Supplementary material to "Uncertainty and energy saving investments"

Matti Liski and Pauli Murto

March 2010

Abstract

In this note we provide the explicit solution to the simple of model of Section 2. Proposition 1 follows from this solution. This proof builds on the myopia result explained in Section 3 of the paper. We derive the stopping rule for a myopic investor when the aggregate capacity k is taken as given, and from this we derive the equilibrium path $k = \mathbf{k}(\hat{x})$ and its properties.

Define

$$\begin{split} \beta_1 &= \frac{1}{2} - \frac{(r-\delta)}{\sigma^2} + \sqrt{\left[\frac{(r-\delta)}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2r}{\sigma^2}} > 1, \\ \beta_2 &= \frac{1}{2} - \frac{(r-\delta)}{\sigma^2} - \sqrt{\left[\frac{(r-\delta)}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2r}{\sigma^2}} < 0. \end{split}$$

Lemma 1 Given the specification (1)-(4) in the main text, the optimal cut-off rule for a myopic investor as defined in Lemma 1 in the text is

$$x^{m}(k) = \begin{cases} \frac{\delta\beta_{1}(B+C)}{rB(\beta_{1}-1)} (rI - \frac{AC}{B+C} + \frac{BC}{B+C}k) \text{ for } x \leq A - Bk \\ \left(-\frac{\beta_{1}(B+C)\left(\frac{A-Bk}{r} - I\right)}{(A-Bk)^{1-\beta_{2}}B\left(\frac{\beta_{1}}{r} + \frac{(1-\beta_{1})}{\delta}\right)}\right)^{\frac{1}{\beta_{2}}} \text{ for } x > A - Bk. \end{cases}$$
(1)

Proof. Given k, the revenue process for an existing new plant is defined by

$$P(x;k) = \begin{cases} \frac{C(A-Bk)}{B+C} + \frac{B}{B+C}x, \text{ for } x \le A - Bk\\ A - Bk, \text{ for } x > A - Bk \end{cases}$$
$$= \begin{cases} Q(k) + Rx, \text{ for } x \le A - Bk\\ A - Bk, \text{ for } x > A - Bk \end{cases}$$

where we use the definitions

$$Q\left(k\right) = \frac{C\left(A - Bk\right)}{B + C}, R = \frac{B}{B + C}$$

The value of an existing plant, denoted by V(x; k), satisfies the following ordinary differential equation:

$$\frac{1}{2}\sigma^{2}X^{2}V''(x;k) + (r-\delta)xV'(x;k) - rV(x;k) + P(x;k) = 0,$$

where r is the discount rate, and $\delta = r - \alpha$. The general solution of the equation is

$$V(x;k) = \begin{cases} V_0(x;k), \text{ for } x \le A - Bk \\ V_+(x;k), \text{ for } x > A - Bk \end{cases}$$
$$= \begin{cases} B_1^0 x^{\beta_1} + B_2^0 x^{\beta_2} + \frac{Q(k)}{r} + \frac{Rx}{\delta}, \text{ for } x \le A - Bk \\ B_1^+ x^{\beta_1} + B_2^+ x^{\beta_2} + \frac{A - Bk}{r}, \text{ for } x > A - Bk. \end{cases}$$

where

The two boundary conditions $\lim_{x\to 0^+} V(x;k) = \frac{Q(k)}{r}$ and $\lim_{x\to\infty} V(x;k) = \frac{A-Bk}{r}$ imply that $B_2^0 = 0$ and $B_1^+ = 0$. The two remaining parameters would be easily solved by requiring that the first and second derivatives of the value functions match at x = A - Bk.

Denote the value of the option to install such a plant by F(x;k). This must satisfy the following differential equation:

$$\frac{1}{2}\sigma^{2}X^{2}F''(x;k) + (r-\delta)XF'(x;k) - rF(x;k) = 0$$

which has the general solution

$$F(x;k) = C_1 x^{\beta_1} + C_2 x^{\beta_2}.$$

The boundary condition $\lim_{x\to 0^+} F(x;k) = 0$ implies that $C_2 = 0$. The problem is to find C_1 and the myopic investment treshold x^m . There are two possible cases that must be considered separately: (1) $x^m \leq A - Bk$, and (2) $x^m > A - Bk$.

The boundary conditions in case $x^m \leq A - Bk$ are (taking into account that $B_2^0 = 0$):

$$C_1 x^{\beta_1} = B_1^0 x^{\beta_1} + \frac{Q}{r} + \frac{Rx}{\delta} - B_1^0 x^{\beta_1 - 1} = \beta_1 B_1^0 x^{\beta_1 - 1} + \frac{R}{\delta}.$$

The ceiling A - Bk is irrevelant in this case, and one can solve variable $C_1 - B_1^0$ instead of C_1 . To see this, write these equations as

$$(C_1 - B_1^0) x^{\beta_1} = \frac{Q(k)}{r} + \frac{Rx}{\delta} - I,$$

$$\beta_1 (C_1 - B_1^0) x^{\beta_1 - 1} = \frac{R}{\delta}.$$

From these, we obtain the following linear relationship between x^m and k:

$$x^{m} = \frac{-\delta\beta_{1}\left(\frac{Q(k)}{r} - I_{r}\right)}{R\left(\beta_{1} - 1\right)} = \frac{\delta\beta_{1}(B+C)}{rB(\beta_{1} - 1)}(rI - \frac{AC}{B+C} + \frac{BC}{B+C}k).$$
(2)

The boundary conditions in case $x^m > A - Bk$ are

,

$$C_1 x^{\beta_1} = B_2^+ x^{\beta_2} + \frac{A - Bk}{r} - I$$

$$\beta_1 C_1 x^{\beta_1 - 1} = \beta_2 B_2^+ x^{\beta_2 - 1}.$$

This implies that the investment trigger is given by the non-linear equation:

$$x^m = \left(-\frac{\beta_1 \left(B+C\right) \left(\frac{A-Bk}{r}-I\right)}{(A-Bk)^{1-\beta_2} B\left(\frac{\beta_1}{r}+\frac{(1-\beta_1)}{\delta}\right)}\right)^{\frac{1}{\beta_2}}.$$

For the properties of the equilibrium it is enough to focus on the case $x^m \leq A - Bk$. Let us now use the notation \hat{x} for the equilibrium investment trigger which is defined by the myopic trigger $x^m(k)$. We can see from (1) that for $x^m \leq A - Bk$, the myopic investment trigger $x^m(k)$ defines the equilibrium capacity as a linear function of the current record \hat{x}

$$\mathbf{k}(\hat{x}) = \frac{r(\beta_1 - 1)}{\beta_1 \delta C} \hat{x} + \frac{AC - rI(B + C)}{BC}.$$

Let us now explain the role of volatility for the equilibrium description to apply. Recall that \hat{x}^* is the equilibrium investment trigger at which $\hat{x}^* = x^m = P = A - Bk^*$. Using the formula for $x^m(k)$ as given in (2), we can solve k^* from

$$\frac{\delta\beta_1(B+C)}{rB(\beta_1-1)}(rI - \frac{AC}{B+C} + \frac{BC}{B+C}k^*) = A - Bk^*,$$
(3)

which gives

$$\begin{aligned} k^* &= \frac{\beta_1(\delta AC + rAB - \delta rI(B + C)) - rAB}{B(\beta_1(rB + \delta C) - rB)};\\ \hat{x}^* &= \frac{rI\delta\beta_1(B + C)}{\beta_1\delta C + rB(\beta_1 - 1)} \end{aligned}$$

where the latter equation is obtained by evaluating $x^m(k)$ at k^* . Consider now k = 0 and the condition (3). The ratio $\beta_1/(1-\beta_1)$ increases in σ monotonically so that the left-hand side of (3) exceeds the right-hand side even at k = 0. This would imply that the market must shut down before new entry can take place. There is therefore a unique σ^* such that equation (3) holds as equality when k = 0. For all $\sigma < \sigma^*$ we can find a strictly positive value for k^* and thus for \hat{x}^* .

The investment trigger in terms of output price is

$$P_H(\hat{x}) = \frac{C(A - Bk)}{B + C} + \frac{B}{B + C}\hat{x} = rI + \frac{\beta_1 B(\delta - r) + rB}{\beta_1 \delta(B + C)}\hat{x} \text{ for } x \le \hat{x}^*.$$

We see that the price is increasing in \hat{x} , implying contraction of output for $x \leq \hat{x}^*$. The price trigger is

$$P_H(\hat{x}) = A - B\mathbf{k}(\hat{x}) \text{ for } x > \hat{x}^*,$$

which is decreasing in \hat{x} . The output thus expands for $x > \hat{x}^*$.

The peak price follows by direct substitution

$$P_H(\hat{x}^*) = \frac{\beta_1 \delta r I(B+C)}{\beta_1 (rB+\delta C) - rB},$$

which is increasing in σ . When $C \to 0$, the myopic investment trigger approaches

$$x^m \rightarrow \frac{\delta \beta_1 B}{r B (\beta_1 - 1)} r I,$$

which is independent of k. Thus, once this trigger is reached, there is a discrete one-time jump in the capacity path. This completes the proof of the Proposition 1.