Appendix C.4.

Lemma 6. For all \((x, q)\) with \(q < q^*(x)\), we have

\[
V^*_{xx} (x, q) = V^*_x (x, q^*(x)) = B (q^*(x)) \Phi_{xx} (x, q^*(x)).
\]
Lemma 7. For all \((x, q)\) with \(q > q^*(x)\), we have

\[
V_q^*(x, q) + xv_H(q) + (1 - x) v_L(q) \leq 0.
\]

Lemma 8. For all \((x, q^*(x))\) with \(q^*(x) > 0\), we have

\[
\frac{V^*(x, q^*(x))}{q^*(x)} + xv_H(q^*(x)) + (1 - x) v_L(q^*(x)) > 0.
\]

Next, we show that the value function \(V^*(x, q)\) in (19) satisfies

\[
rV^*(x, q) = \max _{q' \geq q} \Pi (q'; q),
\]

where

\[
\Pi (q'; q) = r \int_q^{q'} (xv_H(s) + (1 - x) v_L(s)) + \frac{1}{2} V_{xx}(x, q') \frac{x^2 (1 - x)^2}{\sigma^2} q'.
\] (23)

Using Lemma 6, we can write

\[
V_{xx}(x, q') = \begin{cases}
B (q^*(x)) \Phi_{xx}(x, q^*(x)) = B (q^*(x)) \Phi (x, q^*(x)) \frac{2 r \sigma^2}{x^2 (1 - x)^2 q^*} & \text{for } q' < q^*(x) \\
B (q') \Phi_{xx}(x, q') = B (q') \Phi (x, q') \frac{2 r \sigma^2}{x^2 (1 - x)^2 q'} & \text{for } q' \geq q^*(x),
\end{cases}
\]

where we have also utilized

\[
\Phi_{xx}(x, q) = \Phi(x, q) \frac{2 r \sigma^2}{x^2 (1 - x)^2 q}.
\]

We can now rewrite (23) as

\[
\Pi (q'; q) := \begin{cases}
r \int_q^{q'} (xv_H(s) + (1 - x) v_L(s)) + r B (q^*(x)) \Phi (x, q^*(x)) \frac{q'}{q^*} & \text{for } q' < q^*(x) \\
r \int_q^{q'} (xv_H(s) + (1 - x) v_L(s)) + r B (q') \Phi (x, q') & \text{for } q' \geq q^*(x),
\end{cases}
\]

The function \(\Pi (q'; q)\) is continuous in \(q'\) and its derivative is:

\[
\frac{d\Pi (q'; q)}{dq'} = \begin{cases}
r (xv_H(q') + (1 - x) v_L(q')) + \frac{rB(q^*(x))\Phi(x, q^*(x))}{q^*(x)} & \text{for } q' < q^*(x) \\
r (xv_H(q') + (1 - x) v_L(q')) + \left[r (B_q(q') \Phi (x, q')) + B (q') \Phi_q (x, q') \right] & \text{for } q' > q^*(x)
\end{cases}
\]

\[
= \begin{cases}
r \left((xv_H(q') + (1 - x) v_L(q')) + \frac{V^*(x, q^*(x))}{q^*(x)} \right) & \text{for } q' < q^*(x) \\
r \left((xv_H(q') + (1 - x) v_L(q')) + V_q^*(x, q') \right) & \text{for } q' > q^*(x)
\end{cases}
\]
From Lemma 7, it follows that \(\frac{d\Pi(q';q)}{dq'} \leq 0 \) for \(q' > q^*(x) \). Noting that \(v_H(q) \) and \(v_L(q) \) are decreasing in \(q \), it follows from Lemma 8 that \(\frac{d\Pi(q';q)}{dq'} > 0 \) for \(q' < q^*(x) \). Therefore, we have

\[
\max_{q' \geq q} \Pi(q';q) = \begin{cases}
\Pi(q^*(x);q) & \text{for } q < q^*(x) \\
\Pi(q;q) & \text{for } q \geq q^*(x)
\end{cases}
\]

\[
= \begin{cases}
rf_q^q(x) (xv_H(s) + (1 - x) v_L(s)) + rB(q^*(x)) \Phi(x, q^*(x)) & \text{for } q < q^*(x) \\
rB(q) \Phi(x, q) & \text{for } q \geq q^*(x)
\end{cases}
\]

\[
= rV^*(x, q)
\]

Notice as well that from Lemma 6 we have that the partial derivative \(V_{xx}^* \) is continuous. Thus, our candidate \(V^* \) satisfies the HJB equation (5).

Part 3: verification

The verification of the solution follows from the standard arguments in the literature (see e.g. Fleming and Soner (2006)). Let \(V^* \) be the candidate solution (19), which also solves the HJB equation (5) and let \(q^*(x, q) = \max\{q, q^*(x)\} \) be the corresponding \(q^* \). Then, let \(T \geq t \) be the time at which the candidate value function is evaluated. From generalized Itô’s formula we have\(^{16}\)

\[
e^{-rT}V^*(x_T, q_T) = e^{-rt}V^*(x_t, q_t) - \int_t^T e^{-rs}rV^*(x_s, q_s)ds + \int_t^T e^{-rs}V_{x}^*(x_s, q_s)dx_s + \int_t^T e^{-rs}V_{q}^*(x_s, q_s)dq_s + \frac{1}{2} \int_t^T e^{-rs}V_{xx}^*(x_s, q_s)d[x]_s + \frac{1}{2} \int_t^T e^{-rs}V_{qq}^*(x_s, q_s)d[q]_s + \int_t^T e^{-rs}V_{qs}^*(x_s, q_s)d[x, q]_s
\]

where \(d[x]_t \) and \(d[q]_t \) are the quadratic variations of \(x \) and \(q \) and \(d[x, y]_t \) is their quadratic covariation. The process \(Q_t \) has bounded variation and hence \(d[q]_t = d[x, y]_t = 0 \). Notice also that \(dx_t = x_t(1 - x_t)\sigma^{-1} \sqrt{q_t} dw_t \) and \(d[x]_t = x_t^2(1 - x_t)^2\sigma^{-2} q_t dt \). We can further simplify the equation by noting that \(V_q^* dq = -(xv_H(q) + (1-x)v_L(q))dq \). The HJB equation gives an upper bound for \(\frac{9}{2}\sigma^2 x_s^2 (1-x_s)^2 V_{xx}^*(x_s, q_s) - rV^*(x_s, q_s) \leq \frac{\int_{q_s}^q (xv_H(q) + (1-x)v_L(q))dq}{\int_{q_s}^q (xv_H(q))dq} \), which equals zero for almost all

\(^{16}\)To see that \(V^* \in C^2 \) check \(V_s^* \) at the boundary. The continuity of \(V_{xx}^* \) and \(V_{qq}^* \) follows from Lemma 6 and the continuity of \(V_q^* \) and \(V_{qs}^* \) are implied by conditions (7) and (8).
s. Combining gives:

\[e^{-rT}V^*(x_T, q_T) \leq e^{-rt}V^*(x_t, q_t) - \int_t^T e^{-rs}(x_s v_H(q_s) + (1 - x_s) v_L(q_s)) \, dq_s \]

\[+ \int_t^T e^{-rs}V^*_x(x_s, q_s) \frac{\sqrt{q_s}}{\sigma} x_s (1 - x_s) \, dw_s. \]

Taking conditional expectations, multiplying by \(-e^{rt}\) and simplifying then gives

\[V^*(x_t, q_t) \geq \mathbb{E} \left[\int_t^T e^{-r(t-s)}(x_s \pi_H(q_s) + (1 - x_s) \pi_L(q_s)) \, ds + e^{-r(T-t)}V^*(x_T, q_T) | \mathcal{F}_t \right]. \]

The candidate value function is bounded and therefore clearly satisfies the transversality condition: \(\lim_{T \to \infty} \mathbb{E}[e^{-r(T-t)}V^*(x_T, q_T)] = 0 \). Hence, taking the limit \(T \to \infty \) gives that \(V^*(x, q) \geq \max_Q U(Q; x, q) \).

The last step is to use the fact that \(Q \), induced by policy \(x^* \), achieves the pointwise maximum of the HJB-equation and thus the inequalities above become equalities: \(V^*(x, q) = \max_Q U(Q; x, q) \). Our solution solves the original problem.

C.4 Proof of Lemmas 5, 6, 7, and 8

Proof of Lemma 5. Taking the derivative of \(g(x, q) \) with respect to \(x \) gives:

\[
g_x(x, q) = - \left[\beta''(q) \left(x^2(1 - 2x)(\beta(q) - 1)^3 v_H(q)^2 - 2(1 - x)x \beta(q)(\beta(q) - 1)
\times v_H(q) v_L(q)((1 - 2x) \beta(q) - x) + (1 - x)^2(1 - 2x) \beta(q)^3 v_L(q)^2 \right)
+ \beta'(q) \left(2x^2(2x - 1)(\beta(q) - 1)^2 v_H(q)^2 \beta'(q) + (1 - x)^2 \beta(q)^2 v_L(q) \times \left(2(1 - 2x) v_L(q) \beta'(q) - 2x(\beta(q) - 1)v_H'(q) - (1 - 2x) \beta(q) v_L'(q) \right)
+ x v_H(q) \left(4(1 - x) v_L(q) \beta'(q) \left((1 - 2x) \beta(q)^2 + 2x \beta(q) + x \right)
\times (\beta(q) - 1)^2 \left((1 - 2x)(\beta(q) - 1)x'_{H}(q) + 2(1 - x) \beta(q)x'_{L}(q) \right) \right) \right] / \left[(x(\beta(q) - 1)^2 v_H(q) + (1 - x)(\beta(q))^2 v_L(q))^2 \beta'(q) \right]. \]

Both \(g(x, q) \) and \(g_x(x, q) \) are bounded if their denominators are bounded away from zero. We show that this is true if \(q < 1 \) and \(x \leq x^E(q) \) by showing that it
holds at \(x = x^{E} \). First for the denominator of \(g(x, q) \) we have:

\[
x^{E}(q)(\beta(q) - 1)^{2}v_{H}(q) + (1 - x^{E}(q))(\beta(q))^{2}v_{L}(q) < 0,
\]

for all \(q \in [0, 1) \). Notice that the left-side is increasing in \(x \) and hence (24) implies the same inequality for all lower \(x \). The condition (24) is equivalent with

\[
\frac{-(\beta(q) - 1)\beta(q)v_{H}(q)v_{L}(q)}{\beta(q)v_{L}(q) - (\beta(q) - 1)v_{H}(q)} < 0
\]

which is true because the numerator is positive (other terms are positive except \(v_{L}(q) < 0 \)) and the denominator is negative. Together with \(\beta'(q) < 0 \), this implies that the denominator of \(g \) is strictly positive and bounded away from zero. We can also conclude that both \(g \) and \(g_{x} \) are bounded and continuous in both \(x \) and \(q \) for all \((x, q) \) such that \(q < 1 \) and \(x \leq x^{E}(q) \). Hence \(g \) is Lipschitz continuous for all \(q < 1 \).

To see that \(g(x, q) > 0 \), it is now enough to show that the numerator of (9) is strictly positive. First notice that the second term inside the brackets is always positive but the first term can be negative.\(^{17}\) The first term is scaled by \(x \), while the second term is scaled by \((1 - x)\). Therefore, if the numerator is positive at a belief above the boundary, it must be positive for the belief at the boundary as well. Since the decentralized belief, \(x^{E}(q) \), is always above the fully optimal boundary, we can use it to show that the numerator is positive.

Plugging in \(x^{E}(q) \) to the numerator of (9) and dividing by \((1 - x)\) gives:

\[
\frac{\beta(q)v_{L}(q)\left(\beta'(q)(\beta(q) - 1)v'_{H}(q) - \left((\beta(q) - 1)\beta''(q) - 2(\beta'(q))^{2}\right)v_{H}(q)\right)}{\beta(q)v_{L}(q) + (1 - \beta(q))v_{H}(q)} + \frac{(1 - \beta(q))v_{H}(q)\left(\beta'(q)\beta(q)v'_{L}(q) - \left((\beta(q)\beta''(q) - 2(\beta'(q))^{2}\right)v_{L}(q)\right)}{\beta(q)v_{L}(q) + (1 - \beta(q))v_{H}(q)}.
\]

Since the denominator is negative (\(v_{L} < 0 \) and \(\beta > 1 \)), this is proportional to

\[
[v_{H}(q)v'_{L}(q) - v'_{H}(q)v_{L}(q)]\beta'(q)\beta(q)(\beta(q) - 1) - 2v_{H}(q)v_{L}(q)(\beta'(q))^{2},
\]

which is always positive because \(v_{H}(q) > 0 \) and \(v_{L}(q), v'_{H}(q), v'_{L}(q) < 0 \). Hence, \(q(x, q) > 0 \) for all \(q \in [0, 1) \) and \(x \leq x^{E}(q) \).

\(^{17}\)This follows from \(v_{L}(q) < 0, v'_{L}(q) < 0, \beta'(q) < 0, \beta(q) > 1 \) and that \(\beta(q)\beta''(q) > 2(\beta'(q))^{2} \)
Similar direct calculations show that $g_x > 0$ for all (x, q) such that $q < 1$ and $x \leq x^E(q)$.

Next, insert $x^E(q)$ to (dropping all dependencies) (9):

\[
g(x^E(q), q) = \frac{-\beta(1-\beta)v_L v_H}{\beta(1-\beta)v_L v_H} \left(\frac{\beta'(1-\beta)(v_L v'_H - v'_L v_H)}{\beta v_L + (1-\beta)v_H}
+ \frac{\beta v_L v_H (-2\beta' + (\beta - 1)\beta''})}{\beta v_L + (1-\beta)v_H} + \frac{(\beta - 1)v_L v_H (-2\beta' + \beta'')}{\beta v_L + (1-\beta)v_H} \right)
\]

\[
= v_H \left(2v_L \beta' - (\beta - 1)\beta v'_L \right) + (\beta - 1)\beta v_L v'_H
\]

\[
= v_H \left(2v_L \beta' - (\beta - 1)\beta v'_L \right) + (\beta - 1)\beta v_L v'_H
\]

The derivative of the decentralized policy x^E is

\[
x^E'(q) = v_H \left(2v_L \beta' - (\beta - 1)\beta v'_L \right) + (\beta - 1)\beta v_L v'_H
\]

By subtracting $x^E'(q)$ from $g(x^E(q), q)$, we get

\[
g(x^E(q), q) - x^E'(q) = \frac{\beta'(q)v_L(q) v_H(q)}{(\beta(q)v_L(q) + (1-\beta(q))v_H(q))^2}.
\]

This expression is strictly positive for $q < 1$ and goes to zero as q goes to 1 (since $v_H(q) \to 0$). \hfill \Box

Proof of Lemma 6. Fixing some (x, q) such that $q < q^*(x)$, differentiating (19) twice with respect to x, and simplifying gives:

\[
V^*_{xx}(x, q) = V^*_{xx}(x, q^*(x))
+ 2(q*)'(x) \left(V^*_{xq}(x, q^*(x)) + v_H(q^*(x)) - v_L(q^*(x)) \right)
+ (q*)''(x) \left(V^*_{qq}(x, q^*(x)) + xv_H(q^*(x)) + (1-x) v_L(q^*(x)) \right)
+ \left((q*)'(x) \right)^2 \left(V^*_{qq}(x, q^*(x)) + xv_H'(q^*(x)) + (1-x) v'_L(q^*(x)) \right).
\]

Noting that $q^*(x)$ is the inverse function of $x^*(q)$, the second term on the right-hand side vanishes by condition (22) and the third term vanishes by the condition (21). Let us look at the last term. First, since (21) holds along the boundary $(x, q^*(x))$, we can totally differentiate it with respect to x to get:

\[
0 = V^*_{xq}(x, q^*(x)) + V^*_{qq}(x, q^*(x))(q^*)'(x) + v_H(q^*(x)) - v_L(q^*(x))
+ [xv_H'(q^*(x)) + (1-x) v'_L(q^*(x))](q^*)'(x).
\]
Applying (22), several terms disappear and this reduces to

\[V_{q^*}(x, q^*(x)) + xv_H(q^*(x)) + (1 - x)v_L(q^*(x)) = 0. \]

The last term in (25) vanishes as well, and it follows that \(V_{x^*}(x, q^*(x)) = V_{x^*}(x, q^*(x)) \).

Proof of Lemma 7. If the claim is not true, there must be some \(x \) and \(q > q^*(x) \) such that

\[V_{q^*}(x, q) + xv_H(q) + (1 - x)v_L(q) > 0. \]

(26)

We show that this leads to a contradiction by showing that (26) implies \(V_{q^*}(x, q) + xv_H(q) - v_L(q) > 0 \), which further implies that (26) holds also for all beliefs in \([x, x^*(q)]\), including \(V_{q^*}(x^*(q), q) + x^*(q)v_H(q) + (1 - x^*(q))v_L(q) > 0 \), which contradicts (21).

It remains to show that (26) implies \(V_{q^*}(x, q) + xv_H(q) - v_L(q) > 0 \). First notice that \(V_{q^*}(x, q) = B_q(q)\Phi(x, q) + B(q)\Phi_q(x, q) \), which then together with (26) implies

\[B_q > \frac{\Phi_q}{\Phi} B - \frac{xv_H + (1 - x)v_L}{\Phi} \]

where we have left out all dependencies to simplify notation. We now get the following lower bound:

\[V_{q^*} + v_H - v_L = B_q\Phi^x + B\Phi_{q^*} + v_H - v_L \]

\[> -\frac{\Phi_q\Phi_x}{\Phi} B - \frac{\Phi_x}{\Phi}(xv_H + (1 - x)v_L) + B\Phi_{q^*} + v_H - v_L \]

\[= \Phi^{-1}[B(\Phi_{q^*} - \Phi_q\Phi_x) + \Phi(v_H - v_L) - \Phi_x(xv_H + (1 - x)v_L)]. \]

(27)

The first term can be simplified as

\[\Phi^{-1}B(\Phi_{q^*} - \Phi_q\Phi_x) = \frac{B\Phi_{q^*}}{x(1 - x)} = \frac{\Phi_{q^*}}{x(1 - x)} \frac{\Phi_{q^*}(x^*v_H + (1 - x^*)v_L) - \Phi^*(v_H - v_L)}{\Phi_{q^*} \Phi^* - \Phi_q^* \Phi_x^*} \]

\[= \frac{x^*(1 - x^*)}{x(1 - x)} \frac{\Phi}{\Phi^*}[\Phi_{x}^*(x^*v_H + (1 - x^*)v_L) - \Phi^*(v_H - v_L)], \]

where the notation \(\Phi^* \) refers to \(\Phi(x^*(q), q) \).
Now, (27) becomes

$$x^*(1 - x^*) \frac{\Phi}{x(1-x)} \Phi^* \Phi^* (x^* v_H + (1-x^*) v_L) - \Phi^* (v_H - v_L)$$

$$- \frac{1}{\Phi} [\Phi_x (xv_H + (1-x)v_L) - \Phi (v_H - v_L)]$$

$$= \frac{1}{x(1-x)} \left(\frac{\Phi}{\Phi^*} ((\beta - 1)x^* v_H + \beta (1-x^*) v_L) - ((\beta - 1)xv_H + \beta (1-x)v_L) \right),$$

(28)

where we have used the following for both terms inside the brackets:

$$\Phi (v_H - v_L) - \Phi_x (xv_H + (1-x)v_L) = \Phi (v_H - v_L) - \Phi \frac{\beta - x}{x(1-x)} (xv_H + (1-x)v_L)$$

$$= - \frac{\Phi}{x(1-x)} ((\beta - 1)xv_H + \beta (1-x)v_L).$$

To conclude that (28) is larger than 0, notice first that $((\beta - 1)xv_H + \beta (1-x)v_L) < 0$ whenever $x < x^E(q)$ and that it is increasing in x. Then observe that $\Phi/\Phi^* \in (0,1)$ and hence $((\beta - 1)xv_H + \beta (1-x)v_L) < (\Phi/\Phi^*)((\beta - 1)x^* v_H + \beta (1-x^*) v_L)$.

We conclude that $V_q^* + xv_H + (1-x)v_L > 0$ implies $V_q^* + v_H - v_L > 0$ and the proof is complete. \qed

Proof of Lemma 8. By definition of function $\Phi(x,q)$, the following holds for all $x > 0$, $q > 0$:

$$r B(q) \Phi (x, q) = \frac{1}{2} B(q) \Phi_{xx} (x, q) \frac{x^2 (1-x)^2}{\sigma^2} q.$$

Differentiating w.r.t. q, the following holds as well:

$$r \left(B_q (q) \Phi (x, q) + B (q) \Phi_q (x, q) \right) = \frac{1}{2} B(q) \Phi_{xx} (x, q) \frac{x^2 (1-x)^2}{\sigma^2} q$$

$$+ \frac{1}{2} \left(B_q (q) \Phi_{xx} (x, q) + B (q) \Phi_{xxq} (x, q) \right) \frac{x^2 (1-x)^2}{\sigma^2} q$$

$$= \frac{B(q) \Phi (x, q)}{q} + \frac{1}{2} \left(B_q (q) \Phi_{xx} (x, q) + B (q) \Phi_{xxq} (x, q) \right) \frac{x^2 (1-x)^2}{\sigma^2} q.$$

In particular, this holds for any $q > 0$, $x = x^* (q)$:

$$r \left(B_q (q) \Phi (x^* (q), q) + B (q) \Phi_q (x^* (q), q) \right) = \frac{B(q) \Phi (x^* (q), q)}{q}$$

$$+ \frac{1}{2} \left(B_q (q) \Phi_{xx} (x^* (q), q) + B (q) \Phi_{xxq} (x^* (q), q) \right) \frac{x^* (q)^2 (1-x^* (q))^2}{\sigma^2} q.$$

(29)
From (21), we have
\[
 r (x^* (q) v_H (q) + (1 - x^* (q)) v_L (q)) + r (B_q (q) \Phi (x^* (q), q) + B (q) \Phi_q (x^* (q), q)) = 0,
\]
and so combining (29) and (30) we get
\[
 r (x^* (q) v_H (q) + (1 - x^* (q)) v_L (q)) + \frac{r B (q) \Phi (x^* (q), q)}{q} + \frac{1}{2} (B_q (q) \Phi_{xx} (x^* (q), q) + B (q) \Phi_{xq} (x^* (q), q)) \cdot \frac{x^* (q)^2 (1 - x^* (q))^2}{\sigma^2} q = 0.
\]

Plugging in (16) and (17) for \(B_q (q) \) and \(B_{qq} (q) \), we get by direct computation at \(x = x^* (q) \):
\[
 B_q (q) \Phi_{xx} (x^* (q), q) + B (q) \Phi_{xq} (x^* (q), q) = x^* (q) (\beta (q) - 1) v_H (q) - (1 - x^* (q)) (\beta (q))^2 v_L (q).
\]
Rearranging the equation that defines the policy function \(x^E (q) \) of the decentralized equilibrium in Proposition 1, we have
\[
 x^E (q) (\beta (q) - 1) v_H (q) - (1 - x^E (q)) \beta (q) v_L (q) = 0.
\]

We have shown in Part 1 of the Appendix C.3 that \(x^* (q) < x^E (q) \). Noting that \(\beta (q) > 1, v_H (q) > 0 \) and \(v_L (q) < 0 \), it follows that
\[
 x^* (q) (\beta (q) - 1) v_H (q) - (1 - x^* (q)) (\beta (q))^2 v_L (q) < 0
\]
and so it follows from (32) that
\[
 B_q (q) \Phi_{xx} (x^* (q), q) + B (q) \Phi_{xq} (x^* (q), q) < 0.
\]

Combining (31) and (33) gives
\[
 r (x^* (q) v_H (q) + (1 - x^* (q)) v_L (q)) + r \frac{B (q) \Phi (x^* (q), q)}{q} > 0,
\]
which is equivalent to
\[
 xv_H (q^* (x)) + (1 - x) v_L (q^* (x)) + \frac{B (q^* (x)) \Phi (x, q^* (x))}{q^* (x)} > 0
\]
for all \(x \) for which \(q^* (x) > 0 \).

□
C.5 Proof of Proposition 3

Proof. First, recall that $x^*(0) < x_E(0) = x_{\text{stat}}(0)$ by the proof of Proposition 2. Using this together with the continuity of the policy functions we find that there exists $q > 0$ such that $x^\text{stat}(q) > x^*(q)$ for all $q < q$. As the policy functions are strictly increasing and continuous, the stocks $q^*(x)$ and $q^\text{stat}(x)$ are pinned down as the inverse of the policy functions for all $x \geq x^*(0)$ and $x \geq x^\text{stat}(0)$ respectively. In addition, $q^*(x) = 0$ for all $x \leq x^*(0)$ and $q^\text{stat}(x) = 0$ for all $x \leq x^\text{stat}(0)$, and hence q^* and q^stat are continuous.

Let $x := x^\text{stat}(q) > x^\text{stat}(0)$ where the inequality follows from x^stat being strictly increasing. Then, $q^\text{stat}(x) < q^*(x)$ for all $x \in [x^\text{stat}(0), x]$ by that q^* and q^stat are the inverse functions of x^* and x^stat. Furthermore, $q^\text{stat}(x) = 0 < q^*(x)$ for all $x \in [x^*(0), x^\text{stat}(0)]$, which completes the proof.

Next, we show the other direction by showing that $x^*(1) = x^\text{stat}(1) = 1$ and $x^*_q(1) < x^\text{stat}_q(1)$. The first part is immediate. For the second part, use Lemma 5 and the uniqueness of the solution to get $x^*_q(1) = x^E_q(1)$. Now it is enough to show that the derivative of the equilibrium is smaller than of the myopic solution:

$$x^E_q(1) - x^\text{stat}_q(1) = (\beta - 1)\frac{v_Lv_H'}{(\beta v_L)^2} - \frac{v_Lv_H'}{(v_L)^2} = -\frac{v_Lv_H'}{\beta v_L^2} < 0.$$

The myopic and optimal solutions meet at $q = 1$ but the optimal solution reaches the point above the myopic solutions. Hence, by continuity there must exist $\overline{q} < 1$ such that $x^*(q) > x^\text{stat}(q)$ for all $q \in (\overline{q}, 1)$, which then further implies the existence of $\overline{x} < 1$ by the same argument as used above for \overline{x}. \hfill \Box

C.6 Proof of Proposition 4

Proof. Part (a): We show the result by contradiction. By using the solution from Proposition 2 and the value function derived in its proof, we show that $q^* = 0$ cannot maximize the HJB equation (5) in the limit as $\sigma \to 0$ unless $\sqrt{q^*_2(x)}/\sigma \to \infty$. If $q^*(x)$ goes to any other value than 0, the claim immediately follows.
By taking the first order condition from (5), we get
\[xv_H(q^*) + (1 - x)v_L(q^*) + \frac{1}{2} \frac{x^2(1 - x)^2}{\sigma^2} (V_{xx}(x, q^*) + V_{xq}(x, q^*) q^*). \]
The first order condition is necessarily strictly positive at \(q^* = 0 \) in the limit as \(\sigma \to 0 \) once we show that \(V_{xx}(x, q) > 0 \) and \(V_{xq}(x, q) \) is finite.

Recall that the value function is \(V(x, q) = B(q)\Phi(x, q) \) and its derivatives are then \(V_{xx} = B(q)\Phi_{xx} \) and \(V_{xq} = B(q)\Phi_{xq} + B(q)\Phi_{q} \). By plugging in the values of \(\Phi_{xx} \), we get
\[V_{xx} = B(q)\beta(q)\Phi \left(\frac{\beta(q) - 1}{x^2(1 - x)^2} \right). \]
We know that \(B > 0 \) for all \(q < 1 \) in the optimal solution and that \(\Phi > 0 \) for all \(x \in (0, 1) \). Then, \(V_{xx} > 0 \) whenever \(\beta > 1 \) which is true whenever the signal-to-noise ration is finite.

We can write \(V_{xq} \) as
\[V_{xq} = (\Phi_{x} \Phi_{xx} - \Phi_{xq} \Phi_{x})(xv_H + (1 - x)v_L) + (\Phi_{q} \Phi_{xx} - \Phi_{xq})(v_H - v_L). \]
The first term equals \(\frac{\beta - x}{x^2(1 - x)^2} (xv_H + (1 - x)v_L) \) and the second term equals \(-\frac{\beta + (\beta - 1)\ln \left(\frac{1}{x} \right)}{x(1 - x)}(v_H - v_L) \). Both are finite for all \(x \in (0, 1) \).

Hence, we conclude that for the first order condition to be satisfied, we must have \(\sqrt{q^*_E(x)} / \sigma \to \infty \) as \(\sigma \to 0 \).

Part (b): We fix the belief to be \(x \in (0, 1) \). By rearranging the solution in Proposition 1, we get
\[\beta(q) = \frac{xv_H(q)}{xv_H(q) + (1 - x)v_L(q)}. \]
We take the limit \(\lim_{q \to 0} \beta(q^E(x)) = \frac{xv_H(0)}{xv_H(0) + (1 - x)v_L(0)} \), which is strictly larger than 1 for all \(x > x_{\text{stat}}(q) \) and hence further implying that \(\lim_{q \to 0} \sqrt{q^E(x)} / \sigma < \infty \).

More precisely, we get the limit of the signal-to-noise ratio as \(a(x) \) satisfying
\[\frac{xv_H(0)}{xv_H(0) + (1 - x)v_L(0)} = \frac{1}{2} \left(1 + \sqrt{1 + 8ra(x)^{-2}} \right). \]

C.7 Proof of Proposition 5

Take an arbitrary boundary policy \(\tilde{q}(x) \) with inverse \(\tilde{x}(q) \). The long-run stock, denoted \(q_{\infty} \), is equal to \(\tilde{q}(\bar{x}) \), where \(\bar{x} := \sup (x_t | t > 0) \) is the long-run maximum
value of the belief. Deriving the distribution of the long-run stock boils down to deriving the distribution of the maximum value of the belief. We do that utilizing the fact that the belief process x_t is a martingale with continuous path that eventually converges to truth.

Denote the initial belief by x_0, and consider some $x' \in (x_0, 1)$. Let $\tau (x') := \inf (t : x_t \geq x')$ denote the time of reaching belief x' (with the convention $\tau_{x'} = \infty$ if x' is never reached). Since x_t has continuous path and will converge to either 0 or 1 (depending on true state), $x_{\tau(x')}$ is a random variable that takes value either x' or 0. By Doob’s optional sampling theorem, we have

$$x_0 = \mathbb{E} (x_{\tau(x')}) = \Pr (\tau \geq x') \cdot x' + \Pr (\tau < x') \cdot 0,$$

from which we can solve

$$\Pr (\tau \geq x') = \frac{x_0}{x'}.$$

On the other hand, we can write

$$\Pr (\tau \geq x') = x_0 \Pr (\tau \geq x' | \omega = H) + (1 - x_0) \Pr (\tau \geq x' | \omega = L)$$

and since we know that the belief converges to truth, we have

$$\Pr (\tau \geq x' | \omega = H) = 1.$$

Using the equations above, we can then solve for:

$$\Pr (\tau \geq x' | \omega = L) = \frac{x_0 (1 - x')}{x'(1 - x_0)}$$

and so

$$\Pr (\tau \leq x' | \omega = L) = 1 - \Pr (\tau \geq x' | \omega = L) = \frac{x' - x_0}{x'(1 - x_0)}.$$

Noting that

$$\Pr (q_\infty \leq q | \omega) = \Pr (\tau \leq \tilde{x} (q) | \omega),$$

we get the long-run distribution of the stock given in the proposition.
D Mechanism design

D.1 Proof of Proposition 6

Proof. Fix policy Q and posted price $P(x,q)$ as in Proposition 6. To show that Q is a decentralized equilibrium, we have to show that it is optimal for type θ to stop at $\tau(\theta) := \inf \{ t : q_t \geq 1 - F(\theta) \}$. We call $\tau(\theta)$ the intended stopping time for type θ.

For an individual player this is a Markovian stopping problem with fixed policy Q and stopping payoff given by (10). From the structure of the problem it is clear that it is optimal for θ to stop at the first hitting time of some boundary point. To see this, note that whenever the state (x,q) is above the boundary, it moves immediately to the boundary point $(x,\tilde{q}(x))$ and since we have defined $P(x,q) = P(x,\tilde{q}(x))$ above the boundary, any player is indifferent between stopping at (x,q) or $(x,\tilde{q}(x))$ (or any point between those). Furthermore, we have defined $P(x,q)$ to be so large below the boundary that no player wants to stop there. Since every boundary point is an intended stopping point for some $\theta \in [\underline{\theta},\overline{\theta}]$, we only have to show that it is better for θ to stop at the intended stopping time $\tau(\theta)$ than at the intended stopping time for some other type $\tau(\tilde{\theta})$, $\tilde{\theta} \neq \theta$.

Denote by $U(\theta,\tilde{\theta})$ the expected value at time zero for type θ who intends to stop at $\tau(\tilde{\theta})$, $\tilde{\theta} \neq \theta$. To complete the proof, we must show that $U(\theta,\theta) \geq U(\theta,\tilde{\theta})$ for all θ and for all $\tilde{\theta}$.

We next proceed to derive the expression for $U(\theta,\tilde{\theta})$. Denote by $P_0(\tilde{\theta})$ the expected discounted transfer payment that θ has to pay if she stops at the intended stopping time $\tau(\tilde{\theta})$:

$$P_0(\tilde{\theta}) := \mathbb{E} \left[e^{-r\tau(\tilde{\theta})} P(x_{\tau(\tilde{\theta})},q_{\tau(\tilde{\theta})}) \right].$$

Using (11), this can be written as:

$$P_0(\tilde{\theta}) = \mathbb{E} \left[e^{-r\tau(\tilde{\theta})} x_{\tau(\tilde{\theta})} v_H(\tilde{\theta}) + \left(1 - x_{\tau(\tilde{\theta})} \right) v_L(\tilde{\theta}) \right]$$

$$- \mathbb{E} \left[\int_0^{\tilde{\theta}} e^{-r\tau(s)} \left(x_{\tau(s)} v_H'(s) + \left(1 - x_{\tau(s)} \right) v_L'(s) \right) ds \right].$$
With this, we get an expression for $U(\theta, \tilde{\theta})$:

$$U(\theta, \tilde{\theta}) = E\left[e^{-r\tau(\tilde{\theta})}(x_{\tau(\tilde{\theta})}v_H(\theta) + (1 - x_{\tau(\tilde{\theta})})v_L(\theta))\right] - P_0(\tilde{\theta}).$$

Its partial derivative with respect to θ is

$$U_1(\theta, \tilde{\theta}) = E\left[e^{-r\tau(\tilde{\theta})}(x_{\tau(\tilde{\theta})}v_H'(\theta) + (1 - x_{\tau(\tilde{\theta})})v'_L(\theta))\right].$$

(34)

The key property that we want to prove is that $U_1(\theta, \tilde{\theta})$ is increasing in $\tilde{\theta}$. To do that, note that applying the law of iterated expectations, we can write $U_1(\theta, \tilde{\theta})$ in terms of the initial belief x_0 as

$$U_1(\theta, \tilde{\theta}) = x_0 E\left(e^{-r\tau(\tilde{\theta})}v_H'(\theta) | \omega = H\right) + (1 - x_0) E\left(e^{-r\tau(\tilde{\theta})}v'_L(\theta) | \omega = L\right)
= x_0 v'_H(\theta) E\left(e^{-r\tau(\tilde{\theta})} | \omega = H\right) + (1 - x_0) v'_L(\theta) E\left(e^{-r\tau(\tilde{\theta})} | \omega = L\right).$$

Since $v'_H(\theta) \geq 0$ and $v'_L(\theta) \geq 0$ (with at least one of the inequalities strict), both terms in the above expression are positive. Type $\tilde{\theta}$ enters the expression only through the discounting terms $E\left(e^{-r\tau(\tilde{\theta})} | \omega\right)$. Since $\theta'' > \theta'$ implies that $\tau(\theta'') := \inf\{t : q_t \geq 1 - F(\theta'')\} \leq \tau(\theta') := \inf\{t : q_t \geq 1 - F(\theta')\}$ with probability 1, it follows that $E\left(e^{-r\tau(\tilde{\theta})} | \omega\right)$ is increasing in $\tilde{\theta}$ irrespective of state ω, and hence $U_1(\theta, \tilde{\theta})$ is increasing in $\tilde{\theta}$ as well.

We now utilize this property to complete the proof. Note first that we have:

$$U(\theta, \theta) = E\left[e^{-r\tau(\theta)}(x_{\tau(\theta)}v_H(\theta) + (1 - x_{\tau(\theta)})v_L(\theta))\right] - P_0(\theta)
= E\left[\int_0^{\theta} e^{-r\tau(s)}(x_{\tau(s)}v'_H(s) + (1 - x_{\tau(s)})v'_L(s))ds\right].$$

Therefore, for arbitrary θ' and θ'', we have

$$U(\theta'', \theta'') - U(\theta', \theta') = E\left[\int_\theta^{\theta''} e^{-r\tau(s)}(x_{\tau(s)}v'_H(s) + (1 - x_{\tau(s)})v'_L(s))ds\right].$$

(35)

We can now write:

$$U(\theta, \tilde{\theta}) = U(\tilde{\theta}, \tilde{\theta}) + \int_0^{\tilde{\theta}} U_1(s, \tilde{\theta}) ds \leq U(\tilde{\theta}, \tilde{\theta}) + \int_0^{\tilde{\theta}} U_1(s, s) ds
= U(\tilde{\theta}, \tilde{\theta}) + E\left[\int_0^{\theta} e^{-r\tau(s)}(x_{\tau(s)}v'_H(s) + (1 - x_{\tau(s)})v'_L(s))ds\right] = U(\theta, \theta),$$

where the inequality uses that $U_1(\theta, \tilde{\theta})$ is increasing in $\tilde{\theta}$, the second last equality uses (34), and the last equality uses (35).
References

