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Abstract

The analogy-based expectation equilibrium, or simply analogy equilibrium (AE), analyzes
equilibrium stereotypes by imposing consistency of infinitely large action samples with the
expectation that broad classes of opponent types behave identically. This paper introduces
the payoff-confirming analogy equilibrium (PAE) to refine the set of analogy equilibria. The
concept imposes additionally that sample marginal of own payoffs be consistent with one’s
expectations. Robust incorrect equilibrium stereotypes, i.e. non-Bayesian Nash PAE are
shown to exist. General conditions are given for the prevalence of such stereotypes under
correct expectations on exogenous uncertainty. In monotone selection games susceptible to
winner’s curse, naive behavioral equilibrium leading to aggravation of adverse selection has
been shown to match plausible informational assumptions of experienced, but behaviorally
biased, equilibrium play. Here, behavioral equilibrium is matched with a corresponding PAE
with an incorrect prior and correct prior is shown to imply correct overall expectations.

JEL: C72, D82 Analogy expectations Bounded rationality Learning Stereotypes Winner’s
curse C72 D82

1 Introduction

Analogy-based expectations equilibrium, or simply analogy equilibrium, (AE; Jehiel 2005; Jehiel

and Koessler 2008) provides a powerful tool to understand how steady-state-like equilibrium be-

havior may differ from Nash equilibrium behavior when players use stereotypical classifications,

analogy classes, in learning about others. Stereotypes must be confirmed by experience. Not

only the observed behavior of others, but also own successes and failures, provide data to test

one’s stereotypical beliefs.
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Along these lines, this paper introduces the payoff-confirming analogy equilibrium (PAE) to

refine the set of analogy equilibria and the associated admissible analogy partitions. The analogy

equilibrium is related to and can be considered as a self-confirming equilibrium (Fudenberg

and Levine 1993; Fudenberg and Levine 1995; Dekel et al. 2004) and conjectural equilibrium

(Battigalli 1987). Thus, it is based on the implicit assumption that over time each player gains

experience about the characteristics and behavior in the opponent’s population(s). Each player

records which actions are chosen and which characteristics prevail in that population(s). In

the PAE when observing the opponents, each player classifies opponents according to some

characteristics, whether strategically and informationally relevant or not. She then organizes

samples of observed actions into these classes (called analogy classes), one sample for each class

of opponent characteristics, and expects that the opponents, with the characteristics of the class,

play the sample average strategy of the class thus leading to an underestimation of correlation

between oppponent types and strategies. This has been claimed to give rise to winner’s curse

which has been evidenced in many studies both in the field (Capen et al 1971, for instance) and

in the lab (Kagel and Levin 2002).

Stereotyping gender, clothing or ethnicity provides examples of analogy classifications which

typically miss the strategically relevant aspects of the characteristics; however, they may cap-

ture some coarse correlations of characteristics and strategies. In a bilateral labor market, for

instance, an employer might conjecture that a particular ethnic group is in expected terms less

qualified for a job than others or that people in the group do not use highly specialized or se-

lective search strategies when looking for a job. The employer thus expects lower productivity

among this ethnic group and might therefore make lower wage offers to that particular group.

Such statistical discrimination1 may be a well-founded rational strategy if the expectations are

correct. But if expectations are incorrect, there is little justification for such discriminatory

employment strategies. The question is under which conditions we can expect such incorrect

conjectures to be held in equilibrium?

When equilibrium consistency merely requires that players’ expectations about payoff-relevant

uncertainty and marginal strategies must be correct, few restrictions are imposed on potential

stereotypical classifications: all applicants might be conjectured to be playing the marginal strat-

egy independent of their qualifications, or various compositions of qualifications might be bun-

dled together and expected to behave identically independently of their specific qualifications,

at least in some etnhnic groups, thus giving a reason for very selective statistical discrimination.

This is why Fudenberg and Levine (2009, pp. 409), for instance, have called for gaining sense

of “which sorts of false analogies are relevant... and to ideally endogenize the analogy classes”

of the AE. This paper contributes to exactly this by making the analogy grouping part of the

equilibrium description and by suggesting an additional, payoff-consistency criterion which al-

lows the reckoning of which incorrect equilibrium stereotypes might be more viable in the long

1See Arrow (1998) for instance.
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run.

Arguably, people often observe and remember how successful they have been over time when

learning about interacting with others. When modeling learning with stereotypes, it is thus

often plausible to assume that players have at least a coarse track-record of their own payoffs.

The successes and the failures are what players care about - if they do not, why should they

best-reply in the first place. Thus, the failures and successes tend to be remembered. If the

sampled payoffs differ from the distribution that the player expects (given her beliefs about

opponent types and actions) she should eventually realize the inconsistency and abandon her

incorrect conjectures. The payoff samples thus provide a natural additional consistency criterion

to study the robustness of the analogy classification and the corresponding equilibrium.

Two considerations should be kept in mind here. First, a player needs a large amount of

data to test his conjectures, i.e. whatever data used when testing must be restored in memory

over time. Thus data on payoffs, as relevant success experiences, may be used when testing

conjectures although own types are not used because the latter are not rememebered over time.2

Second, although success experiences are used to test conjectures, they may be only coarsely

recalled (as are opponent types). Payoff realizations in broader intervals may be coded into a

single payoff class when testing conjectures. Both these considerations suggest that recalling

own payoffs does not necessarily imply a very demanding test on one’s stereotypical conjectures.

A weak robustness check requires that the conjectured marginal payoff distribution must be

consistent with the marginal sample payoff distribution. Assuming that players carry out a more

sophisticated consistency check would require careful consideration: when one is interested in

implications of underappreciation of correlation between types and actions, one would beg the

question by requiring beliefs to be consistent with the sample joint marginals of own payoffs and

opponent actions, for instance3.

This paper studies such a weak refinement, the payoff-confirming AE (PAE) with one primary

question in mind: when is an AE payoff-confirming also? We first show by means of an example

that there are PAE which differ from Bayesian-Nash equilibria even when the prior is correct. We

then provide general sufficient conditions for an AE with a correct prior to be payoff-confirming.

These conditions are also necessary if one requires robustness to perturbations of the prior or if

one confines attention to two-player games with two actions and two states. Since a Bayesian-

Nash equilibrium is a PAE, the latter always exists when the former does. In particular, a PAE

always exists in finite environments.

AE with finer than private information analogy partitions have been shown to provide a lack-

2This may happen when own type varies from one interaction to another and thus is not part of inherent

personality characteristics.

3Dekel, Fudenberg and Levine (2004) consider such refinements in contexts with more sophisticated players

who keep track of their own types and actions in addition to other signals and perfectly understand correlations.
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ing learning justification4 for the cursed equilibria (Eyster and Rabin 2005; Jehiel and Koessler

2008; Miettinen 2009). Esponda (2008) also studies the learning foundations of the cursed

equilibrium assuming that players learn others’ actions and their own payoffs and that they

occasionally learn something about the opponents’ characteristics. He illustrates that in the

steady states of such learning (i) there is even less trade than in any Nash equilibrium in bilat-

eral common value trade, (ii) players bid less aggressively in common value auctions and (iii)

less effort is provided in team work. This is to be contrasted with Eyster and Rabin’s (2005)

finding that there is more trade in the cursed equilibrium than in a Nash equilibrium of the

bilateral trade, for instance.

We show that Esponda’s conclusions hold also in the present context by pointing out that his

equilibria correspond to PAE with private information partitions and with incorrect priors. As

Esponda informally conjectured and as is formally shown here, the fact that observing payoffs

leads to stronger selection problems hinges upon this incorrect-prior assumption, at least in well-

behaved settings with differentiable payoffs and unique best-replies. This is rather intuitive: in

the setups with monotone payoffs studied by Esponda, players can make sharp inferences based

on payoffs.

One may argue, as Fryer and Jackson (2008), Mohlin (2009), and Schwartzstein (2010) do,

that memory limitations may imply categorical or stereotypical classifications. Fryer and Jackson

(2008) and Mohlin (2009) illustrate how such coarse stereotyping and discrimination of minorities

may come about as one tries to minimize prediction errors whereas in the setting of Schwartzstein

(2010) this may be implied by selective attention based on estimates of the predictiveness of

additional information. The point of this paper is to take categorical simplifications on opponent

types as given and study when they can survive in equilibrium when category marginals on action

choices, on the one hand, and marginals on own payoffs, on the other hand, are kept track of

and used to test one’s stereotypical beliefs in a strategic interaction setting.

The paper is organized as follows. In Section ?? the model and the concepts are presented. In

Section ??, it is assumed that the prior is known and a quite general class of games is analyzed.

It is shown that generally there are PAE that differ from BNE and conditions are provided when

this is the case. In Section ?? the games with monotone selection studied by Esponda (2008)

are considered. The results are briefly discussed in Section ??.

2 Model

2.1 The underlying game, strategies and expectations

Consider a static game of incomplete information, (Ai; ui; Θ; p(θ); i = 1, ..., N). There are

N players indexed by i = 1, ..., N. An action of player i is ai and the finite set of actions5

4See Fudenberg (2006).

5The set of actions is the same in every type profile.
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available to her is Ai. The actions of players other than i are denoted by a−i ∈ ×j 6=iAj . An

action profile is a ∈ A = ×N
i=1Ai.

Exogenous uncertainty in the stage game is modeled by letting nature draw a type profile,

θ, with probability p(θ) prior to the play of the stage game. The type profile is a vector of types,

one for nature and one for each player, θ ∈ Θ = ×N
i=0Θi where θi ∈ Θi is the type of player i.

Nature may have its own type, θ0 ∈ Θ0, to allow for cases where the player types alone do not

determine payoffs. For simplicity, we suppose that the set of type profiles is finite. The vector of

types of players other than i is θ−i ∈ Θ−i = ×j 6=iΘj . The outcomes are type and action profile

combinations, (a, θ). The payoff depends on the actions and on the type profile: ui : A×Θ → R

for i = 1, ..., N .

A strategy of player i is a function of her type, σi : Θi → ∆(Ai) and the probability that

type θi chooses action ai ∈ Ai is denoted by σi(ai|θi). The strategies of players other than i are

denoted by σ−i : Θ−i → ×j 6=i∆(Aj) and a strategy profile is σ : Θ → ×N
j=1∆(Aj). The conjecture

of i about the state and about the strategy of the opponents6 is denoted by µ̂i : Θ → ∆(Θ) and

σ̂i
−i : Θ → ∆(A), respectively.

The equilibria in our context are understood as steady states of a learning process.7 Es-

sentially the described learning process is a ficticious-play like process (Fudenberg and Levine

1998) where each player presumes that analogy classes capture others’ strategically relevant

types. Thus players best-respond to beliefs which are sample averages of past actions in each

analogy-class.8 Stable steady states of such a process are a subset of analogy equilibria as

described here.

The equilibrium concept of main interest is the payoff-confirming analogy equilibrium which

assumes that players observe opponent actions, characteristics and own payoffs during the learn-

ing process while failing to understand correlations in their samples due to simplified observations

or organization of these. This concept is defined in the next subsection.

2.1.1 Payoff-confirming analogy equilibrium

In the analogy equilibrium each player i partitions the support of type profiles, Θ, into analogy

classes. Player i’s partition, Ai, is called the analogy partition of player i. An element of Ai is

a set of type profiles denoted by αi, the element of Ai containing θ is αi(θ). An analogy system

(A1, ...,AN ) describes the partitions of each player i = 1, ..., N. Whereas a player’s information

partition describes how precisely the player observes the type profile at the interim stage, the

6The player may be unaware of the opponent’s private information partition. Therefore, the conjecture is

conditioned on the whole type profile rather than on the profile of opponents’ types.

7Implicit in the model, there is a learning process where, in each round, each player plays against randomly

chosen opponents, one player drawn from each opponent population; and all randomly matched players then

receive a random draw of types, their stage game specific private information.

8See Huck et al. (2009) for a simple explicit model of analogy-based learning.
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analogy partition describes the player’s stereotypes. This translates into how precisely he keeps

track of the type profile realizations ex-post when the game is played.9

The analogy equilibrium is specific about how the conjectures are formed. Each player

i conjectures that, in a given type profile, each opponent plays her average strategy of the

analogy class of i where that type profile belongs to. This is the simplest theory consistent with

observing only the analogy class rather than the precise opponent type. Moreover, this is the

only consistent theory where each opponent plays a pooling strategy in each analogy class. To

formalize this idea, we define the opponents’ average strategy in a set of type profiles B ⊂ Θ as

follows:

σ−i(B) =
∑

θ∈B p(θ)σ−i(θ−i)∑
θ∈B p(θ)

. (1)

We are now ready to define the analogy equilibrium:

The triple (σi, σ̂−i,Ai)N
i=1 is an analogy equilibrium with a correct prior if, first, for all

θ ∈ Θ, for all i and a∗i ∈ supp[σi(θi)]

a∗ ∈ arg max
∑

θ′−i∈Θ−i

p(θ′−i|θi)
∑

a−i∈A−i

σ̂i
−i(θi, θ

′
−i)ui(a; θi, θ

′
−i) (2)

and, second, for all θ ∈ Θ, for all i σ̂i
−i(θ) = σ−i(αi(θ)).

Notice that in the definition the coarseness of the partitions is part of the equilibrium de-

scription rather than exogenous. This is where the concept differs from the definition in Jehiel

and Koessler (2008) who assume that the analogy partitions are exogenous. Notice also that

player i′s analogy classification may depend on her type as in Jehiel and Koessler. That is, given

θ
′
−i, there may be θ

′
i and θ

′′
i such that (θ

′
i, θ

′
−i) ∈ α

′
i and (θ

′′
i , θ

′
−i) ∈ α

′′
i .

Jehiel and Koessler coin the private information analogy partition AE the analogy equi-

librium where each player’s analogy partition coincides with her information partition, Ai =

{{θi}θi∈Θi ×Θ−i}. This AE coincides with the cursed equilibrium of Eyster and Rabin (2005).

This analogy partition is rather natural since each type fully understands her own information

but fails to understand any correlations between opponent types and strategies conditional on

this information. This special case of the concept will take a central role in Section 4 on in-

correct prior where issues related to winner’s curse are studied. In many trading mechanisms,

such as auctions and bilateral trade, there is a substantial body of experimental evidence on the

existence of winner’s curse at least in enviroments where opportunities for learning are limited10

and where prior distribution of a privately known quality is given. Yet, often in practice the

experienced buyers have learned the quality conditional on trade, and prior information on the

9In the incorrect prior case, the ex-post observation structure is captured by the intersection of the visible

states and the analogy partition.

10See Kagel and Levin (2002) for a review.
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quality distribution is limited. To better isolate the influence of these features, a model with an

incorrect prior AE is needed.

Clearly, if quality is observable only conditional on trade, a player may attach a zero proba-

bility to a quality of positive prior probability. This is formalized by partitioning type profiles

into visible ones Θ̂i
V and invisible ones Θ̂i

I the latter of which are incorrectly attached a zero

probability. The partitioning into visible and invisible type profiles is also part of the equilib-

rium description as is the analogy partition; but the two are distinct, as opposed to the case of

correct prior where analogy classes may be understood to characterize the ex-post observation

about the type profile. All types, including the invisible types, belong to some analogy group -

the behavior of types is always observed even if the type profiles responsible for this behavior

are not. The behavior in the invisible states of an analogy class influence the average strategy

of the class thus biasing further the strategy conjectures held in that analogy group - the player

deems opponent actions that actually stem from invisible type profiles to be chosen by visible

type profiles of the group.

The quadruple (σi, σ̂−i,Ai, Θ̂i
V )N

i=1 is an analogy equilibrium with an incorrect prior if,

• first, for all θ ∈ Θ, for all i and a∗i ∈supp[σi(θi)],

a∗ ∈ arg max
∑

θ′−i∈Θ−i

µ̂i(θ′−i|θi)
∑

a−i∈A−i

σ̂i
−i(θi, θ

′
−i)ui(a; θi, θ

′
−i),

• second, for every θ ∈ Θ̂i
V , µ̂i(θ) = p(θ)∑

θ∈Θ̂i
V

p(θ) and for every θ ∈ Θ̂i
I , µ̂i(θ) = 0,

• third, for all i, for each αi and each θ ∈ αi ∈ Ai, σ̂
i
−i(θ) = σ−i(αi(θ)).

The first equilibrium condition merely requires best-replying to conjectures µ̂i, σ̂i
−i. With an

incorrect prior, the conjecture about the distribution of types, µ̂i, and even the conjecture about

its support may be incorrect while still consistent with what one observes. The conjectured

probability of a visible type profile coincides with its actual prior probability conditional on

visibility. Each type may have a different set of visible type profiles. That is, given θ
′
−i, there

may be θ
′
i and θ

′′
i such that (θ

′
i, θ

′
−i) ∈ Θ̂i

V and (θ
′′
i , θ

′
−i) ∈ Θ̂i

I . This means that various types of

a player may have different priors since their equilibrium strategies may select different visible

type profiles. The third condition imposes consistency of the marginal sample distribution of

actions by requiring that average strategies be played in each analogy class.

In this section we formally define the refinement of the AE, the payoff-confirming AE (PAE).

The PAE studies a mild robustness check of the AE, where the player fails to keep track over

time of how own payoffs are correlated with other signals. Thus, the marginal expected and

sample payoff distribution must coincide. It would be unnatural to assume that players perceive

correlations between own payoffs and opponents’ actions or types although they do not perceive

correlations between actions and types in each analogy class.
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An extension of the concept allows for imprecise payoff recollection - the mapping u : R→ U
codes the payoffs into payoff recollection. Notice that if u is not an isomorphism, then evaluation

of past successes is coarser than the player’s cardinal decision preferences. Although all results

of Section 3 are written for the general case, in Section 4 and in the main text we will confine

attention to the case of u being an isomorphism or in fact an identity function if not mentioned

otherwise.

Payoff-confirming analogy equilibrium is an AE where for all i and ui

∑

{a∈A,θ∈Θ|u(ui(ai,a−i,θi,θ−i))=ui}
µ̂i(θ)σi(ai|θi)σ̂i

−i(a−i|θ) (3)

=
∑

{a∈A,θ∈Θ|u(ui(ai,a−i,θi,θ−i))=ui}
p(θ)σi(ai|θi)σ−i(a−i|θ−i).

If the prior is correct, then µ̂i(θ) = p(θ).

To illustrate the concepts, let us consider the following simple two-player game whose payoff

matrices are given in Figure 1. The row player is an employer and the column player can be

either a male or a female employee, g ∈ M,W respectively. The gender is entirely payoff irrel-

evant and illustrates here how payoff-irrelevant uncertainy may function as a way to construct

steareotypical classifications, analogy partitions.

Most of the time due to well-planned incentive schemes perhaps, the interests of the employer

and the employee are aligned. Let’s assume that in the state of aligned interests, θA
g , occurring

with probability pA
g = pA for g = {M, W}, the parameter k is smaller than one in absolute

value. In the state of aligned interests, players have dominant strategies T and R, respectively,

and the Nash equilibrium outcome is the preferred one for both. In state θC where pC
g = pC =

1 − pA for g = M, F , the interests of the employer and the employee are entirely conflicting

and they play a constant sum game with the only (Nash) equilibrium in mixed strategies,

σ1(T ) = 1/2, σ2(L) = 3/4. It is known to both whether interests are aligned or not and thus

the above state-conditioning strategies constitute the unique Nash-equilibrium strategies of the

game.

θA
g L R

T 2+k, 2 4, 4

B 1, 1 3, 3

θC
g L R

T 3, 2 1, 4

B 2, 3 4, 1

Figure 1: Stereotyping in workplace relationship, g = M, W .

Let us consider the following AE. Suppose that employees have fine analogy partitions

{{θA}, {θC}}. Suppose that the employer organizes his experiences along the following analogy

partition {{θA
M}, {θC

M}, {θA
W , θC

W }}. Thus the employer keeps track of male employee behavior

conditional on the alignment of interests whereas he bundles states of conflicting and aligned

interests together when facing a female emploee. This may be due to diverted attentiveness
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when playing with women or due to a belief that female employees only are unable to detect the

strategic aspects of the situation. Let the male employees play the Nash equilibrium strategies

and let the employer also play Nash equilibrium strategies when facing a male employee. Let

the female employee play R in θA
W and L in θC

W and let the employer play T in θA
W and B in

θC
W . Let us verify that this constitutes an AE and moreover a PAE.

By the second condition of Definition 1, the employer expects average strategy being played

by men in each class, and thus expectations must be correct conditional on the state being either

θA
M or θC

M . By Condition 1, the employer rationally best-replies and thus his strategy must be

a (Nash-)best-response. By the same token, the male employee must have correct expectations

and (Nash-)best-response. This illustrates that with fine analogy-partitions, the only analogy-

equilibrium, let alone payoff-confirming one, is the a Nash equilibrium where expectations are

correct.

Consider then the states θA
W and θC

W which are bundled into the same analogy class by the

employer. As required by the second condition of Definition 1, the employer adopts the simplest

belief that all types in this class behave indentically. Can such an incorrect (analogy-based)

stereotype survive in equilibrium? Can it be confirmed by experiences? Female employees play

R in θA
W and L in θC

W , and thus by the second condition in Definition 1, the employer believes

that female employees, in each state, play the average strategy: R with probability pA and L

with probability pC . Best-responding to the believed strategy of a female employee amounts to

playing T in θA
W and B in θC

W for any prior probability of state A greater than 1/4 as stated in the

equilibrium description.11 It is easy to see that playing L is indeed a best-response strategy of a

female employee in state θC
W .12 Dominance implies that remaining best-responses are optimal.

Thus, we have an AE, an incorrect equilibrium stereotype confirmed by experience. But how

robust is it?

As argued above, if anything, economic agents averting failures and striving for successes

should recall how well they fared. Economic agents capable of deeming how much better one

outcome is than another (as required by the implicitly assumed the cardinality of preferences

when best-responsing to beliefs), should also have the capacity of at least approximately recalling

of how much better they did at various instances of a recurring interactive situation. In Definition

3, the mapping coding a payoff realization into a payoff class in one’s memory is denoted by

u : R → U . In the example, suppose that the employer recalls past payoffs at precision κ

so that payoff realizations u′ and u′′ more apart than κ are never coded into the same class

of recollection, i.e. |u′ − u′′| > κ ⇒ u(u′) 6= u(u′′), then κ < k implies that the employer

will eventually notice that he never observes u(2 + k) in his recollection of payoffs and yet his

11Given the analogy-based expectation, the employer’s payoff to playing T in state θC
W is 3pC + pA and the

payoff to playing B in that state is 2pC + 4pA where pC = 1− pAand thus B is a best-reponse for any pA ≥ 1/4.

12The female employee has correct expectations and thus playing L in state θC
W yields 3 for the female employee

while playing R yields 1.
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analogy-based expectations deem that event having a probability (pA)2. Thus the only PAE is

the Bayesian-Nash equilibrium of the game in that case.

Yet when k ≤ κ, incorrect conjecture stereotype on females may be robust to payoff-

recollection. Stereotypes that are in such a manner robust to payoff information are probably

particularly deeply grounded. As a special case, suppose that κ = 0. Then if k = 0, the employer

will not be able to infer that his stereotype is misleading him provided that he cannot associate

each payoff realization with the state or the actions.13 In particular when facing a female, the

employer’s payoff is 2 with probability pC and 4 with probability pA which is exactly what the

employer expects to get according to his incorrect beliefs.

Crucial for the payoff-consistency of the non-Bayesian-Nash AE is that once a choice of

the female employee is fixed, the payoff is the same in both states given the employer’s own

equilibrium actions. It will be shown in Section ??, that this type of condition guarantees

that a non-Nash analogy equilibrium is payoff confirming. Alternatively, in each state of the

analogy class, the payoff must be the same whatever positive probability actions in the class the

opponents choose.

3 Correct prior

In this section, we study the payoff-confirming equilibria with a correct prior and thus, µ̂i(θ) =

p(θ). Notice that in the workplace relationship example in the previous section, the employer

has the correct expectations about the nature of the situation. The employer bundles together

both states when learning about the female employee choices. This leads her to believe that the

female employee plays a mixed strategy in each state. This in turn, justifies non-best-responding

to the actual choice of a female employee when interests are conflicting. The example illustrates

that there can be PAE (with a correct prior) that do not correspond to Bayesian-Nash equilibria.

The main purpose of this section is to identify cases when this can happen under a correct

prior. Clearly, when strategies and conjectures in an AE coincide with those in a Bayesian

Nash equilibrium, then conjectures about others’ strategies must be correct by the definition

of the Nash equilibrium. Then surely, if conjectures are correct, payoff-information cannot

reveal anything which was not known already. Thus, an AE with Bayesian-Nash conjectures

and strategies must be payoff-confirming also. There are two simple cases when this happens14:

first, using the terminology of Battigalli et al. (1992), when the ex-post observation of types is

more precise than the interim information at the time when the strategy is chosen (as in the

13Notice that the expected payoff of the employer is lower in θC
W when facing a female employee than when

facing a male, θC
M . In θC

M , the expected payoff in the mixed strategy equilibrium is 4pA +5/2pC whereas the payoff

in state θC
W gives only 4pA +2pC , giving ultimately a motive for statistical discrimination, yet, this discrimination

is based on an incorrect belief.

14See also Jehiel and Koessler (2008).
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case of male employees in the example of the previous section); second, pooling strategies.

Whenever the analogy-expectations are correct, we have a BNE. This may hold even if a

player’s analogy partition is coarser than some opponent’s information partition if the oppo-

nent types in such a coarser analogy class play a pooling strategy as expected by the analogy

expectations. This property characterizes the Bayesian-Nash AE.

Proposition 1 AE is BNE if, for each player, her opponents’ types play a pooling strategy in

each of the player’s analogy classes.

Formally, AE is BNE if θ′ ∈ αi(θ) implies that σ−i(θ) = σ−i(θ′).

The proposition is stated without a proof but the idea is simple. In at least one analogy

partition, two types must play differently for AE to differ from BNE. When there are two such

types then necessarily the average strategy differs from the actual strategies of these two types

and thus the AE differs from BNE. Thus only if the analogy partition is coarser than some

opponents’ information partition and the opponent plays a separation strategy, may a PAE

differ from a Bayesian-Nash equilibrium. In this case, some non-generic payoffs15 are needed in

order for a PAE to differ from a Bayesian-Nash equilibrium. Otherwise, the payoff information

would reveal any mistaken conjectures. In two-player two-action two-state games of incomplete

information, it is fairly easy to characterize the set of pure strategy AE that are PAE.

Proposition 2 Let N = 2, Θ = {θ1, θ2} and Ai = {a1
i , a

2
i }. Suppose that σ is a pure strategy

AE.

The AE is payoff-confirming if and only if

• (σi, σ̂−i)N
i=1 is a Bayesian-Nash equilibrium

or

• for each i such that σi(θm) 6= σi(θn) and Aj = {{θ1, θ2}}

for all m, u(uj(σj(θm), ri(θm); θm)) = u(uj(σj(θm), si(θm); θm)) (4)

or

for all m, u(uj(σj(θm), ri(θm); θm)) = u(uj(σj(θn), σi(θn); θn)) (5)

where ri(θm) is the action not chosen by i at θm.

In the appendix.

To gain some intuition with regard to this result, notice that each player is trying to detect

a correlation between the opponents’ actions and the opponents’ type profile using payoff real-

izations as evidence. If there is evidence for correlation between actions and types, then clearly,

15Notice that this may be due to coarse partioning of payoffs.
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the presumption that the opponents play the average strategy in each state of the analogy class

must be incorrect. The fact that either Condition (??) or Condition (??) holds prevents infer-

ring anything about the joint distribution: If Condition (??) holds, the player’s payoff is the

same given opponent type whatever the opponent chooses. In other words, there is no strategic

uncertainty about own payoffs in each state. Alternatively, if (??) holds, the payoff is the same

whatever the state given the action of the opponent. That is, there is no exogenous uncertainty

about own payoffs given the action of the opponent. In either case, the payoffs do not provide

any additional information about the joint distribution of actions and types of others.

In games with more states, more players and more actions, conditions parallel to (??) or (??)

are sufficient but not necessary for an AE to be PAE.

Proposition 3 Let in an AE σ differ from a Bayesian-Nash equilibrium. If for each j and

αj such that there are θm, θn ∈ αj with σ−j(θm) 6= σ−j(θn),

• either for all θ ∈ αj, and for all action profiles of players other than j, a∗−j = (a∗1, ..., a
∗
j−1, a

∗
j+1, ..., a

∗
N )such

that for each i 6= j there is θ′ ∈ αj such that a∗i ∈ supp[σi(θ′)], there exists uθ such that

for all aj ∈ supp[σj(θ)]

u(uj(aj , a
∗
−j ; θ)) = uθ (6)

• or for all action profiles of players other than j,

a∗−j = (a∗1, ..., a
∗
j−1, a

∗
j+1, ..., a

∗
N ) such that for each i 6= j there is θ′ ∈ αj such that a∗i ∈

supp[σi(θ′)], there exists ua∗−j
such that for all θ ∈ αj and aj ∈ supp[σj(θ)]

u(uj(aj , a
∗
−j ; θ)) = ua∗−j

, (7)

then the AE is payoff-confirming.

In the appendix.

Now for any separating strategy and a coarse analogy partition of the opponent such that

an opponent plays different strategies in two nodes of an analogy class, either (??) or (??)

holds. Again, the former condition aggregates over strategic uncertainty and the latter condi-

tion aggregates over exogenous uncertainty. Thus, a player cannot infer anything about the joint

distribution of type profiles and action profiles of other players in each analogy class. Notice

moreover that Proposition ?? does not impose restrictions on the distribution of types. There-

fore, a PAE satisfying the conditions of the proposition is robust to changes in the distribution

of exogenous payoff uncertainty.

As will be illustrated in the next example, a PAE which is not BNE may fail (??) and (??)

but then it cannot be similarly robust to perturbations in the prior.

There are two players and three states of nature, {θ1, θ2, θ3}, each drawn with probability

1/3. This prior is known to both players and the realization of the state is revealed to both.

Each state of nature is associated with a simultaneous move two-player game. In each of the

12



games, each player has three actions, Ai = {a1, a2, a3}. Player 2 gets payoff +1 if he matches

the state (u2 = 1 if a2 = akand θk is drawn by nature) and −1 if his action does not match the

state. Payoffs of Player 1 are indicated in matrices below.

θ1 a1 a2 a3

a1 1 0 -1

a2 2 -2 -2

a3 2 -2 -2

θ2 a1 a2 a3

a1 -1 0 -1

a2 0 -1 1

a3 -1 0 -1

θ3 a1 a2 a3

a1 -1 -1 1

a2 -1 -1 1

a3 -1 1 0

Consider the following equilibrium: Player 1 has the coarsest analogy partition and Player 2 has

the finest. Each player plays a pure separation strategy, each player’s choice at state θj is aj .

The conjecture of Player 1 is σ̂1
2(a

j |θk) = 1
3 for all j, k = 1, 2, 3. Player 2 matches his action with

the state and thus he is best-replying. Also, Player 1 is best-replying since in state θk choosing

ak gives expected payoff zero whereas other actions give negative expected payoffs given that

Player 1 expects two to choose each action with probability 1
3 . Thus, this is an AE but certainly

not a Nash equilibrium, since Player 1 is not choosing her best-response in a single state.

Furthermore, only outcomes (ak, ak, θk), k = 1, 2, 3 have a positive actual probability and each

results with probability 1
3 . Thus, the sample distribution of Player 1’s payoff assigns probability

1
3 to payoffs −1, 0 and 1 respectively. Since this is Player 1’s expectation of payoffs given her

equilibrium strategy, we have a PAE. Yet, neither is there for each ak, a payoff uk such that for

all l, for all k, u1(al, ak, θl) = uk, nor is there for each θk, a payoff uk such that for all l, for all

k, u1(al, al, θk) = uk. Thus, we have a PAE even if neither Condition (??) nor Condition (??)

in Proposition ?? are satisfied.

The PAE in this example imposes restrictions on the prior distribution unlike Proposition ??:

each state must have probability 1/3. Therefore it is not similarly robust to changes in exogenous

payoff uncertainty. More generally, only equilibria satisfying the condition in Proposition ?? are

robust to all perturbations of the prior of a given small extent.

The proposition illustrates that however small a perturbation will destabilize an equilibrium

unless the condition in Proposition ?? holds. This is due to the implied inconsistency between

the actual and the expected payoff distribution. For the sake of simplicity, we consider only pure

strategy strict equilibria. The equilibrium must be strict to avoid small perturbations affecting

the optimality of the strategies themselves.

Proposition 4 Let σ̂ be a profile of PAE conjectures and ×N
i=1Ai the corresponding analogy

partitions given prior p. For any ε > 0, there exists a perturbation of the prior, p′ = (1− ε)p +

εpo where po 6= p, and a player i with an analogy class α in her analogy partition Ai such that

σ̂(θ) =

∑
θ̃∈α(θ)

p′(θ̃)σ−i(θ̃−i)
∑

θ̃∈α(θ)
p′(θ̃)

.

is not a part of a profile of PAE conjectures given p′ if and only if the condition in Proposition

?? is not satisfied.

13



In the appendix.

The assumption that payoffs are perfectly recalled, i.e. they are identity-mapped into payoff

recollection, imposes a very stringent robustness criterion. Had we identified a PAE that differed

from a Bayesian-Nash equilibrium, even such that the condition in Proposition ?? is satisfied,

perturbing one of the equilibrium payoffs just slightly would lead to a violation of the payoff

consistency criterion.

Proposition 5 Let σ̂ be a profile of PAE conjectures. Consider a payoff perturbation of Player

i, ũi(ai, a−i, θ; ε), such that limε→0 ũi(ai, a−i, θ; ε) = ui(ai, a−i, θ) for all (a, θ) but there is (a, θ)

such that ũi(ai, a−i, θ; ε) 6= ui(ai, a−i, θ) for all ε 6= 0. If u is an identity map, there exists Player

i and a payoff perturbation of his payoff such that σ̂ is a conjecture profile of a PAE iff σ̂ is a

Bayesian-Nash equilibrium profile.

Suppose that a PAE is not a BNE. Then there are there are θm, θn ∈ α′i with σ−i(θm) 6=
σ−i(θn). Then picking up a type profile θ′ in that analogy class, and the payoff uj(a′j , a

′
−j , θ

m)

such that a′ ∈ supp[σ(θ)] and perturbing that payoff by k, i.e. ũi(ai, a−i, θ) = ui(ai, a−i, θ) + k

implies that

∑

{a−i∈A−i,θ∈α′i|
ũi(ai,a−i,θi,θ−i)=ui(a

′
i,a
′
−i,θ

m)}

µ̂i(θ)σi(ai|θi)σ̂i
−i(a−i|θ)

=
∑

{a−i∈A−i,θ∈α′i|
ũi(ai,a−i,θi,θ−i)=ui(a

′
i,a
′
−i,θ

m)}

p(θ)σi(ai|θi)

∑
θ̂∈α′i

p(θ̂)σi
−i(a−i|θ̂)

∑
θ̂∈α′i

p(θ̂)

=
∑

{a−i∈A−i,θ∈α′i}
p(θ)σi(ai|θi)

∑
θ̂∈α′i,θ̂ 6=θm p(θ̂)σi

−i(a−i|θ̂)− p(θm)σi
−i(a−i|θm)

∑
θ̂∈α′i

p(θ̂)

6=
∑

{a−i∈A−i,θ∈α′i}
p(θ)σi(ai|θi)σ−i(a−i|θ−i)

=
∑

{a−i∈A−i,θ∈α′i|
ũi(ai,a−i,θi,θ−i)=ui(a

′
i,a
′
−i,θ

m)}

p(θ)σi(ai|θi)σ−i(a−i|θ−i)

where the inequality holds if
p(θm)σi

−i(a−i|θm)∑
θ̂∈α′

i
p(θ̂)

6= σ−i(a−i|θm
−i) - a sufficient condition is that there

are θm, θn ∈ α′j with σ−j(θm) 6= σ−j(θn) which holds since our PAE is not BNE.

As an example, consider again the workplace example of Section 2. If k differed at all from

0 and u is an identity map, then the employer would realize that he is holding an incorrect

conjecture. In this sense, the correct prior PAE with perfect recollection is a very stringent,

non-generic equilibrium notion. It is plausible that payoffs are not perfectly recalled and thus,

as illustrated in the example of Section 2, non Bayesian-Nash PAE may generically exist. Instead

of imperfect payoff recollection, generic existence of a non Bayesian-Nash PAE may also be due
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to imperfect payoff observation. This will be illustrated in the following section where incorrect

priors are allowed for.

4 Incorrect prior

With incorrect priors, there can be many more steady states than with correct priors. Despite

this potential multiplicity, results in Esponda (2008) suggest that payoff-consistency reduces

the number of equilibria sufficiently to allow clear cut implications on the set of equilibria even

in rather general settings. Esponda (2008) considers monotone selection setups in which lower

actions select a lower distribution of quality (given strategies); and lower beliefs about quality

induce players to choose lower actions. These setups comprise bilateral trade (Akerlof 1970),

for instance, and many applications where Eyster and Rabin’s (2005) cursed equilibrium, or

the equivalent correct prior AE with private information analogy partitions, has been shown

to alleviate selection problems and induce thicker markets. Esponda, quite surprisingly, shows

that in games with monotone selection, markets are even thinner than in Nash equilibria when

players learn the others’ actions, their own payoffs, and occasionally the types of others, but fail

to pay attention to correlations as in the cursed equilibrium.

We begin with illustrating how private information analogy partition PAE with an incorrect

prior yields similar insights as Esponda’s behavioral equilibrium in a bilateral trading game with

one-sided asymmetric information (Akerlof 1970; Samuelson and Bazerman 1985). We then show

that the only correct prior PAE of the game are Bayesian-Nash equilibria. We then generalize

these results by showing that Esponda’s naive behavioral equilibrium has an equivalent payoff-

confirming analogy equilibrium with an incorrect prior in the games of monotone selection he

considers. Finally we show how an additional assumption of differentiable payoffs implies that

in this class of games the only correct prior PAE of the game are Bayesian-Nash equilibria.

Throughout this section, it is assumed that payoff recollection is perfect and thus u is an

identity map.

4.1 Example

Let’s consider the bilateral trading game with one-sided asymmetric information of Samuelson

and Bazerman (1985). The seller values the object at s, while the buyer values the object at

b = s + x, where s is the realization of a random variable S that is uniformly distributed on the

interval [0, 1] and x ∈ (0, 1] is a parameter that captures gains from trade. The seller knows her

valuation, but the buyer has no private information about either s or v. The buyer and seller

simultaneously make offers to buy at price π and to sell at price πask, respectively. If πask > π,

there is no trade; the seller keeps the object and the buyer obtains her reservation utility of zero.

If πask ≤ π, the object is traded, the buyer pays π, and obtains utility uS(π; b) = b−π. We will

restrict attention to equilibria where the seller plays his weakly dominant strategy, πask = s.
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Now suppose that the buyer’s expectations are analogy-based. The simplest such expectations

with a correct prior are built on a unique analogy class implying, by the second condition in

Definition 1, that the buyer expects all sellers to behave in an identical manner and asking

randomly any price between zero and one with equal probability. A best response to her incorrect

expectation would be to offer the price maxπ {(ES(s) + x− π) Pr[s ≤ π]} or π∗ = 1/2+x
2 . This

constitutes an analogy equilibrium of the game.16 Is this AE payoff-confirming also? No, since

the buyer expects to end up occasionally buying a product that the seller values higher than the

offered price s > π∗ which never happens given the sellers weakly dominant strategy of asking

exactly s. Therefore a buyer knowing the ex -ante distribution of quality and having access

to payoff-information conditional on trade cannot hold her payoff-inconsistent analogy-based

expectations.

In a Bayesian-Nash equilibrium of this game the buyer, correctly conjecturing the seller’s

strategy, realizes that lower offers select a lower quality. She optimally trades off the lower price

with the lower quality and probability of getting the product and offers maxπ {(E(s|s ≤ π) + x− π) Pr[s ≤ π]}
or π∗ = x. This Bayesian-Nash equilibrium of the game corresponds to the AE where there are

infinitely many singleton analogy classes, one for each realization of S, and the payoffs only

confirm the correct analogy-expectations in this case.17

There are in fact no other PAE when the prior is correct in this example (as will be shown

below). Yet, there is a PAE with an incorrect prior. In this equilibrium the seller believes

that the quality range coincides with the range of qualities she ends up buying given her price

offer πPAE thus violating the correct prior assumption, i.e. Θ̂B
V = [0, πPAE ] and the buyer thus

expects that the density of quality is 1
πPAE (see the second condition in Definition 2). The buyer

bundles all types of the seller into a single analogy class and mistakenly expects all sellers to use

the same average strategy asking each price in the zero-one interval with equal probability (as

required by the third condition in Definition 2). Thus, given that the seller has only one type,

this is an AE with private information analogy partition. This PAE satisfies the following fixed-

point equation πPAE = arg maxπ

{
(ES(s|s ≤ πPAE) + x− π) Pr[s ≤ π]

}
yielding πPAE = 2

3x.

The buyer now expects to observe all qualities in the range [0, πPAE ] with equal probability and

never to observe any other quality. This is indeed what she ends up observing. We have thus

established a PAE with an incorrect prior.

We can also remark that all PAE with a correct prior coincide with the unique BNE of

the game. To see this, let us first consider analogy partitions where each analogy class is a

subinterval of the support of the prior [0, 1]. Thus an arbitrary analogy partition is of the form:

{[0, s1], (s1, s2], ..., (sk, sk+1], ..., (sn, 1]}.
16The one corresponding to the fully cursed equilibrium of Eyster and Rabin (2005).

17Although the definitions in Section 2 are only defined for finite-action, finite-state setups, it is easy to extend

those notions to the infinite game setup considered here.
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If sk → sk+1 and n → ∞, then all analogy classes would tend to singletons and AE would

approach a BNE. Since the prior is correct, Θ̂B
V = [0, 1].

The expected payoff when playing π reads18,

π(
sK−1 + sK

2
+ x− π)− sKsK−1

2
.

To see this, notice that given the seller’s strategy, the probability of trade in this case equals

π. Conditional on trade, the buyer expects the sellers in each class to choose any price in the

interval (sk−1, sk] for k = 2, ..., K with equal probability (class [0, s1] is expected to select each

price in [0, s1] with equal probability) yielding

(π − sK−1)(
sK + sK−1

2
+ x− π) +

K−1∑

k=1

(sk − sk−1)(
sk + sk−1

2
+ x− π)

= π(
sK + sK−1

2
+ x− π)− sKsK−1

2
,

where sK ≡ inf{sk|sk ≥ π} and s0 = 0.

Taking the derivative w.r.t π yields sK+sK−1

2 + x − 2π and thus the optimal π within the

analogy-group is characterized by π∗ = sK+sK−1

4 + x
2 if there is such π∗ in (sK−1, sK ]. If

π >
sK+sK−1

4 + x
2 for all π ∈ (sK−1, sK ], then within the analogy class, it is optimal to choose π

as close as possible to sK−1. If π <
sK+sK−1

4 + x
2 , then within the group, it is optimal to choose

π = sK .

In a payoff-confirming AE, the conjectured equilibrium payoff distribution must coincide with

the sample payoff distribution and therefore π∗ must be an upper bound of an analogy grouping

implying that in fact that π ≤ sK+sK−1

4 + x
2 must hold for all π ∈ (sK−1, sK ]. Otherwise, the

18Playing π ∈ (sl, sl+1] where l 6= K gives

l∑
i=0

Pr(s ∈ [si, si+1])[E(ṽ|si ≤ s̃ ≤ si+1)− π]

+Pr(s ≤ π, s ∈ [sl, sl+1])[E(ṽ|sl ≤ s̃ ≤ sl+1)− π]

=

l∑
i=1

(si − si−1)[E(ṽ|si ≤ s̃ ≤ si+1)− π] + (π − sl)[E(ṽ|si ≤ s̃ ≤ si+1)− π]

=

l∑
i=1

(si − si−1)[
si + si+1

2
+ x− π] + (π − sl)[

sl + sl+1

2
+ x− π]

= s1(
s1

2
+ x− π)

+(s2 − s1)(
s1 + s2

2
+ x− π)

...

+(sl − sl−1)(
sl−1 + sl

2
+ x− π)

+(π − sl)(
sl + sl+1

2
+ x− π)

= π(
sl + sl+1

2
+ x− π)− slsl+1

2
.
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buyer would expect to perceive valuations in the interval (π, sK ] but never actually perceives

these. The expected payoff to the strategy π = sK yields

sK(
sK−1 + sK

2
+ x− sK)− sKsK−1

2
= sK(x− sK

2
).

Let us now consider a small upward deviation π′ > sK . The payoff to this strategy yields

sK(
sK

2
+ x− π′) + (π′ − sK)(

sl + sl+1

2
+ x− π′).

Taking the derivative of this expression with respect to π′ yields

−sK + (
sK + sK+1

2
+ x− π′)− (π′ − sK) = (

sK + sK+1

2
+ x− 2π′),

which, given that π = sK is an equilibrium, must be non-positive arbitrarily close to π′ = sK

implying ( sK+1

2 + x− 3
2sK) ≤ 0, or

sK+1

3
+

2
3
x ≤ sK . (8)

On the other hand, since π = sK is optimal within (sK−1, sK ] we must have

sK ≤ sK−1

3
+

2x

3
. (9)

The Conditions (??) and (??) yield a contradiction since sK+1 > sK−1.

More generally, considering arbitrary analogy partitions, the analogy groups close to π∗ must

be singletons since otherwise the two marginal optimality conditions sK+1

3 + 2
3x ≤ sK and

sK ≤ sK−1

3 + 2
3x could not be simultaneously satisfied. But if this holds, then the first inequality

reads sK
3 + 2

3x ≤ sK and the second reads sK ≤ sK
3 + 2

3x yielding sK = x. Thus the equilibrium

strategy of the buyer must coincide with the Bayesian-Nash equilibrium strategy.

4.2 General environment

The main points of the previous example can be stated generally. To achieve this, let us define

the primary class of games of monotone selection that Esponda studies.19 In the case of “trade”,

each player’s payoff only depends on the player’s own action and a common value component,

v0, the exact value of which is typically unknown at the interim (time of decision) to at least

one of the players. If the player does not trade, then payoff is zero. That the player trades is

captured by the event (a−i, t0) ∈ Φi(âi) to be determined shortly. Player i’s payoff can now be

written as

ui(a, t0, v0) =

{
ũi(ai, v0) for (a−i, t0) ∈ Φi(âi)

0 otherwise
(10)

19The setup we use here is that of the on-line appendix of Esponda (2008) which is used to provide an example

of a setup where the assumptions (some of which are on endogenous elements) of his main theorems hold.
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where θ0 = (t0, v0) ∈ T0 × V0 represents payoff uncertainty and the vector θ1, ..., θN ∈ Θ1 × ...×
ΘN is the vector of types, one type for each of the players. Therefore, the type profile θ̃ is a

N + 2-dimensional random variable. The following assumptions are made:

1. t̃0 is independent of θ̃−0,

2. ṽ0 and θ̃−0 are affiliated,20

3. ũi is increasing in v0,

4. Φi(âi) is non-decreasing in âi in the strong set order21 and in the inclusion set order,

5. ũi(ai, v0) is supermodular.

Esponda illustrates his selection result by means of the so called naive behavioral equilibrium

concept. Proposition ?? establishes that for each naive behavioral equilibrium one can find a

corresponding PAE with an incorrect prior in the class of games satisfying (??) and Assumptions

1 to 5. The proof and the definition of the behavioral equilibrium is relegated to the appendix.

Denote by ϕi(σi, σ−i, θi) the probability that (a−i, t0) ∈ Φi(âi) given σi, σ−i, and θi.

Proposition 6 Let for each θi, ϕi(ai, a−i, θi) > 0 for some ai ∈ supp[σi(θi)] and σ−i(θ−i|θi) >

0 such that a−i,∈ supp[σ−i(θ−i|θi)]. Then every naive behavioral equilibrium is equivalent to

a PAE with ΘV
i = {(t0, v0, θ)| there is (a−i, t0) ∈ Φi(â) where â ∈ supp[σi(θi)] and a−i ∈

supp[σi
−i(.|θi)] and the analogy partitions are the private information analogy partitions.

To build a correspondence between the naive behavioral equilibrium and the PAE, we need

one analogy group for each i. Moreover, the set of visible type profiles of i should coincide with

the types of others from which this type “buys the product”.

As illutrated in the bilateral trade example, the incorrect prior assumption plays a key role in

cutting the markets even thinner than in the Bayesian-Nash equilibrium. When prior is known,

equlibrium strategies in every PAE with a correct prior coincide with those in the unique BNE.

The following proposition generalizes this point.

Proposition 7 Assume that the game satisfies (??) and MSP (1-4) and that ũi(ai, v0) is twice

differentiable with ∂ũ2
i (ai,v0)

∂ai∂v0
> 0 and ∂2ũi(ai,v0)

∂a2
i

< 0 and that for all σ−i , θi, ϕi(ai, σ−i, θi) is

twice differentiable with ∂ϕi(ai,σ−i,θi)
∂ai

> 0, and for all i, a−i,and θ the µi-best-response of Player

i is interior and unique. Then every strategy profile of a PAE with a correct prior coincides with

a Bayesian-Nash equilibrium strategy profile.

20θ are affiliated if for all θ′ and θ′′ ∈ Θ, p(θ′ ∨ θ′′)p(θ′ ∧ θ′′) ≥ p(θ′)p(θ′′) where θ′ ∨ θ′′ =

(max(θ′0, θ
′′
0 ), ..., max(θ′N , θ′′N )) and θ′ ∧ θ′′ = (min(θ′0, θ

′′
0 ), ..., min(θ′N , θ′′N )).

21A set A ⊂ R is greater than a set B ⊂ R in the strong set order if for any a ∈ A and any b ∈ B,

max(a, b) = a ∨ b ∈ A and min(a, b) = a ∧ b ∈ B.
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Let σ∗ be a PAE strategy profile under a correct prior and assume to the contrary that this

profile does not coincide with a BNE. Then there is Player i and a∗i ∈ supp[σi(θi)] such that
∂Eσ,µ

a−i,θui(a
∗
i ,a−i,θi)

∂ai
6= 0 where E σ̂,µ̂

a−i,θ
ui(ai, a−i, θi) refers to the expected payoff of Player i playing

ai and holding conjectures σ̂, µ̂ and σ, µ are the correct conjectures.

Suppose first that
∂Eσ,µ

a−i,θui(a
∗
i ,a−i,θi)

∂ai
> 0 and let us show that this implies lima′i→+a∗i

E σ̂i,µ̂i

a−i,θui(a
′
i,a−i,θi)−E σ̂i,µ̂i

a−i,θui(a
∗
i ,a−i,θi)

a′i−a∗i
> 0 for correct prior PAE conjectures σ̂i, µ̂i of Player i. First notice that by set inclusion and

strong set order, Φ(a∗i ) ⊂ Φ(a′i) and if there are (a′−i, t
′
0) ∈ Φ(a′i) and (a′′−i, t

′′
0) ∈ Φ(a∗i ), then

(a′−i, t
′
0)∨ (a′′−i, t

′′
0) ∈ Φ(a′i) and (a′−i, t

′
0)∧ (a′′−i, t

′′
0) ∈ Φ(a∗i ). Since for each j 6= i, ũj(ai, v0) is su-

permodular and v0 and θ−0 are affiliated, the set of qualities v0 conditional on (a−i, t0) ∈ Φ(a∗i )

is lower than the set of qualities conditional on (a−i, t0) ∈ Φ(a′i) in the same set orders. Denote

the set of qualities conditional on (a∗−i, t0) ∈ Φ(a∗i ) where a∗−i ∈ supp[σ∗−i(θ)] by V ∗
0 and the set

of qualities conditional on (a∗−i, t0) ∈ Φ(a′i) by V ′
0 .

Consider an arbitrary analogy class of i, α′′i such that there is v′′0 such that (t′′0, v
′′
0 , θ) ∈ α′′i and

(a∗−i, t
′′
0) ∈ Φ(a∗i ) for some a∗−i ∈ supp[σ∗−i]. Consider then a v′0 ∈ V ′

0\V ∗
0 and denote an arbitrary

analogy class α′i such that there exists t′0 s.t. (a∗−i, t
′
0) ∈ Φ(a

′
i) for some a∗−i ∈ supp[σ∗−i(θ−i)]

and (t′0, v
′
0 , θ) ∈ α′i. Clearly α′i and α′′i can never coincide, otherwise i would expect (where

the expectations is taken using µ̂i) to observe v′0 when playing σ∗i (θi) but never actually does

this. Second in a PAE, i observes payoffs and thus E σ̂i,µ̂i

a−i,θ
ui(a∗i , a−i, θi) = Eσ,µ

a−i,θ
ui(a∗i , a−i, θi). Fi-

nally lima′i→+a∗i

E σ̂i,µ̂i

a−i,θui(a
′
i,a−i,θi)−E σ̂i,µ̂i

a−i,θui(a
∗
i ,a−i,θi)

a′i−a∗i
≥ lima′i→+a∗i

Eσ,µ
a−i,θui(a

′
i,a−i,θi)−Eσ,µ

a−i,θui(a
∗
i ,a−i,θi)

a′i−a∗i
> 0 since if there is another (t̂0, v̂0 , θ̂) ∈ α′i such that v̂0 /∈ V

′
0 this necessarily has to satisfy

v̂0 > v′0 since α′i and α′′i cannot coincide for any α′′i as defined above.

A similar argument implies that lima′i→−a∗i

E σ̂i,µ̂i

a−i,θui(a
′
i,a−i,θi)−E σ̂i,µ̂i

a−i,θui(a
∗
i ,a−i,θi)

a′i−a∗i
< 0 and thus

∂Eσ,µ
a−i,θui(a

∗
i ,a−i,θi)

∂ai
< 0 implies that

∂E σ̂i,µ̂i

a−i,θui(a
∗
i ,a−i,θi)

∂ai
< 0 for analogy-based expectations σ̂i, µ̂i.Thus

we have a contradiction.

Notice that the result hinges upon further qualifications beyond (??) and Conditions 1 to 5

characterizing the monotone selection environment. What is needed in addition is differentiabil-

ity and unique best-replies. These imply that for every strategy profile that is not a BNE, there

is a player with a marginal deviation that pays off. One can then show that the payoff-confirming

requirement implies that the qualities not purchased, on the one hand, and the purchased ones,

on the other, cannot belong to the same analogy class since otherwise a player would have to

expect to purchase qualities that he never purchases thus violating the payoff-consistency con-

dition. Coarse inference then implies that marginal upward deviations are too optimistically

expected to select a larger range of non-observable higher qualities than actually is the case.

Thus, if an upward deviation pays off for a standard player, it pays off for a player building

expectations on coarse analogy-partitions. A similar argument implies that selection effects due

to downward deviations are underestimated and thus, if a downward deviation pays off for a
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standard player, it pays off for a coarse analogy-partition player as well.

5 Conclusion

Jehiel and Koessler (2008) illustrate that rational players’ optimal strategies can differ from

a Bayesian-Nash equilibrium strategies when they base their conjectures on experience about

others’ behavior using stereotypical classifications. In this paper we consider such stereotyp-

ical learning, assuming that players use their performance (payoffs) as a means to verify the

consistency of the learned conjectures. We have identified conditions under which such Payoff-

confirming analogy equilibria can differ from Bayesian-Nash equilibria. By considering the

analogy-partition as a description of a player’s stereotypes, the PAE provides an interesting

avenue for a game-theoretic analysis of these latter.

In a related paper, Esponda (2008) points out that payoff-information may have surprising

consequences on steady states of learning if individuals are unable to detect correlations, as

in the analogy equilibria, and base their understanding of the uncertainty of the environment

merely on their observations:22 if players’ conjecture on the prior distribution of types may

be incorrect and correlation between types and strategies is not understood, learning leads

to an aggravation of adverse selection problems in common value environments. This paper

complements the findings of Esponda by pointing out that the solution concept he uses can

be considered as a Payoff-confirming AE in the class of monotone selection games studied by

Esponda. Moreover, the current paper identifies conditions when a non-Bayesian Nash PAE

exists even when conjecture on the prior is correct.

PAE is considered as a steady state of an underlying of ficticious play learning dynamic

where players best-respond to the beliefs infuenced by others’ history of play. Is there evidence

that (stochastic) ficticious play is a prevalent mode of learning? On the one hand knowing

one’s best-response mapping and others’ history of play, does not seem to be necessary for

convergence (Van Huyck et al., 2007) and even mere reinforcement learning models (which do

not require such information) fit data and predict well (Erev and Roth 1998; Erev et al. 2007).

Yet, adding information about one’s best-response mapping and the history of others’ actions

(as required by ficticious play models) speeds up convergence (Van Huyck et al. 2007), and

adding components of best-responding to reinforcement learning models improves both fit and

predictive power (Erev and Roth 1998; Camer and Ho, 1999; Erev et al. 2007) in contexts where

all necessary information for best-response learning is available. Given that theoretically the

main difference in empirical patterns of reinforcement and stochastic ficticious play dynamics

is the speed of convergence (Hopkins 2002), the evidence is certainly not dismissive of the

importance of ficticious play learning.

22Esponda points out that the mere existence of naive players is sufficient for the phenomenon - not every player

needs to fail to account for correlations, i.e. to be naive.
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There are few experimental studies of cross-game learning. Cooper and Kagel (2008) point

out that exposure to an analogous but different game prior playing a game speeds up learning

and convergence. In their design, the two games do not appear in alternating or random order

but the repeat interactions are organized by design into two very distinct regimes. Thus their

design does not allow for testing the present theory. Huck et al. (2009) carry out a very direct

test of the AE model and study learning in an environment where two complete information

stage games are being played in random order and players receive feedback about opponents’

play in the two games in varying degrees of coarseness. Players receive no feedback about own

payoffs and thus any channel for reinforcement learning is shut down by design. They find that

very explicit game-specific feedback ultimately leads to the play of Nash equilbrium in each game

but coarser forms of feedback lead players to converge to the unique analogy equilibrium. By

allowing subjects to learn own payoffs, their design could be easily extended to experimentally

test the relevance of the payoff-confirming refinement. This is left for future research.

6 Appendix

6.1 Proof of Proposition ??

If AE is BNE, then by Proposition ?? the AE is PAE.

On the other hand, if (??) or (??) holds for each i such that si(θm) 6= si(θn) and Aj =

{{θ1, θ2}}, then the AE is a PAE by lemma ?? below.

Consider now an AE which is a PAE and suppose to the contrary that the AE is not a BNE

and there is i such that si(θm) 6= si(θn) and Aj = {{θ1, θ2}} and neither (??) nor (??) holds.

Thus, by lemma ??, AE is not a PAE - a contradiction.

Lemma 1 Let N = 2, Θ = {θ1, θ2} and Ai = {a1
i , a

2
i }. Suppose that s is a pure strategy profile

of an AE. Let for each i such that si(θm) 6= si(θn) and Aj = {{θ1, θ2}}either (??) or (??) hold.

Then the AE is PAE.

Define the probability of j getting payoff u given strategy profile σ as gj
σ(u) =

∑
{a,θ|u=uj(a,θ)} p(θ)σi(ai|θ)σj(aj |θ).

Let there be i such that si(θm) 6= si(θn) and Aj = {{θ1, θ2} }. There are three subcases to

consider: first

uj(sj(θm), ri(θm); θm) = uj(sj(θm), si(θm); θm)

= uj(sj(θn), ri(θn); θn)

= uj(sj(θn), si(θn); θn))

in which case both conditions hold. In this first subcase trivially

gj

(sj ,σ̂j
i )

(uj(sj(θm), si(θm); θm)) = 1 = gj
s(uj(sj(θm), si(θm); θm)). Thus, s is a payoff confirming

analogy equilibrium.
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In the second case only (??) holds but not (??). For each θm, the perceived probability that

uj(sj(θm), si(θm); θm) results is

gj

(sj ,σ̂j
i )

(uj(sj(θm), si(θm); θm)) = [f(θm)]βj(si(θm)) + [1− f(θm)]βj(si(θm))

= [f(θm)]2 + [1− f(θm)]f(θm)

= f(θm)

= gj
s(uj(sj(θm), si(θm); θm)).

Thus, s is a payoff confirming analogy equilibrium.

Third, if only (??) holds and not (??), we have that

gj

(sj ,σ̂j
i )

(uj(sj(θn), si(θn); θn)) = [f(θn)][βj(si(θn)) + βj(ri(θn))]

= [f(θn)]

= gj
s(uj(sj(θn), si(θn); θn)).

Thus, s is a payoff confirming analogy equilibrium.

Lemma 2 Let N = 2, Θ = {θ1, θ2} and Ai = {a1
i , a

2
i }. Suppose that s is a pure strategy profile

of an AE.

If there is i such that si(θm) 6= si(θn) and Aj = {{θ1, θ2}} and neither

for all m, uj(sj(θm), ri(θm); θm) = uj(sj(θm), si(θm); θm)

nor

for all m, uj(sj(θm), ri(θm); θm) = uj(sj(θn), si(θn); θn))

where ri(θm) is the action not chosen by i at θm,

then the AE is not a PAE.

We use proof by contradiction. There are two subcases to consider. Suppose first, that there

is m such that

uj(sj(θm), ri(θm); θm) /∈ {uj(sj(θm), si(θm); θm), uj(sj(θn), si(θn); θn))}. (11)

Define the probability of j getting payoff u given strategy profile σ as

gj
σ(u) =

∑

{a,θ|u=uj(a,θ)}
p(θ)σi(ai|θi)σj(aj |θj).

Since si(θm) 6= si(θn), j expects uj(sj(θm), ri(θm); θm) to result with a positive probability,

gj

sj ,σ̂j
i

(uj(sj(θm), ri(θm); θm)) > 0

But since (??) holds, gj
sj ,σi(uj(sj(θm), ri(θm); θm)) = 0 which contradicts the consistency con-

dition of PAE and thus the AE is not PAE.
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In the second subcase, suppose in addition to si(θm) 6= si(θn) that there is m and i such that

uj(sj(θm), ri(θm); θm) = uj(sj(θm), si(θm); θm)

= uj(sj(θn), ri(θn); θn))

6= uj(sj(θn), si(θn); θn))

Then

gj

(sj ,σ̂j
i )

(uj(sj(θm), si(θm); θm)) = f(θm) + f(θn)βj(ri(θn))

6= f(θm)

= gj
s(uj(sj(θm), si(θm); θm))

and thus AE is not PAE.

6.2 Proof of Proposition ??

Let for each j and αj such that σ−j(θm) 6= σ−j(θn) and θm, θn ∈ αj , for all θ ∈ αj , for all action

profiles of players other than j, a∗−j = (a∗1, ..., a
∗
j−1, a

∗
j+1, ..., a

∗
N ) such that for each i 6= j there is

θ′ ∈ αj such that a∗i ∈ supp[σi(θ′)] for all aj ∈ supp[σj(θ)],

uj(aj , a
∗
−j ; θ) = uθ.

Now,

∑

{a,θ|uj=uj(a,θ)}
p(θ)σ̂−j(a−j |θ−j)σj(aj |θj)

=
∑

αj∈Aj

∑

{(aj ,θ)|uj=uj(a,θ), θ∈αi}
p(θ)σ̂−j(a−j |θ−j)σj(aj |θj)

=
∑

αj∈Aj

∑

θn∈αj

p(θn)σj(aj |θn
j )

∑

a∗−j

σ̂−j(a∗−j |θn
−j)

=
∑

αj∈Aj

∑

θn∈αj

p(θn)σj(aj |θn
j )

=
∑

αj∈Aj

∑

θn∈αj

p(θn)σj(aj |θn
j )

∑
a−j

σ−j(a−j |θj)

=
∑

αj∈Aj

∑

{a,θ|ui=ui(a,θ),θ∈αj}
p(θ)σ−j(a−i|θ−j)σj(aj |θj)

=
∑

{a,θ|ui=ui(a,θ)}
p(θ)σ−j(a−i|θ−j)σj(aj |θj)

where the second equality follows from the fact that, in an analogy class, for a state in the class

and for an action that is chosen with a positive probability by j in that state, the payoff is the

same for any action profile of players other than j to which σ̂−j assigns a positive probability.

The third and the fourth equality follow because a conjecture and a strategy is a probability
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distribution and thus sums up to one. (
∑

a∗−j
σ̂−j(a−j |θ−j) = 1 =

∑
a−j

σ−j(a−j |θj)) and only

actions which are assigned a positive probability in the average strategy of the analogy class

can be assigned a positive probability in the actual strategy. Let for each j and αj such that

σ−j(θm) 6= σ−j(θn) and θm, θn ∈ αj , for all action profiles of players other than j, a∗−j =

(a∗1, ..., a
∗
j−1, a

∗
j+1, ..., a

∗
N ) such that for each i 6= j there is θ′ ∈ αj such that a∗i ∈ supp[σi(θ′)],

for all θ ∈ αj and aj ∈ supp[σj(θ)]

uj(a∗j , a
∗
−j ; θ) = ua∗−j

.

Now,

∑

{a,θ|uj=uj(a,θ)}
p(θ)σ̂−j(a−j |θj)σj(aj |θj)

=
∑

α∈Aj

∑

{(a,θ)|uj=uj(a,θ), θ∈α}
p(θ)σj(aj |θj)σ̂−j(a−j |θ)

=
∑

α∈Aj

∑

a∗−j

σ̂−j(a∗−j |α)
∑

θ∈α

p(θ)σj(aj |θj)

=
∑

α∈Aj

∑

θ∈α

p(θ)σj(aj |θj)

=
∑

α∈Aj

∑

{(aj ,θ)|uj=uj(a,θ), θ∈α}
p(θ)σj(aj |θj)

∑
a−j

σ−j(a−j |θ−j)

=
∑

α∈Aj

∑

{(a,θ)|uj=uj(a,θ), θ∈α}
p(θ)σj(aj |θj)σ−j(a−j |θ−j)

=
∑

{a,θ|ui=ui(a,θ)}
p(θ)σ−j(a−i|θ−j)σj(aj |θj)

where the second equality follows from the fact that for a given action profile a∗−j ∈ supp[σ̂−j(α)]

the payoff uj(aj , a
∗
−j , θ) is the same for each θ in αj and (aj , θ) such that aj ∈ supp[σj(θ)].

The third and the fourth equality follow because a strategy and a conjecture are probability

distributions and only actions which are assigned a positive probability in the average strategy

of the analogy class can be assigned a positive probability in the actual strategy.

6.3 Proof of Proposition ??

Consider an analogy class of a player, denote her by i, where the condition in Proposition ??

is violated. Let K be the number of states in the analogy class. Let sl
−i be the action profile

of others chosen at state l. Let us construct a square matrix U := [u(s∗i (θ
k
i ), sl

−i, θ
k)]Kk,l=1. The

payoff-confirming condition can be written as a system of #{ui(s∗i (θ
k
i ), s∗−i(θ

k), θk)|k = 1, ...,K}
equations, that is, the number of actual generic payoffs which cannot be higher than K by

construction. Define fu(p) as the difference in the expected and the actual probability of payoff
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u given p. An equation of the system for a given generic payoff u reads

fu(p) =
K∑

k=1

pk

K∑

l=1

σ̂i
−i(s

l
−i|θk)I(Ulk = u)−

∑

k

pkI(Ukk = u) = 0

⇔
K∑

k=1

pk

K∑

l=1

∑
m pmI(sm

−i = sl
−i)∑

m pm
I(Ulk = u)−

∑

k

pkI(Ukk = u) = 0

where I(Ulk = u) is the indicator that the element at the lth row and kth column of U satisfies

Ulk = u. The first term of the difference is the probability by which the player expects payoff

u and the second term is the actual probability of payoff u. The condition says merely that

these probabilities must coincide.

The effect of a change of the prior probability pκ of a given state θκ on fu(p) is given by

fu
κ (p) =

∑

l

σ̂i
−i(s

l
−i|θκ)I(Ulκ = u)− I(Uκκ = u)

+
∑

k

pk
∂

∑
l σ̂

i
−i(s

l
−i|θk)

∂pκ
I(Ulk = u)

=
∑

l

∑
m pmI(sm

−i = sl
−i)∑

k pk
I(Ulκ = u)− I(Uκκ = u)

+
∑

k

pk

∑

l

I(Ulk = u)(
1∑

m pm
−

∑
m pmI(sm

−i = sl
−i)

(
∑

m pm)2
)

Since the condition in Proposition ?? is violated, there must be two different states k 6= κ

and actions l 6= λ chosen with a positive probability in the analogy class such that Ukl = Uκλ.

Consider a perturbation of the prior probabilities of two states, k and κ only, so that ∆pk =

−∆pκ. The prior probabilities of the other states remain unaltered. Thus, the initial strategies

do not constitute a PAE of the perturbed game if −fu
k (p)∆pk 6= fu

κ (p)∆pκ or

−∆pk

∆pκ
6= fu

κ (p)
fu

k (p)

where by construction fu
k (p), fu

κ (p) 6= 0. Thus, almost all such perturbations destabilize the

original PAE and such perturbations exist for any ε > 0.

The converse holds by Proposition ??.

6.4 Behavioral equilibrium and PAE

Assumptions on player’s conjectures and how they handle information in a behavioral equilib-

rium are the following:

(Behavioral equilibrium23)

23This corresponds to Esponda’s naive behavioral equilibrium.
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B1 Players believe that t̃0 is independent of (θ̃, ã−i).

B2 Every player has correct conjectures about the probability of (t̃0, ã−i) ∈ Φi(â) (and therefore

about (t̃0, ã−i) /∈ Φi(â)) given θi.

B3 Payoffs are observed.

B4 Players suppose that the opponents’ actions are independent of the opponents’ types.

[Proof of Proposition ??]

We will first show that the properties of the behavioral equilibrium, B1-B4, in the given con-

text, (??) and properties 1 to 4, imply that players must hold certain equilibrium conjectures.

We then show that a PAE with an incorrect prior, with the private information analogy parti-

tions, and with Θ̂i
V = {(t0, v0, θ)| there is (a−i, t0) ∈ Φi(â) where â ∈ supp [σi(θi)] and a−i ∈

supp[σi
−i(.|θi)] satisfies these conjectures.

Given strategies σ, B4 implies the following conjectures on player strategies: type θi of Player

i conjectures that every opponent type profile that she conjectures to have a positive probability

plays the marginal distribution of actions conditional on θi

σ̂i
−i(a−i|θi) =

∑

θ−i∈Θ−i

σ−i,0(a−i|θ−i,0)p(θ−i|θi). (12)

B4 and the fact that actions are observed implies that conjectures about strategies satisfy (??).

B1, B2, that a−i are observed for each θi and the fact that ϕi(σi, σ−i, θi) depends only on

(a−i, t0) for each σi implies that the marginal conjecture about t0 must be correct. If i had

an incorrect conjecture about the distribution of t0, she would necessarily have an incorrect

probability estimate about ϕi(σi, σ−i, θi). Thus,

µ̂i(t0) =
∑

v0,θ−i∈V0×Θ−i,0

p(v0, θ−i,0, t0|θi). (13)

Given θi, by assumption ϕi(σi, σ−i, θi) > 0 and therefore, by B2, ϕi(σi, σ−i, θi) = ϕi(σi(θi), σ̂i
−i(.|θi), θi)

> 0. B3 and the fact that ui is increasing in v0 implies that Player i observes the realization of

v0 conditional on (a−i, t0) ∈ Φi(â) where â ∈ supp [{σi(θi)], and a−i ∈ supp[σ̂i
−i(.|θi)], call such

a v0 an observed v0 and a v0 which is not observed a non-observed v0.

By B3, the equilibrium conjectures µi must deem all observed v0 and none of the non-observed

v0 to have a positive probability (i.e. θ ∈ Θ̂i
V if and only if it is observed). Since by B4 actions

are non-correlated with types, every expected type must play the same strategy: the strategy
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described in (??). Therefore

∑

θ−i,0∈Θ−i,0

µ̂i(v0, θ−i,0)

=
1

ϕi(σi(θi), σ−i(θ−i|θi), θi)
×

∑

{(ai,a−i,t0,θ−i,0)|
(a−i,t)∈Φi(âi)}

{σi(ai|θi)σ−i(a−i|θ−i)×

p(v0, θ1, ..., θn, t0|θi)},

that is ∑

θ−i,0∈Θ−i,0

µ̂i(v0, θ−i,0) =

∑
θ−i,0∈Θ−i,0

p(v0, θ−i,0|θi)∑
θ∈Θ̂i

V
p(θ|θi)

. (14)

Let’s verify that a PAE with an incorrect prior, with the private information analogy par-

titions, and with Θ̂i
V = {(t0, v0, θ)| there is (a−i, t0) ∈ Φi(â) where â ∈ supp[σi(θi)]and a−i ∈

supp[σi
−i(.|θi)] satisfies these restrictions. It is easy to see that given private information analogy

classes, for each θi, equation (??) imposes the third condition in Definition 2. Distribution of t0

is independent and thus p(t0,v0,θ−0|θi)∑
θ∈Θ̂i

V

= p(t0)p(v0,θ−0|θi)∑
θ∈Θ̂i

V

= µ̂i(t0)p(v0,θ−0|θi)∑
θ∈Θ̂i

V

by (??). The behavioral

equilibrium puts no particular restriction on what should be expected about θ−i,0. We can just

as well adopt the assumption that µ̂i(v0, θ−i,0) = p(v0,θ−i,0|θi)∑
θ∈Θ̂i

V
p(θ|θi)

which implies (??) and moreover

that p(t0,v0,θ−0|θi)∑
θ∈Θ̂i

V

= µ̂i(t0)µ̂i(v0, θ−i,0) = µ̂i(t0, v0, θ−i,0) as required by the second condition of

Definition 2. Therefore, for each BE we have established a corresponding PAE with an incorrect

prior.
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