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Abstract

We consider a situation where an exhaustible-resource seller faces demand from

a buyer who has a substitute but there is a time-to-build delay for the substitute.

We find that in this simple framework the basic implications of the Hotelling model

(1931) are reversed: over time the stock declines but supplies increase up to the

point where the buyer decides to switch. Under such a threat of demand change, the

supply does not reflect the current resource scarcity but it compensates the buyer

for delaying the transition to the substitute. The analysis suggests a perspective

on costs of oil dependence.
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1 Introduction

Policies such as fuel taxes, technology programs, or even international agreements on

pollution emissions reductions are likely to entail a demand change in some important
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exhaustible-resource markets. When resource sellers are strategic, they have an incen-

tive to distort these policies to their own advantage, potentially leading to an increased

dependence on the resource. To understand the seller’s effort to distort the adoption of

demand-changing policies, we consider a simple framework where a monopolistic seller

(or a group of sellers coordinating actions) of an exhaustible resource faces demand from

a buyer (or a group of buyers coordinating actions) who has a substitute but there is a

time-to-build delay for the substitute. We find that in this framework the basic impli-

cations of the Hotelling model (1931) are reversed: over time the resource stock declines

but supplies increase, rather than decrease, up to the point where the buyer decides to

initiate the transition to the substitute. Under such a threat of change in the demand

infrastructure, the supply today does not reflect the true resource scarcity, but it seeks

to postpone the buyer’s decision by compensating for the future scarcity felt during the

transition time to the substitute when the buyer is still dependent on the resource.

Our research builds on Hotelling’s theory of exhaustible-resource consumption (1931),

Nordhaus’ (1973) concept of a backstop technology,1 and the extensive literature on

strategic equilibria in resource economics. Our main addition to the standard frame-

work for analysis is the inclusion of a time-to-build delay for the backstop. Previous

literature closest to our approach can be divided on the assumptions made for the strate-

gic variable on the buyer side.2 First, there is a large literature on optimal tariffs in

depletable-resource markets showing how coordinated action on the buyer side can be

used to decrease the seller’s resource rent (e.g., Newbery, 1983, Maskin and Newbery,

1990; see Karp and Newbery 1993 for a review). Hörner and Kamien (2004) provide

a general view on these models by showing that the problem faced by a monopsonistic

exhaustible-resource buyer is formally equivalent to that faced by a Coasian durable-

1Nordhaus (1973) was the first to define and analyze the concept of backstop technology in

exhaustible-resource markets. He defined it as follows: ”The concept that is relevant to this prob-

lem is the backstop technology, a set of processes that (1) is capable of meeting the demand requirements

and (2) has a virtually infinite resource base” (Nordhaus, 1973, pp. 547-548).
2There is a large but less closely related literature focusing purely on seller power in the exhaustible-

resource framework. Hotelling himself (1931) already analyzed the monopoly case. Salant (1976) con-

sidered an oligopolistic market structure with one dominant firm, and Lewis and Schmalensee (1980)

analyzed an oligopoly where all firms have some market power. This literature has developed on two

frontiers. First, it has focused on developing less restrictive production strategies: from path strategies

as in Lewis and Schmalensee, Loury (1986) and Polansky (1992), to decision rule strategies as, for ex-

ample, in Salo and Tahvonen (2001). Second, the literature has developed more natural cost concepts

for extraction under which the resource is economically rather than physically depleted. See Salo and

Tahvonen (2001) for a discussion and contribution on this.
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good monopoly. We depart from the Coasian framework because the buyer is not a pure

monopsony and has a different strategic variable (the substitute). While import tariffs

and fuel taxes are important, they are more flexible instruments as compared to the

development or adoption of substitute technologies that have a permanent effect on the

resource dependence. To be effective, optimal tariffs have to be successful in changing

the dynamic demand perceived by the seller. The degree of success obviously depends

on the precise formulation of the game, but generally the seller’s sales path still fol-

lows a Hotelling rule modified to take into account the buyers’ tariff policy. This leads

to supplies declining over time. We believe that the technology threat potentially is a

more important determinant of how sellers perceive their future demand. It thus creates

potentially greater or at least very different strategic threats to the seller. 3

Second, there is a large but somewhat dated literature on the same bilateral monopoly

situation where the buyers’ strategic variable is to develop or adopt a substitute technol-

ogy. Early papers such as Dasgupta et al. (1983), Gallini et al. (1983), and Hoel (1983)

assume the buyer exploits a Stackelberg leadership and can commit to a deterministic

R&D program for the development of the substitute. The results provide interesting

insights into how the buyer side can extract the seller’s rent by altering the timing of

sales. Later developments analyzed the role of leadership and commitment (Lewis et al.,

1986) and, finally, probabilistic success in R&D and Markov-perfect strategies (Harris

and Vickers, 1995). None of the above papers predict that the basic Hotelling implica-

tions are reversed, although Harris and Vickers (1995) obtain a result that sales path

may be non-monotonic (but not generically increasing).4

The market structure we describe is such that not only sellers have market power but

also buyers enjoy some power so that no party is in complete leadership. The nature

of the strategic interaction between buyers and sellers is preserved in the limiting case

without discounting, which allows an essentially static analysis and it shows the way

3The idea that resource supply strongly reacts to perceived future technological options is central in

the green paradox literature. This literature uses the standard Hotelling model and concludes that more

optimistic expectations on the arrival of an oil substitute will increase current oil supply, and thereby

worsen climate change (Hoel 2008, Sinn 2008). See Gerlagh (2010) for a discussion of some assumptions

in this literature.
4It should be clear that we are focusing on how strategic relationships in the resource market shape

the supplies. There are also other ways to explain the failure of the standard Hotelling model (see

Dasgupta and Heal (1974) for the standard model), or its extensions, to match reality (see Krautkramer

(1999) for a review of the literature). And there are other ways to extend the traditional economic

growth-resource depletion model such that supplies increase over time (cf. Tahvonen and Salo 2001).
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to analyze the discounted case. Moreover, in addition to the different market structure

assumptions, we depart from previous literature in that we abstract from the precise

instrument implementing the structural change in demand: when action is taken, it

changes the demand irreversibly after a time lag. This abstraction simplifies the strategic

variable on the buyer side while keeping what seems essential in the relationship.

The structure of the paper is the following. In Section 2, we discuss some develop-

ments in the oil market that motivate our study. In Section 3, we introduce the basic

resource allocation problem by considering the social optimum, consumers’ optimum,

and also by having a first look at the equilibrium. In Section 4, we introduce and analyze

the equilibrium without discounting. In Section 5, we investigate the changes to equilib-

rium and robustness of overall findings under discounting. In Section 6, we conclude by

discussing alternative approaches to the problem and potential implications for the oil

market.

2 Motivating example: the market for cheap oil

Our contribution is to the basic exhaustible-resource theory but we are motivated by

some recent developments affecting the oil market. First, while there is no single buyer

in the oil market, policies aiming to reduce dependence on imported oil imply a collective

action on the consumer side. Whatever the reason for policies – need to safeguard the

economy against macroeconomic risks or perhaps global warming – they are likely to

affect how oil producers perceive their future demand, influencing supplies today.5 The

results suggest that, under such a threat of structural change in oil demand, the true

resource scarcity cannot be read from the current supply.

Second, while it is clear that the world will never run out of all fossil fuel sources,

it is equally clear that we may run out of conventional, cheap oil. The ownership of

the cheapest oil reserve is extremely concentrated by any measure and concentration

is expected to increase in the near future.6 The concentration of ownership implies

that strategic management of the cheap oil stocks is likely even without a formal cartel

among producers. Cheap oil producers understand their influence on market development

5The Stern Review on the Economics of Climate Change (2006), while being a very comprehensive

cost-benefit analysis, is also a political document illustrating the willingness to take actions changing

the demand for fossil-fuels.
6See the ”2007 Medium-Term Oil Market Report” published by the International Energy Agency for

estimates of the Core OPEC reserves. The Saudi share of the Core OPEC stocks is expected to increase

over time.

4



and take an active role in “demand management”; they often communicate like central

bankers with the market, emphasizing credibility and security of supply.7 The resource

that, for example, Saudi Arabia is controlling is unique in that it allows extraction of high

quality output with relatively little capital investment. It also allows for rapid and large

production rate changes. Reserves with such properties are at the heart of the economics

of the oil dependence because, roughly put, the remainder of the fossil fuel supply is

capital intensive and costly when used for the production of liquid fuels. In fact, what

is essential for the strategic interaction that we consider is the existence of a low-cost

but finite reserve with concentrated ownership and inelastic short-run demand; the rest

of ‘oil’ production can be seen as part of substitute fuel production, including costly

conventional oil sources, nonconventional oils, biofuels, and alternative energy sources.8

While the relationship between major oil importers and exporters is clearly not an

open bargaining situation, as explicit contracts are not conceivable in the context, it

has a flavor of bargaining taking place through markets where offers and responses are

implicit. Sellers’ focus on secure supply suggests a compensation to the importing party

for continuing potentially costly dependence. On the buyer side, trust in the relationship

is expressed by voluntary inaction, that is, postponement of actions changing the demand

structure. Our timing assumptions for strategies are perhaps better suited for capturing

what is material in this kind of relationship than those used in earlier literature.

3 The resource allocation problem

There are two agents, the buyer and the seller of an exhaustible resource. The buyer’s

flow payoff from consuming the resource is given by the function

u : R+ 7→ R+

7The following citation describes this: “We’ve got almost 30 percent of the world’s oil. For us, the

objective is to assure that oil remains an economically competitive source of energy. Oil prices that are

too high reduce demand growth for oil and encourage the development of alternative energy sources”

(Adel al-Jubeir, foreign policy adviser of crown prince Abdullah of Saudi Arabia, Herald Tribune, Jan

24, 2007).
8There are different definitions of conventional and nonconventional oils, and these also change over

time; see the Hirsch Report (prepared for the U.S. Department of Energy, 2005). The report emphasizes

that the important scarcity is in the reserves of high-quality conventional oil.
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where u(q) is assumed to be increasing, continuously differentiable, and nonlinear every-

where. The seller’s flow payoff from selling the resource is given by the function

π : R+ 7→ R+

where π(q) assumed to be strictly concave and continuously differentiable in q. Payoffs

u and π are connected through a strictly concave consumer’s utility function

ũ : R+ 7→ R

such that u (q) = ũ(q) − ũ′(q)q and π(q) = ũ′(q)q. The consumer price is thus pt =

ψ(qt) = ũ′(qt), and demand is defined by qt = D(pt) = ψ−1(pt).

The buyer is thus an agent (e.g., government) whose flow payoff is the consumer

surplus u (q). The seller is a resource monopoly. The initial resource endowment s0 is

finite. Time is continuous and consumption depletes the stock at rate qt. We assume

no extraction costs. There is a substitute for the resource that ends the need to use

the resource. The buyer can choose to adopt the substitute at any t, and then wait for

interval of time k, so that the alternative supply infrastructure arrives at time t+ k and

provides a surplus flow ū to consumers thereafter. Thus, after the time-to-build delay,

the substitute fully replaces the resource: by assumption, the resource is not needed after

the change.9

The economy can thus be in one of the three main regimes, denoted by S ∈ {C, I, L}.

Regime C is the continuation regime that prevails if and only if the buyer has not chosen

to end the relationship in the past. Regime I is the interim regime where the buyer

has already made the stopping decision but the substitute for the seller’s supply has not

yet arrived. We assume that state I lasts k units of continuous time. Regime L is the

long-run regime where the substitute is in place. Thus, the adoption of (or investment

in) the substitute causes the transition from C to I and, after k units of time, from I to

L.10

For interpretation, we can assume cost flow c for maintaining the alternative supply

infrastructure and define the long-run surplus flow as

ū = ũ(D(0)) − c,

9We can relax this assumption, without changing the main result, by letting the resource compete

with the substitute, or by making the change gradual and uncertain. We discuss these extensions after

the main model in Section 4.4 and in Appendix 9
10We will refer to the adoption of and investment in the substitute interchangeably.
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but this interpretation is not necessary for the model, i.e., ū need not be linked to the

original utility formulation and then we can abstract from cost flow c.

We assume no discounting.11 We denote the seller’s stock-dependent payoff by V (st)

and consumers’ payoff by W (st) if there has been no investment before t. Expression

V (st) measures cumulative (undiscounted) future profits while W (st) measures cumula-

tive surplus from the excursion above the long-run surplus from time t onwards:

V (st) =

∫ T+k

t

π(qτ )dτ, (1)

W (st) =

∫ T+k

t

[u(qτ ) − u]dτ, (2)

where T is the adoption time for the substitute, and T +k is the arrival time for the

substitute. The social optimum determines the time interval of resource use, T + k, and

the supply path qt, that maximizes total resource surplus

W(st) = V (st) +W (st) =

∫ T+k

t

[ũ(qτ ) − u]dτ. (3)

3.1 Socially optimal resource dependence

Consider now the following simple question: how much of the resource should be used

before actions are taken, and how much should be left for the transition time interval

towards the substitute?

The socially optimal supply solves a simple problem. Let

WI(sT ) =

∫ T+k

T

[ũ(qτ ) − u]dτ

be the optimal social surplus at the time of investment T subject to dsτ/dτ = −qτ and

sT given. Since ũ(qτ ) is strictly concave and there is no discounting, the optimal path

is constant at level qτ = sT/k for τ ∈ [T, T + k]. This defines the marginal value of the

resource stock as

WI′(sT ) = ũ′(sT/k). (4)

The optimal supply over [t, T ] solves

max
{qτ ,T}

∫ T

t

[ũ(qτ ) − u]dτ + WI(sT ).

11In Section 5, we extend the model to positive discounting. It is not obvious that the undiscounted

case is the true discounted equilibrium limit (see Dutta 1991), but in our case it is, as we will verify.
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The current-value Hamiltonian is H = ũ(qτ ) − u − λτqτ , and the interior first-order

conditions are

Hq = ũ′(qτ ) − λτ = 0 (5)

dλτ/dτ = 0, λT = WI′(sT ) (6)

H(T ) = ũ(qT ) − u− λT qT = 0. (7)

The last condition follows since WI(sT ) does not depend on T directly. Let q∗∗ denote

the socially optimal consumption path.12 Combining (5)-(7) implies that q∗∗ is constant

throughout, and given by q∗∗ = s0/k if T = 0, and by

ũ(q∗∗) = u+ q∗∗ũ′(q∗∗) (8)

otherwise. Since ũ(q) is strictly concave, s0 large enough implies that T > 0, which is

assumed throughout. Since the consumer surplus is u(q) = ũ(q) − qũ′(q), we must have

u(q∗∗) = u. (9)

From another angle, we can see that the optimal policy maximizes λ, or equivalently, the

average excursion of utility above the long-run utility u:

λ = max
q

[ũ(q) − u]/q. (10)

It is instructive to see Figure 1, where we can find the social optimal supply level q = q∗∗

on the curve of utility ũ(q) such that the line through (0, u) and (q, ũ(q)) has the steepest

slope.

Proposition 1 In the social optimum, consumers receive reservation utility level u in

all regimes, while producers receive all the resource surplus. Consumers do not benefit

from an increase in the resource stock, W ′(s0) = 0.

Proof. The first part of the proposition states that along the social optimal path,

the buyer side is indifferent between resource dependence and the substitute technology.

This part follows immediately from (9). The last part of the proposition then follows

from the definition of the buyer’s payoff (2).

Note that the optimal consumption rate determines the overall time span of resource

dependence by T + k = s0/q
∗∗. The investment date T in turn is determined by the

requirement that qt = q∗∗ before and after the investment.

12We use one asterisk for the buyer’s first-best equilibrium, and two asterisks for the social optimum.
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ũ(q)
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ū+ qũ′(q∗∗)
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Figure 1: Determination of socially optimal supply

3.2 Buyer’s first-best

Consider then what would be the first-best for the buyer side. This corresponds to

a situation where producers are perfectly competitive, and the time of investment is

chosen to maximize W (st) only. Competitive sellers rationally foresee when the buyer

side is going to invest, and based on this, they choose a constant supply path to equalize

prices across times before and after the investment. We can copy the template from the

social optimum to show that along the consumers’ first-best path, welfare W (.) is linear,

i.e., W (s) = λs for some constant λ.

In figure 1, we can maximize the buyer’s value of the resource if we find the supply

level q∗ on the curve of utility surplus u(q) where the line through (0, u) and (q, u(q)) has

the steepest slope. The solution with T > 0 either takes the maximum demand level,

with optimal supply q∗ = D(0), or otherwise, optimal supply q∗ must satisfy

u(q∗) = u+ q∗u′(q∗). (11)

We have a simple graphical determination of the consumers’ optimum, which is generi-

cally unique as u(.) is nonlinear everywhere.13 In turn q∗ determines the date of invest-

ment, by T + k = s0/q
∗. Relative to the social optimum, consumers can increase their

payoff by forcing the seller to sell the resource faster:

13Graphically, the determination of q∗ is analogous to the determination of q∗∗ in Figure 1. The

difference is that u(.) should substitute for ũ(.), and that u(.) need not be concave. The solution is

generically unique since a slight perturbation of parameters, e.g., ū would eliminate a possible case of

multiplicity.
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Proposition 2 The resource supply in the buyers’ optimum exceeds resource supply in

the social optimum: q∗ > q∗∗. The resulting time interval of resource dependence is

shorter than in the social optimum. The supply q∗ increases and the resource dependence

time interval decreases with the level of the substitute utility.

Proof. From (11) and u′ > 0, it follows that u(q∗) > u, and thus q∗ > q∗∗. The

second part is straightforward. Consider two substitute utility levels uA and uB with

associated optimum q∗A and q∗B, respectively. As the optimum maximizes the excursion

of the utility surplus, we have

u(q∗A) − uA

q∗A
≥

u(q∗B) − uA

q∗B
u(q∗A) − uB

q∗A
≤

u(q∗B) − uB

q∗B

Rearranging gives

(uA − uB)(q∗A − q∗B) ≥ 0.

The opposing interests are now clear: the seller would like to delay investment as

much as possible (to spread supplies thinly over time as flow profits are concave), the

social optimum requires that consumers at least receive reservation utility, and the buyer

prefers even faster depletion.14 It is obvious that in the equilibrium of the game supplies

and investment time must lie between the extremes identified here. Furthermore, a better

substitute increases supplies both in first-best and in the buyer’s optimum.

For the analysis of the strategic interaction, the following assumptions will simplify

the exposition. Let qm = arg max π(q) and define Z = [0, qm]. The seller will never

supply more than qm as flow profits decrease with higher supplies. We assume that both

the initial stock and the maximum supply level qm are sufficiently large:

u(q) − qu′(q) > u for q = s0/k and q = qm. (12)

Because of continuity and violation of the inequality for q = 0, assumption (12) implies

0 < q∗ < qm and q∗ < s0/k, and thus it rules out immediate investment. It also implies

concavity of u(.) around q∗, and ensures that the buyer will be satisfied with less than the

14These results are consistent with the common view that the seller’s market power makes the resource-

depletion path more conservative (see Hotelling 1931). Buyers’ market power speeds up consumption

both in the optimal tariff literature (see Karp-Newbery 1993) and strategic R&D and technology liter-

ature (see the papers cited in the introduction).
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q

u(q)

ū

ū+ qu′(st/k)

qt st/k

Figure 2: Determination of equilibrium qt

seller’s maximum conceivable supply qm. Recall that a larger q∗ follows from a greater

long-run surplus ū: the buyer wants to consume the resource faster the better is the

outside option.

Definition 1 The buyer has a weak substitute if q∗ < qm. Otherwise, the substitute is

strong.

Assumption (12) implies that the substitute is weak.15 Note that this is not only an

assumption on the outside option ū but also on preferences; it rules out, e.g., globally

convex surplus function u(q), which would violate (12).

For future reference, we define the buyer’s first-best marginal value of the resource as

λ∗ = [u(q∗) − u]/q∗. (13)

In the buyers’ optimum, the consumer share of total resource surplus V (s0) + W (s0) is

λ∗s0, and the seller receives the remainder.

3.3 First look at equilibrium: investment indifference

As we will show formally in Section 4, the key to the characterization of the equilibrium is

the seller’s strategy to keep the buyer side indifferent between the following two actions:

(i) invest today and consume the remaining stock during the transition time interval

15For the analysis of the strong substitute cases that we do not consider in this paper, we refer to

Gerlagh and Liski (2007).
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k, and (ii) postpone the decision by one unit of time, maintaining the possibility for

investing tomorrow. The seller postpones investment as long as possible by sustaining

the buyer’s indifference. When time is continuous, the indifference can be characterized,

at each time t, by

u(qt) = ū+ qtu
′(st/k). (14)

Under the postulated indifference, surplus u(qt) should cover the cost from postponing the

long-run surplus flow ū by a unit of time, and the cost from depleting the stock at rate

qt.
16 In view of Fig. 2, which depicts a concave surplus frontier and a line summing up

the two cost terms for a given st, we see that the supply making the indifference to hold

is defined by the intersection of the surplus curve (left-hand side of (14) as a function

of qt) and the cost curve (right-hand side for given st). As the resource is depleted,

st/k declines. When the stock st approaches kq∗ from above, the slope of the cost curve

increases and, therefore, quantity qt needed for the indifference must increase as well:17

dqt
dst

=
qtu

′′(st/k)

k(u′(qt) − u′(st/k))
< 0 for qt < st/k, (15)

as the numerator is negative while the denominator is positive. Thus, to postpone the

investment, supplies must increase when the remaining resource stock declines, until the

point where the buyer’s optimum given by (11) and the indifference (14) coincide. That is,

the buyer will always invest when by doing so the buyer’s first-best can be implemented.

The resource level at which investment must take place s∗, is thus defined by the buyer’s

first-best supply q∗,

s∗ = kq∗.

It follows that at the time of investment, supplies under continuation and after investment

coincide, at level q∗. When the stock st approaches s∗, the overall path of supplies

increases up to the point of investment, after which it is constant.

16We immediately see that this condition closely resembles the buyer’s optimum (11). There is one

important distinction. While the right-hand-side of the buyer’s optimum indifference condition (11)

includes the constant marginal value of the initial resource and so defines a constant q∗, the strategic

buyer’s indifference condition (18) is based on the marginal value of the current resource stock and so it

defines a supply scheme qt that is dependent on the current resource level st.
17Note that the conclusion holds even without the global concavity of u(.): it is an implication of

assumption (12) that u(.) is locally concave in the neighborhood of q∗.
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4 Strategic resource dependence

There are i = 1, ..., N intervals of time (also referred to as periods). The strategic

interaction between the buyer and the seller can take place at the beginning of each

interval. Each discrete period lasts for a time interval of lenght ε, and actions cannot be

altered during each such interval. Thus, time t runs continuously but agents can make

decisions only at time points ti = ε(i − 1). At each ti, the buyer has a binary choice

variable, dti ∈ {0, 1}, where dti = 1 indicates that the buyer adopts the substitute at ti.

Substitute adoption means that the buyer announces the termination of the relationship

with the seller. In the game, this means that stopping payoffs will be realized. At each

ti, the seller’s only choice variable is supply qti ∈ R+.

At each ti, there are three stages:

1. the seller chooses qti ;

2. the buyer chooses dti ∈ {0, 1};

3. market clears with qti at each t ∈ [ti, ti + ε) if dti = 0, or, if dti = 1, the strategic

interaction stops and the stopping payoffs are realized.

For the buyer, the stopping payoff is

W I(s) = k(û(s/k) − ū),

where û(s/k) = u(min{s/k, qm}), as seller types s > kqm will not supply above the level

qm. Note that W I(st) is defined as the value of the excursion above the long-run payoff,

measured from the stopping time onwards. For the seller, the stopping payoff is

V I(s) = kπ̂(s/k),

where π̂(s/k) = π(min{s/k, qm}).

In Appendix 7, we show that there is a unique subgame-perfect equilibrium in this

stopping game for each finite N. We also show that the equilibrium is stationary in the

sense that the strategies become independent of N for sufficient large N . Finally, we show

that uniqueness and stationarity properties are sustained when ε becomes arbitrarily

small, and N arbitrarily large.18 In the main text below, we construct the equilibrium

for the case where ε is arbitrarily small, using differential methods.

18The appendix shows how the limit is taken.
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We can thus look for Markov-perfect strategies for the continuation regime C (all

strategic interaction takes place in this state). For the seller, the strategy is a function

η : R+ 7→ Z,

where qt = η(st) ∈ Z = [0, qm] is the seller’s supply offered to the market at t. The buyer

observes qt and makes a stopping decision

µ : R+ × Z 7→ {0, 1},

where dt = µ(st, qt) = 1 implies that the stopping payoffs are realized at t.19

4.1 The buyer’s problem

The seller has a strategy qt = η(st), and based on the seller’s strategy we find the strategy

for the buyer to invest. We characterize the strategy for an arbitrarily small ε. Assume

now that η(st) is constant over a short interval of time [t, t+ ε], and write the expression

for the payoff before the investment as

W (st) = max
dt∈{0,1}

{[εu(η(st)) − εū+W (st − εη(st))](1 − dt) +W I(st)dt}. (16)

The term εū is the direct cost from postponing the investment since the buyer side loses

the long-run surplus ū for ε interval of time by not investing at t. As ε approaches zero,

(16) can be approximated as follows:

W (st) = max
dt∈{0,1}

{[εut − εū− εqtW
′(st) +W (st)](1 − d) +W I(st)d}, (17)

where we use shorthands ut = u(η(st)) and qt = η(st). Thus, we must have W (st) ≥

W I(st). If a strict inequality applies, W (st) > W I(st) and µ(st, qt) = 0, for all qt ≥

0. That is, if the buyer’s payoff before investment strictly exceeds the post-investment

payoff, then (for sufficiently small ε) the buyer will not invest irrespective of the offer.

Thus, if choosing d = 0 is optimal, then W (st) ≥W I(st) and

ut = ū+ qtW
′(st). (18)

This is the key condition throughout this paper. It says that the consumer surplus under

continuation of the resource dependence, ut, covers the direct cost from continuing, ū, and

19Note that because of the timing assumption (the three stages above), the buyer’s Markov strategy

depends not only on the state but also on the seller’s offer. In this respect, a similar formulation is used

in Felli and Harris (1996) and Bergemann and Välimäki (1996). In Appendix 8 we explain the role of

the timing assumptions.
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the marginal reduction in payoff from the fact that the stock available for consumption

during the remaining overall time interval of resource dependence is depleted, qtW
′(st).

The relation also ensures that W (.) and W ′(st) are continuous almost everywhere if

qt = η(st) is continuous almost everywhere.

4.2 The seller’s problem

For the seller’s problem we follow the same approximation procedure as above. For short

time interval ε, and given the buyer’s strategy dt = µ(st, qt), supply in the next ε interval

of time is qt if µ(st, qt) = 0. If µ(st, qt) = 1, the stopping payoffs are realized. The seller’s

best response satisfies

V (st) = max
{qt}

{[επ(qt) + V (st − εqt)](1 − µ(st, qt)) + V I(st)µ(st, qt)}. (19)

When ε approaches zero, this value can be approximated by (letting µ(·) = µ(st, qt)):

V (st) = max
{qt}

{[επ(qt) − εqtV
′(st) + V (st)](1 − µ(·)) + V I(st)µ(·)}. (20)

Given µ(st, qt), the seller can choose if there will be investment or not. If choice µ = 0 is

implemented, then by (20), we must have

−qtV
′(st) + π(qt) = 0. (21)

If choice µ = 1 is implemented, then

V (st) = V I(st). (22)

From these conditions we can immediately see that the seller always prefers to continue

the relationship irrespective of the stock level. Recall that s∗ denotes the stock level at

which the buyer’s first-best is to invest.

Lemma 1 If s0 > s∗ and for st > s∗ some path qt exists, continuous almost everywhere,

with qt ≤ st/k and µ(st, qt) = 0, then the seller prefers continuation to stopping. In

particular, V (s∗) = V I(s∗), V ′(st) > V I′(st) for all st > s∗, and thus V (st) > V I(st).

Proof. Equality at s∗ follows from the fact that the buyer’s first-best is to invests at

s∗, and thus seller’s continuation payoff is independent of the offer. Thus, V (s∗) = V I(s∗).

Assuming qt ≤ st/k, we have

V ′(st) = ψ(qt) ≥ ψ(
st

k
) > ψ(

st

k
) +

st

k
ψ′(

st

k
) ≥ V I′(st).
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The first equality follows from (21), the second (weak) inequality is by assumption (qt ≤

st/k), the third (strict) inequality follows from a negative price slope, and the last (weak)

inequality follows from the definition of V I(st). By integration, V (st) > V I(st) follows.

Thus, the ‘smooth pasting’ condition does not hold for the seller for an intuitively

obvious reason: the buyer’s decision to invest implies a binding time-to-sell constraint

for the seller. The seller will not end the dependence before the buyer wants to end it, as

it would be profitable to spread sales as thinly as possible over time.20 For this reason,

when the stock level is public knowledge and qt ≤ st/k is acceptable to the buyer, it will

be the buyer’s indifference that determines the time to end the resource dependency.

4.3 Equilibrium

Establishing and characterizing the equilibrium supply is a simple undertaking based on

the analysis of buyer’s indifference between continuation and stopping, given that the

seller never prefers stopping. We first prove that W I(s) defines the buyer’s welfare any

time before investment.

Lemma 2 In equilibrium, the buyer is indifferent between continuing the resource de-

pendence and investing at any given t prior to the investment date:

W (st) = W I(st) for all st ≥ s∗ (23)

Proof. The proof is by contradiction. Assume W (s) > W I(s) at some s > s∗. Note

that (i) function W I(.) is continuous, (ii) function W (.) is continuous by (2), and (iii)

the slope of W (.) is bounded from above by λ∗ defined in (13). That is, for all δ

W (s− δ) ≥W (s) − δλ∗. (24)

Now, if we take δ̂ = δ sufficiently small such that δ̂λ∗ < W (s) −W I(s), we have for all

sτ ∈ [s− δ̂, s]

W (sτ ) ≥W (s) − (s− sτ )λ
∗ ≥W (s) − δ̂λ∗ > W I(s) > W I(sτ ) (25)

where the first inequality follows from (24), the second inequality follows from s−sτ ≤ δ̂,

the third inequality from the definition of δ̂, and the last inequality follows from the fact

20We will derive this same condition also with discounting but there we need restrictions on the utility

formulation.
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that W I(.) is increasing. The inequality W (sτ) > W I(sτ ) implies that the buyer’s best

response is µ(sτ , qτ ) = 0 for all qτ ≥ 0 and sτ ∈ [s − δ̂, s]. The seller is not constrained

to reduce supplies. By (21), V ′(s) increases in the price, i.e., as q declines. The seller

can now decrease supplies and so extend the time interval of resource dependence to

infinity. Suppose the seller chooses some supply qτ for time interval τ ∈ [t, t + ∆],

with
∫ t+∆

t
qτdτ = δ̂. The seller’s payoff amounts to V (st) =

∫ t+∆

t
π(qτ )dt + V (st − δ̂).

Alternatively, the seller could spread the same supply over double time, q̃τ = 1
2
qt+ 1

2
(τ−t),∫ t+2∆

t
q̃τdτ = δ̂. The seller’s profit would increase by

∫ t+∆

t
2π(1

2
qτ ) − π(qτ )dτ > 0. Since

profits are strictly concave, the payoff is maximized by letting, qτ → 0 and ∆ → ∞. But

if supplies drop close to zero, for a time interval of unbounded length, then the buyer’s

utility excursion from the long-run payoff ū becomes negative:

W (st) =
∫ t+∆

t
[u(qτ ) − u]dt+W (st − δ̂) < 0

as qτ → 0 and ∆ → ∞. This contradicts W (st) > W I(st).

It is thus the buyer’s indifference that determines equilibrium supply policy, qt = η(st).

The buyer’s indifference condition (23) together with (18) requires

u(qt) = ū+ qtu
′(st/k) if st < kqm (26)

u(qt) = ū otherwise. (27)

This is a slightly adjusted version of (14) because W ′
t(st) = u′(st/k) when st < kqm,

but W ′
t (st) = 0 otherwise as the stock level does not affect supply post-investment if

st > kqm. We have already illustrated this indifference for a concave surplus in Fig. 2.

Recall that the investment point satisfies qt = s∗/k = q∗, which is the buyer’s first-best

supply as it maximizes the buyer’s payoff from this stock level onwards. The seller cannot

compensate the buyer for continuation after the stock has fallen just below s∗ because

the buyer can implement his first-best by ending the relationship there. The scarcity cost

exceeds the maximal marginal value of the resource,

W ′(st) > λ∗ = [u(q∗) − u]/q∗,

when st < s∗ because u is locally concave around q∗.

We now describe the general case where u is not necessarily globally concave. Recall

that by assumption (12), continuation can provide some surplus over investment at t = 0:

there is some q0 < q∗ < qm such that

u(q0) = ū+ q0u
′(s0/k).
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The seller can thus entice the buyer to continue by supplying q0 < s0/k such that

the buyer’s indifference as described in (26)-(27) holds. At time T of investment, the

indifference condition will be

u(q∗) = ū+ q∗u′(sT ). (28)

If the resource level satisfies sT = s∗, then the buyer will invest at this point as the buyer’s

first-best can be implemented. However, since the consumer surplus is not generally

concave, equation (28) may be satisfied at some larger resource level, sT > s∗, but not

for a stock marginally smaller than sT . Then, the buyer stops the game at sT . The

continuation region in the stock space is thus defined by the lowest resource stock level

such that the indifference conditions can be met over the entire interval [sT , s0]:

sT = min{s|u′(s′) ≤ λ∗ for all s′ ∈ [s, s0]}

We have by construction u′(st/k) ≤ u′(q∗) for all sT ≤ st ≤ s0. By continuity of u(.),

supply qt = η(st) satisfying (26) to keep the buyer indifferent between stopping and

continuing exists, and it varies with the remaining stock for sT < st < kqm.

Proposition 3 For a given s0, there exists a Markov-perfect equilibrium with sT as

defined above, qt defined by (26)-(27), and investment taking place at sT , qT = q∗.

Proof. From above it is clear that we have described the buyer’s best-response to

the supply policy. It remains to be shown that the seller cannot deviate from the supply.

For st > sT we have qt ≤ st/k along the equilibrium path, and thus V (st) > V I(st) by

Lemma 1. The seller thus prefers to continue at each point along the equilibrium path.

Moreover, since V ′(st) = pt, the lowest feasible supply maximizes the seller’s payoff, i.e.,

the indifference-making supply for the buyer.

Under nonconcave surplus, the increase in supply over time may not be monotonic as

the buyer’s scarcity cost u′(st/k) may not be monotonic (u′′ may change sign). However,

when the equilibrium path approaches the investment point, supplies must increase, so

that our main conclusion holds irrespective of the functional forms.

Proposition 4 The equilibrium supply path qt is

1. constant at level u−1(ū) when st > kqm;

2. varying over time in u−1(ū) ≤ qt ≤ q∗ when sT < st < kqm, but ultimately increas-

ing to q∗ as st approaches sT ;

3. strictly increasing for all sT = s∗ < st < kqm if consumer surplus u(.) is concave
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4.4 Discussion

The assumption that it takes time to change the demand is necessary for our result

that supplies increase over time. When the time-to-build delay k is extremely short,

the buyer knows that the alternative surplus flow ū will arrive almost immediately after

investment. Then, the buyer’s outside option is just the long-run surplus, and the seller

needs to supply only u−1(ū) to keep him indifferent. The seller will receive the whole

surplus and, therefore, he will implement the first best.

A larger k captures the idea of having capacity constraints in making a fast transition

to the substitute. The buyer will feel the scarcity cost from a decreasing stock for a longer

period and, therefore, will require a larger compensation to continue without investment.

A larger k thus means that the buyer will realize earlier that there is scarcity during the

transition period, and the upward pressure on supplies will start earlier, i.e., at higher

current stock levels. In this sense, the buyer’s outside option is more sensitive to the

stock level st, and he will be able capture larger part of the overall surplus.

The above simple formalization of the time-to-build delay captures quite well a gen-

eral idea. Let us now briefly discuss alternative but qualitatively equivalent ways of

formalizing the transition to the substitute. First, the buyer’s decision could trigger a

gradual adjustment of the demand rather than the above one-time event taking place af-

ter the time-to-build period. One way to formalize a gradual adjustment is to assume an

exogenous rate of decline for the fraction of the demand still depending on the resource.

This would change essentially nothing in our main model. Another way to proceed is to

assume that at each period after making the decision d = 1, the buyer chooses an invest-

ment rate, i.e., how many units of demand to switch. If investment cost is linear, the

buyer can switch all units at once, which would lead to an equilibrium equivalent to the

one obtained when k is almost zero in our main model. When adjustment (investment)

costs are strictly convex, possibly with a per period capacity constraint on the rate of

change, then the buyer cannot change his dependence on the resource quickly, and the

equilibrium dynamics come close to those achieved under k > 0 in our model. In this

sense, k captures adjustment costs in the demand change.

Second, uncertainty regarding the transition to the substitute can be captured in

many ways. A simple extension is to treat k as a random variable, which would not

affect the nature of our results in a material way. Alternatively, the buyer’s decision

d = 1 could trigger a random process with a downward trend for the fraction of demand

still depending on the resource. The seller would face stochastic demand over stochastic
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time horizon but the ex ante values from entering this phase could still be evaluated in

a straightforward way for both players, and the strategic interaction before investment

would not essentially differ from what we have described.

Let us then finally discuss our assumption that the resource cannot compete with

the substitute, once in place. Recall that we abstract from the substitute’s marginal

production costs and resource extraction costs. We could as well have assumed that

marginal production costs for the substitute fall short of resource extraction costs so

that the resource has no use when the substitute is in place. In Appendix 9 we explain

how the competition between the substitute and resource in the long-run state can be

included in the model. Essentially, the long-run competition reduces the stock available

for strategic interaction in the continuation state. The main features of the equilibrium

are not altered by this inclusion.

5 Discounting

Discounting is an important element in resource use. In the traditional Hotelling model,

discounting is what distinguishes markets at different dates, which, in the presence of

seller power leads to intertemporally differentiated prices. Another reason for such diff-

entiation is the buyer’s changing opportunity cost of continued the resource dependence,

and this effect we have identified in the undiscounted analysis. Two main questions re-

main. First, does the discounted equilibrium converge to the undiscounted limit we have

described? Second, does the undiscounted equilibrium describe well the essence of the

discounted case. To answer the latter question, we consider the discounted equilibrium

for a particular utility function (CRRA).

For the first question, note that our model assumes a payoff criterion that corresponds

to Dutta’s (1991) strong long-run average criterion, where the per-period payoffs are net

of the long-run average values. In our case, the long-run average values are trivially

defined by ū for the buyer and by 0 for the seller, so the concept is well-defined. Starting

from different initial states cannot lead to arbitrarily large value differences in our model

since the long-run payoffs for the programs are equivalent and the transitory payoffs

are bounded. The Dutta’s conditions for value boundedness and finiteness are satisfied

and, therefore, the discounted values and policies converge to those given by the strong

long-run average criterion in the undiscounted case.

Let us now consider whether sufficiently large positive discounting can add features

to the equilibrium characterization. Assume that the continuous-time discount rate is
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positive, r > 0. Let V I(s) denote the seller’s discounted payoff at the time of buyer’s

stopping decision. For the seller, there is a well-defined unique monopoly supply path,

equalizing present-value marginal revenues over the remaining time interval, leading to

the value V I(s). In the continuation state, the seller’s optimal sale qt is a best-response

to stopping rule µ(st, qt) satisfying

V (st) = max
{qt}

{[επ(qt) + e−ǫrV (st − εqt)](1 − µ(st, qt)) + V I(st)µ(st, qt)}. (29)

As in the undiscounted equation (19), the strategies are defined over some arbitrarily

small interval of time ε, so that the continuation value V (st) satisfies

−qtV
′(st) + π(qt) − rV (st) = 0. (30)

Let us denote the true discounted payoff for the buyer by U(s) = W (s) + ū/r in the

continuation state, and by U I(s) = W I(s)+ū/r at the time of stopping. Since the seller’s

supply path after stopping is unique, the payoff U I(s) is well defined. Given the seller’s

strategy η(st), the buyer’s continuation payoff U(st) is given by

U(st) = max
dt∈{0,1}

{[εu(η(st)) + e−εrU(st − εη(st))](1 − dt) + U I(st)dt}.

For ε arbitrarily small, we find the positive discounting equivalent of (18):

ut = rU(st) + qtU
′(st). (31)

When the buyer is indifferent between continuation and stopping, (31) holds with

U(s) = U I(s). The interpretation then is that in addition to the depletion effect qU I′(s),

the buyer must receive a return on the investment option, rU I(s). Replacing U(s) =

W (s) + ū/r and U I(s) = W I(s) + ū/r, and letting r → 0 gives the undiscounted version

of the optimality condition.

We can solve the equilibrium explicitly by assuming constant elasticity of demand

ǫ = − 1
1−σ

, associated with utility function, ũ(q) = qσ, where 0 < σ < 1. Thus, ψ(q) =

σqσ−1, π(q) = σqσ, and u(q) = (1− σ)qσ. Under positive discounting, the supply qt after

stopping satisfies π′(qt) = er(t−T+k)λ, for some λ > 0 (marginal revenues are equalized in

present value). Using this condition, some manipulation gives

V I(s) = σAsσ (32)

W I(s) = (1 − σ)Asσ −
1 − e−rk

r
ū, (33)
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where A =
(

ω
1−e−ωk

)σ (
1−e−ωσk

ωσ

)
and ω = r

1−σ
. The buyer’s indifference condition (31)

becomes

qσ =
e−rkū

1 − σ
+ rAsσ + qσAsσ−1. (34)

Notice that when r → 0, A→ k1−σ, and we obtain

W I(s) = k[(1 − σ)(s/k)σ − ū]

V I(s) = kσ(s/k)σ

(1 − σ)qσ = ū+ qσ(1 − σ)(s/k)σ−1,

consistent with our ealier definitions for undiscounted W I(s), V I(s), and condition (26).

In the appendix, we show that supply is continuous at the investment point. This

finding is used to prove that the seller prefers continuation to stopping at the time of

investment, which ensures that (34) close to the point where stopping takes place. We

can then use continuity of supply and (34) to establish the values for the resource stock

and supply level at the investment point. Given σ, assume that k and r satisfy

σ(1 − e−ωk)σ > 1 − e−ωσk. (35)

Under this condition we have (see the appendix)

s∗ =

[
e−rkū

(1 − σ)2A
−σ

1−σ − (1 − σ)rA

]−1/σ

(36)

q∗ = A
1

σ−1s∗ (37)

We notice that (35) is equivalent to demanding that the denominator in (36) is posi-

tive. The condition holds for small rk, and is violated for large rk. When the condition

(35) does not hold, the buyer will invest immediately. The value of rk determines the

utility weight given to the long-term payoff. A lower weight for the long term implies

that the buyer cares less about conserving the resource, and thus more easily invests,

forcing the seller to exhaust the resource within the coming k time interval.

These findings lead to the following:

Proposition 5 For constant elasticity of demand and (35) satisfied, equilibrium supplies

first decline and then increase over time when s0 is sufficiently large.
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Figure 3: Equilibrium supply path under discounting

Proof. See Appendix.

We depict the equilibrium time path for supply in Fig. 3, as well as the buyer’s op-

timal path. The latter involves choosing the highest supply path such that (i) prices are

equal in present value, and (ii) the stock remaining at the investment time, T ∗, is con-

sumed during the technology transition time interval. The equilibrium value s∗ is, like in

the undiscounted case, exactly equal to the buyer’s optimal s∗ because, due to constant

elasticity of demand, in the post-investment phase the seller supplies a competitive path

in both cases: the constant demand elasticity eliminates the possibility of price discrimi-

nation at different dates after the investment (see Gilbert 1978). The two paths in Fig. 3

are therefore identical during the technology transition time interval, starting at T ∗ and

T , respectively. However, before investment, the strategic seller can discriminate buyers

at different dates according to (31) (the explicit constant elasticity of demand solution is

given in (34)) and delay the arrival of the substitute as in the undiscounted case. When

the stock is still large, supplies decrease over time as in the standard Hotelling model.

When the stock becomes smaller and approaches s∗, supplies increase over time as in the

undiscounted case because the buyer’s indifference becomes binding.

6 Concluding remarks

In this paper, we considered strategic interactions between the seller of a depletable

resource and consumers who have interests in ending their dependence on the resource.

We modeled the situation using a framework that departs from explicit bargaining but
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still allows offers and responses. The approach seems relevant since there is significant

coordination of actions on both sides of the oil market, for example, but at the same

time explicit cooperation of the two sides is not feasible by the difficulty of enforcing

international agreements. The key question in the relationship is when to start the

process ending the resource dependence, that is, when to change the demand. The

process changing the demand takes time and therefore a potentially significant fraction

of the resource has to be saved for the transition time interval. Our insights to the

problem follow from this simple allocation problem.

The main insight from our analysis is that producers’ market power is reduced over

time as continuing the relationship becomes more costly to consumers when the stock

available for the demand transition is depleted. This means that changing the demand

infrastructure becomes more relevant as a choice, leading to the conclusion that producers

must increase supplies over time to postpone the buyer’s action. In contrast with previous

approaches to such strategic dependence, the basic implications of the Hotelling (1931)

model are reversed.

What are the main lessons from these results for understanding the oil market? We

believe it is the insight that energy technology policies in oil-importing countries can act

as an increasingly effective strategic instrument, in part destroying producers scarcity

rents. While in general this insight is not new, our approach is new as it accounts for the

fact that the transition is not an immediate event, and this insight results in explicitly

increasing supplies in a stationary market environment.

There are several well-established explanations why scarcity rents do not seem to

drive supply behavior in oil or other exhaustible resource markets: declining extraction

costs due to technological progress can lead to U-shaped price paths; durability of the

final good; learning of new reserves; and imperfect competition (see Gaudet 2007) for a

review of the literature). Our explanation is complementary and distinct from previous

explanations presented in this literature.

On a theoretical level, there are some obvious extensions. As we have seen, the size

of the remaining stock is what determines the seller’s ability to entice the buyer side to

postpone actions ending the resource dependence: it is critical for the buyer to observe

how much resource is left for the transition, otherwise the seller can take advantage of

the buyer’s imperfect information for the right timing of the demand change. Recall that

the larger is the stock, the lower is the equilibrium supply (at earlier points on the sales

path, stocks are larger). In this precise sense, a large stock implies more power to reduce

supplies than a small stock. If the stock is not observed by the buyer side, a small seller
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can potentially mimic large seller’s policy of reducing supplies and, thereby, extend the

investment date from what would otherwise hold for the small seller.

The above observation suggests an extension to situations where there is asymmet-

ric information about the size of the seller’s resource stock. The study of asymmetric

information in resource extraction can also be motivated by the developments in the oil

market. The core reserves of cheap oil are not managed like most productive assets in

market economies; management of cheap oil is characterized by secrecy. The dynasties

of the Middle East do not disclose technical production information and make efforts to

prevent auditing of the reserves. The future availability of conventional oil is a major

public concern in oil importing countries; industry experts’ opinions on the size of eco-

nomically viable stocks diverge widely.21 We have presented a preliminary analysis of the

asymmetric information equilibrium in our working paper Gerlagh-Liski (2007).22

Other extensions are the following. Adding a fringe of competitive producers would

reduce the seller’s market power in a rather straightforward way; the fringe would free-ride

on the seller’s market power by selling first when the prices are high. Uncertainty about

the technology transition time interval would affect the precise timing of investment

and the level of the supply path, but not the basic insights. A less straightforward

extension is a reversed asymmetric information situation where the buyer side privately

knows whether the adoption decision has been made but the resource stock size is public

information. Alternatively, under the R&D interpretation, the buyer privately knows the

state of the technology. We leave these interesting topics open for future research.

7 Appendix: Discrete time model

We consider a discrete-time model of length N and show the following properties:

1. The subgame-perfect equilibrium in the discrete-time game is unique (Lemma 3);

2. The stopping time has bound M∗ which depends on the period length ε (Lemma

4);

21These concerns are reviewed in the Hirsch report. A book by Matthew R. Simmons (2005) explicates

carefully the industry experts concerns regarding the Saudi stocks. While it is hard to judge the validity

of the arguments in general, one cannot escape the fact that the market cannot evaluate the maturity

of the main Saudi oil fields; Saudi Aramco has not disclosed technical production information since the

early 1980s (Simmons).
22Saure (2008) also considers resource extraction under asymmetric information in a two-period model.
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3. The equilibrium strategies are stationary for sufficiently large N (Lemma 5).

The required length N for stationarity is defined in terms of the bound M∗ which in

turns depends on the period length ε. This will allow us to take ε arbitrarily close to

zero and N arbitrarily large, while maintaining properties 1 and 3.

Consider now the game with i = 1, ..., N intervals of time. Each discrete period lasts

for a time interval of length ε, and actions cannot be altered during each interval. Thus,

time t runs continuously but agents can make decisions only at time points ti = ε(i− 1).

At each ti, there are three sub-stages: (i) the seller chooses qti ; (ii) the buyer chooses

dti ∈ {0, 1} ≡ I; (iii) market clears with qti at each t ∈ [ti, ti + ε) if dti = 0, or, if

dti = 1, the strategic interaction stops and the stopping-payoffs are realized. We denote

the stopping period by M + 1, so that M is the number of periods in which the offer is

accepted, M ∈ {0, ..., N}, where M = N if the buyer maintains dti = 0 in all periods.

The final outcome of the game is (M,hM) where

hM = (qt1 , qt2 , ..., qtM ) ∈ R
M
+ .

Similarly, we define the vector hi as the relevant history at ti, with null string h1 and

hi = (hi−1, qti−1
). The investment decision is not included in the history as the history

only develops as long as no investment has taken place prior to i. The strategy for the

seller is the collection of functions

Q = (Q1(·), Q2(·), ..., QN(·)),

where

Qi(hi) : R
i−1
+ 7−→ R+.

The strategy for the buyer is

D = (D1(·), D2(·), ..., DN(·))

where the strategy depends on both history and the offer

Di(hi, qti) : R
i
+ 7−→ I.

Given the history hi, strategies (Q,D) generate an outcome (M,hM) and the devel-

opment of the stock si = sti.The buyer’s payoff at time ti is

Wi(hi, Q,D) =
∑M

n=i
εu(qtn) +W I(stM+1

) (38)
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where

W I(stM+1
) = k(u(

stM+1

k
) − ū). (39)

The seller’s payoff is

Vt(hi, Q,D) =
∑M

n=i
επ(qtn) + V I(stM+1

) (40)

where

V I(stM+1
) = kπ(

stM+1

k
). (41)

Definition 2 Strategy (Q∗, D∗) is an equilibrium strategy if for any hi:

• Q∗ maximizes Vi(hi, Q,D
∗)

• D∗ maximizes Wi(hi, Q
∗, D).

When the seller is indifferent between two strategies, we require that the seller chooses

the smallest supply. Also, when the buyer is indifferent between stopping and continua-

tion, we require the buyer to continue. Denote the game defined this way by Ω(s0, N).

We are interested in subgame perfect equilibria (SPE). The SPE have the advantage

that they are constructed backwards which enables us to prove uniqueness and existence

below. A consequence of this feature is that the strategy functions are conditioned on

the number of offers that can be made. We count backwards from N . Thus, we use a

subscript n = N + 1 − i, where i is the period. At the start of the first period, i = 1

and n = N . At the start of the second period, i = 2 and n = N − 1, and so forth. The

lemma below shows that strategies are conditional on n rather than on i.

Lemma 3 For Ω(s0, N), there exists a unique SPE, which is a Markov equilibrium: the

supply function and decision function only depend on current stocks, the current offer,

and the number of periods to go before the game has to end, n = N + 1 − i. We switch

subscripts from i to n. There exist functions ηn : R+ 7−→ R+, µn : R
2
+ 7−→ I, such that

for all n = 1, ..., N

Q∗
n(hn) = ηn(sn)

D∗
n(hn, qn) = µn(sn, qn).

Payoffs are also only dependent on current stocks and n

V ∗
n (hn) = Vn(sn)

W ∗
n(hn) = Wn(sn).
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Proof. We construct the equilibrium payoffs and best-responses backwards from

i = N to i = 1, that is, from n = 1 to n = N . We will use induction to prove the lemma.

Consider n = 1; the seller can make one offer. For given stock s, the acceptance set is

Γ1(s) = {q > 0|εu(q) − εū+W I(s− εq) ≥W I(s)},

where we removed time subscripts for convenience. The buyer’s best response is the

indicator function such that µ1(s, q) = 0 iff q ∈ Γ1(s). Notice that this construction

implies that the buyer continues dependence if indifferent. As profits are strictly concave,

if Γ1(s) 6= ∅, the seller will always choose an offer that is accepted. The seller’s payoff

at n = 1 is

V1(s) =

{
V I(s) if Γ1(s) = ∅

maxq{επ(q) + V I(s− εq)|q ∈ Γ1(s)} otherwise.
(42)

Above, we required that when the seller has identical payoff for different supply levels, the

lowest is chosen. The payoff then defines unambiguously the seller’s strategy q1 = η1(s)

for Γ1(s) 6= ∅, and the payoffs V1(s) and W1(s) = εu(η1(s)) − εū + W I(s − εη1(s)).

For Γ1(s) = ∅, W1(s) = W I(s), W1(s) = W I(s) and the last-period seller’s strategy is

irrelevant. This proves the lemma for n = 1.

We will now use induction from n to n+1, assuming that the lemma holds for n. Let

the maximum number of remaining offers be n + 1. The buyer knows that if it accepts

the offer, it will enter the game with a maximum of n offers. The buyer accepts the offer

iff it is in the set

Γn+1(s) = {q > 0|εu(q) − εū+Wn(s− εq) ≥W I(s)}, (43)

where Wn is the equilibrium continuation payoff, and W I(s) is the stopping payoff. The

buyer’s best response is the indicator function such that µn+1(s, q) = 0 iff q ∈ Γn+1(s).

Similarly, the sellers payoff at n + 1 is

Vn+1(s) = max
q

{(επ(q) + Vn(s− εq))(1 − µn+1(s, q)) + V I(s)µn+1(s, q)} (44)

Which defines the strategy ηn+1(s) and the payoffs Vn+1(s) and Wn+1(s).

By the induction hypothesis, we can run n from 1 to N , and the lemma holds for any

induction step n ≤ N.

The next step is to prove that each game ends in finite time. The intuition is clear.

The resource is finite, and as the buyer requires at least the outside surplus level, so the

resource must be exhausted in finite time.
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Lemma 4 The number of periods after which the game Ω(s0, N) stops is bounded from

above by some M∗ that is proportional to s0

ε
and M∗ is independent of N for N sufficiently

large.

Proof. Let M > 0 be the number of periods before stopping. For the buyer to con-

tinue in the first period, its surplus must at least be equal to the surplus after immediate

investment. As the post-investment surplus is increasing in the remaining stock, we have

the inequality ∑M

i=1
εu(qtn) −Mεu ≥ 0,

Let φ be an upper bound for u(q)/q (if no such upper bound exists, take an arbitrary

δ ∈ (0, ū) and define φ for [u(q) − δ]/q; the proof is adjusted in an obvious way). Notice

that
∑M

i=1 εqti < s0. Substituting gives

φs0 > Mεu.

We can thus take M∗ = φ
u

s0

ε
. Thus, any game such that N > M∗ stops before M∗.

When N becomes sufficiently large, and ε approaches zero, the game still ends in

finite time: T ≤ M∗ε = φ
u
s0. We now prove convergence of the strategy functions when

N becomes sufficiently large. The intuition is clear. For each ε > 0, when the game

has to end within M∗ periods, then it will not matter whether there are N or more

periods available as long as N is sufficiently larger than M∗. To refer to a game for

which N is large enough so that a further increase does not matter, we introduce the

term “long game”. For the proof of the lemma below, we find that we need some slack

in the lenght of the game. Therefore, we use the wording “long game” for games that

satisfy N ≥M +M∗. The next lemma says that “long games” are identical.

Lemma 5 Let the game Ω(s0, N) be a “long game”, i.e., it stops in M periods and

satisfies N ≥M +M∗. Then, the SPE outcome is identical in all games Ω(s0, N
′) where

N ′ ≥ M +M∗.

Proof. By the lemmas above, we know that for given N there exists a unique SPE

and some finite stopping period M ≤M∗. The proof is by induction on the equilibrium

stopping period M .

Let Ω(s0, N) stop at some M . For such pair (N,M), define SN
M as the set of all

initial stocks s such that the stopping period for Ω(s,N) is exactly M . Clearly, s0 ∈ SN
M .

Define QM = ∪N ′≥M+M∗SN ′

M as the set of initial stocks for which there is a long game

that stops exactly in M periods. Thus, QM collects all the stocks and long games that
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lead to stopping in exactly M periods. Clearly, SN
M ⊆ QM , but not necessarily SN

M ⊇ QM .

If s′ ∈ QM but s′ /∈ SN
M , then some long game Ω(s′, N ′) stops after M periods, while

Ω(s′, N) does not stop after M periods, and the lemma cannot be true. Thus, we must

have QM = SN
M for the lemma to hold.

Define RM = ∪M ′≥MQM ′ as the set of stocks such that there is a long game that stops

in at least M periods. Finally, let ΣM = QM\RM+1. Thus, ΣM is the set of stocks for

which M is the maximum stopping time among all long games. For the lemma to hold,

we must have SN
M = ΣM and also the pay-off equivalence must hold.

The induction hypothesis is labeled P(M), and it contains the following items:

(i) If for some initial stock s0 a long game stops exactly in M periods, then all long

games stop after exactly M periods: for all N with M +M∗ ≤ N we have SN
M = ΣM .

(ii) If for some initial stock s0 a long game stops after exactly M periods, then pay-

offs and strategies are the same for all long games: for all N,N ′, s0 with s0 ∈ ΣM , M +

M∗ ≤ N,N ′ we have VN(s0) = VN ′(s0),WN(s0) = WN ′(s0), ηN(s0) = ηN ′(s0), µN (s0, q) =

µN ′(s0, q).

By induction, we show that if P(0), ..,P(M − 1) hold, then P(M) holds as well for

all M ≤M∗.

Consider P(0). If s0 ∈ Σ0, then clearly M = 0 for all N ≥ M∗. The induction

hypothesis is trivially satisfied.

Assume P(0), ..,P(M − 1) holds. We show P(M) in three steps:

(a) ΣM ⊆ SN
M for all N ≥M +M∗;

(b) s ∈ ΣM implies: VN (s) = VN ′(s), WN(s) = WN ′(s), ηN(s) = ηN ′(s), µN(s, q) =

µN(s, q) for all N,N ′ ≥M +M∗;

(c) SN
M ⊆ ΣM for all N ≥M +M∗.

Consider step (a). Let s ∈ ΣM , N ≥ M∗ +M , and assume that game Ω(s,N) stops

at some k ≤ M − 1. By P(M − 1), the game stops at k for all N ≥M∗ +M − 1. This is

a contradiction with s ∈ ΣM . We must thus have s ∈ SN
k , where k ≥ M . But if k > M ,

s /∈ ΣM . Hence, s ∈ SN
M .

Consider step (b). Let s ∈ ΣM , and consider N,N ′ ≥M∗ +M . By step (a), we have

s ∈ SN
M and s ∈ SN ′

M . Take the SPE strategy ηN(s), and note that s − εηN(s) ∈ SN−1
M−1

by definition. Since we have N ≥M∗ +M , then also N − 1 ≥M∗ +M − 1, and we can

invoke P(M − 1) to conclude that ΣM−1 ⊆ SN−1
M−1 and that the continuation payoffs are

stationary. The same applies to N ′. The buyer’s payoff is

εu(ηN (s)) +WN−1(s− εηN(s)) ≥W I(s).
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Use

WN−1(s− εηN(s)) = WN ′−1(s− εηN(s)),

to conclude that the offer ηN(s) is accepted in the game Ω(s,N ′) and, conversely, the

offer ηN ′(s) is accepted in the game Ω(s,N). Thus,

ηN (s) ∈ ΓN ′(s), ηN ′(s) ∈ ΓN(s).

Similarly, the seller’s continuation payoff satisfies

VN−1(s− εηN (s)) = VN ′−1(s− εηN(s))

VN−1(s− εηN ′(s)) = VN−1(s− εηN ′(s)).

None of the two offers can yield strictly higher payoff to the seller. Thus, the seller

must make the same offer, and VN (s) = VN ′(s), WN(s) = WN ′(s), ηN (s) = ηN ′(s),

µN(s, q) = µN ′(s, q).

Step (c) is proven by contradiction. Assume SN
M 6= ΣM . Consider the set for which

there is some long game that lasts strictly longer than M periods: [0, s0]\∪k≤M Σk. Now

let s′ be an element in this set such that the continuation stock s′′ = s′ − εq is not in the

same set for any feasible supply q > 0. It follows that there exists a game Ω(N ′, s′) that

ends inm > M periods withN ′ ≥ M∗+m. By construction, s′′ = s′−εηN ′(s′) ∈ ∪k≤MΣk.

Because of s′′ ∈ SN ′−1
m−1 , and the properties of P(0), ..,P(M − 1) we cannot have that

s′′ ∈ QM−1, and thus s′′ ∈ ΣM and m = M + 1. But (b) ensures that the pay-off

functions are stationary on ΣM , and it follows that the buyer in the game Ω(N, s′′) will

accept the same offers as for the game Ω(N ′, s′′), and similarly, that the seller will have

indentical best responses. Therefore, ηN (s′′) = ηN ′(s′′), and we must have m = M , which

contradicts m > M .

8 Appendix: Alternative timing of stages

We consider the case that the buyer has to decide on the investment decision before

observing the seller’s supply, and we will show that under this timing the equilibrium

degenerates. Let s∗ be again the resource level at which investment takes place. We will

show that no s∗ < s0 can exist, under stationary strategies. Notice that post-investment

pay-offs W I(s∗) and V I(s∗) do not change. As the buyer does not observe supply before

deciding, the decision to invest can only depend on the stock dt = µ(st). Thus, s∗ is the

highest value less than s0 for which µ(st) = 1. Both the buyer and the seller know s∗. The
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seller’s supply decision is not constrained by the buyer’s outside option, as long as st > s∗.

To maximize profits, the seller will solve a standard monopoly problem for an infinite

horizon under the constraint st > s∗. This gives a supply policy qt = ηM(st − s∗). One

feature of ηM(s) is that it approaches zero when the stock approaches s∗, i.e., qt ↓ 0 when

st ↓ s
∗. Now consider a point in time where the supply is so low that consumer surplus is

below the long-run level: u(qt) < u. On observing st, the buyer knows the seller’s supply.

When investing immediately, the buyer’s excursion pay-off is W I(st). When waiting, the

pay-off is ε[u(qt) − u] + e−rεW I(st − εqt). The first term is negative, the second term is

less then it’s immediate payoff, thus waiting yields a lower pay-off. The buyer will invest.

That is, for any s∗, the buyer will find it optimal to invest strictly before the stock has

dropped to this level. The only possible outcome is immediate investment: s∗ = s0.

The intuition is as follows. The change of timing removes all bargaining power from the

buyer. The seller then must abuse leadership and provide too low supplies at some point

in time. That is, the seller cannot bribe the buyer to wait. The buyer who knows this

must invest immediately.

9 Appendix: Continued competition post-investment

Here we consider the case that the seller can continue to supply the resource after the

arrival of the substitute. We will show that this option does not essentially alter the

results. We will restrict the analysis to the case without discounting. Assume that the

substitute is a backstop that can generate a flow q at fixed flow costs c plus constant

marginal costs p. Importantly, the costs c measures a part of costs that is independent

of scale. The basic analysis in the main text can be interpreted as the case in which the

substitute has only maintenance costs: c > 0, p = 0. When the seller does not save any

resource for the long-run state, consumer surplus satisfies u = u(q) − c = ũ(q) − pq − c

with ũ′(q) = p.

The seller can supply in the long-run state, but only at price pt = ũ′(max{q, qt}) ≤ p.

Flow profits are πL(qt) = ptqt, where we use superscript L for the long-run state. The

profit is linear for low supply levels, qt ≤ q, and strictly concave for qt > q. Without

discounting, maximization of net present value profit V L(st) means that the seller maxi-

mizes prices, and thus, supplies do not exceed q: V L(st) = pst. This strategy also implies

that the buyer will not receive any surplus from the resource saved to the long-run state.

During the interim state, the long-run sales option suggests that the seller will not

supply at prices below p. Let qI ≤ qm be maximal supply during the interim state,
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defined by π′(qI) = p. The buyer’s and seller’s stopping pay-offs are now given by

W I(s) =

{
k(u(s/k) − ū) if s < kqI

k(u(q) − ū) otherwise,
(45)

V I(s) =

{
kπ(s/k) if s < kqI

kπ(qI) + p(s− kqI) otherwise.
(46)

Clearly, the long-run competition just reduces the treshold at which the scarcity cost

starts to drive the equilibrium dynamics; nothing changes in our description if p = 0 and

qI = qm.

10 Appendix: Proof of Proposition 5

We prove Proposition 5, through a series of lemmas. The first lemma shows that supply

is continuous at investment point. The second lemma uses this finding to prove that the

seller prefers continuation to stopping at the investment point, which ensures that it is

the buyer who decides on stopping, and thus (34) holds up to the point where stopping

takes place. The third lemma then uses continuity of supply and (34) to establish the

values for the resource stock and supply level at the stopping time. It also shows that

the slope for (s, q) defined by (34) is downwards for values of s close to s∗, but upwards

for large values of s.

Lemma 6 Under constant elasticity of demand, the supply making the buyer indifferent,

U(s) = U I(s), is continuous at the stopping time.

Proof. Let qT refer to optimal monopoly supply at stopping time T , and q−T is the

supply just before. Continuity q−T = qT follows if u′(q−T ) = u′(qT ). Let I(st, qt) = 0 be the

reduced form of indifference equation (31). At stopping time T , the indifference condition

cannot be extended to smaller st, which means that Iq(s
∗, q−T ) = 0. The condition gives

u′(q−T ) = U ′(s∗). We notice that U ′(st) = U I′(st) = W I′(st), so that for this lemma to

hold we need to prove u′(qT ) = W I′(s∗).

Let λ = π′(qT ). When the resource stock increases by small amount ∆s, then the

pertubation of the supply path ∆qt satisfies π′′(qt)∆qt = er(t−T )∆λ, for some ∆λ such that
∫ T+k

T
∆qtdt = ∆s, that is,

∫ T+k

T
er(t−T )

π′′(qt)
dt = ∆s/∆λ. Let us use µt = π′(qt)

u′(qt)
= qũ′′(qt)

ũ′(qt)
+ 1.
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We obtain

W I′(s∗) =
∆W I′(s∗)

∆s
=

∫ T+k

T
e−r(t−T )u′(qt)∆qtdt∫ T+k

T
∆qtdt

=

∫ T+k

T
e−r(t−T )µtπ

′(qt)∆qtdt∫ T+k

T
∆qtdt

=

∫ T+k

T
µt∆qtdt∫ T+k

T
∆qtdt

λ =

∫ T+k

T
µt∆qtdt∫ T+k

T
µT ∆qtdt

u′(qT ). (47)

The difference W I′(s∗) − u′(qT ) is caused by the difference in the average value of

µt over the post-investment time interval [T, T + k], and its value at time T . It is clear

that, for utility with constant relative risk aversion, W I′(s∗) = u′(qT ). If utility has

decreasing relative risk aversion, relative risk aversion will increase with decreasing qt,

and µt will increase, so that W I′(s∗) > u′(qT ). Similarly, if utility has increasing relative

risk aversion, W I′(s∗) 6 u′(qT ).

Lemma 7 Under constant elasticity of demand, the seller prefers continuation to stop-

ping at the investment point.

Proof. We will show that the seller’s value function has a kink at the time of

investment, V ′(s∗) > V I′(s∗) when W I′(s∗) = u′(qT ), so the seller would always prefer

continuation rather than stopping in such a situation. Changes in k play a role in the

argument, and so we write the seller’s payoff as a function of both the stock level and

the transition time length k. We write V I(s, k) and V I(s) interchangeably, and similarly

V I
s (st, k) and V I′(st). Flow profits are concave by assumption, and supplies strictly

positive at the end of the overall sales time interval, qT+k > 0. It is clear that the seller’s

value of the resource increases with the transition time length k, V I
k (st, k) > 0. The value

function satisfies the following Bellman equation

V I(s∗, k) = επ(qT ) + e−ǫrV (s∗ − εqT , k − ε). (48)

Taking the limit for ε → 0 (leaving k out of notation), we get

π(qT ) − rV I(s∗) − qTV
I
s (s∗) − V I

k (s∗) = 0. (49)

Thus, π(qT ) > rV I(s∗) + qTV
I′(s∗). This together with continuous supply implied by

Lemma 6 and value matching, V (s∗) = V I(s∗), implies V ′(s∗) = π(q−T )/q−T −rV (s∗)/q−T =

π(qT )/qT − rV I(s∗)/qT > V I′(s∗).
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Lemma 8 Given σ, assume k and r satisfy (with ω = r/(1 − σ))

σ(1 − e−ωk)σ > 1 − e−ωσk. (50)

Then,

s∗ =

[
e−rkū

(1 − σ)2A
−σ

1−σ − (1 − σ)rA

]−1/σ

(51)

q∗ = A
1

σ−1s∗

For s ≥ s∗ but sufficiently close to s∗, seller’s supply qt = η(st) is defined by (34) and

declining in st. For s sufficiently large, qt = η(st) is increasing in st.

Proof. Recall that the buyer’s indifference condition (34) is

I(s, q) = qσ −
e−rkū

1 − σ
− rAsσ − qσAsσ−1 = 0.

If the buyer is indifferent between between d = 0 and d = 1 at s = s∗, then we have

W I′(s∗) = u′(q) by Lemma 6. Using the form in (33) forW I′(s∗), the condition W I′(s∗) =

u′(q) gives

q∗ = A
−1
1−σ s∗.

Condition I(s, q) = I(s, A
−1
1−σ s) = 0 then defines s∗, as given in (51).

Consider now the locus defined by I(s, q) = 0 in the (s, q)-space. We have

dq

ds

∣∣
I(s,q)=0 = −

−rσAsσ−1 − σ(σ − 1)qAsσ−2

σqσ−1 − σAsσ−1
.

Note that dq
ds

∣∣
I(s∗,q)=0 = ±∞, and that there are two solutions defined by I(s, q) = 0 for

s > s∗. Denote these by qL(s) ≤ qH(s), where the equality holds only at s∗. We argue

that the equilibrium policy is

η(s) = qL(s) (52)

for s > s∗ close to s∗. To show (52), we consider the seller’s dynamic program, given the

buyer’s rationality condition for continuation: the seller’s optimal path is constrained by

the requirement qt ∈ [qL(st), qH(st)]. We show that qt = qL(st) is the seller’s optimal

path for s > s∗ but close to s∗. Recall from (30) that

V ′(s) = [π(q) − rV (s)]/q. (53)

Maximizing the value of the resource is equivalent to maximizing V ′(s), given V (s∗) =

V I(s∗). In the zero discounting case, the seller always supplies the lowest permissable
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quantity. With positive discounting, the seller will still supply the lowest permissable

quantity if dV ′/dq < 0 for all q above the minimum permissable level. We will check

whether this condition holds at (s∗, q∗). If so, the seller will choose qL(s) rather than

qH(s) close to the stopping point. Substitute π(q)/q = σqσ−1, and then the condition

dV ′/dq < 0, multiplied by q2 reads

J(s, q) ≡ σ(1 − σ)qσ − rV > 0.

If J(s∗, q∗) > 0, the seller will choose the minimum permissable supply level for st

close to s∗. Substituting from (32) and (37), we obtain that J(s∗, q∗) > 0 holds iff

1 − σ > rA
1

1−σ . Rewriting as (1 − σ)1−σ > r1−σA, and expanding gives condition (50).

That is, condition (50) ensures that η(s) = qL(s) for s close to s∗.

The above argument made clear that, as long as J(s, qL(s)) ≥ 0, the equilibrium path

will satisfy (52). Now, if J(s, qL(s)) < 0, the seller can maximize the (marginal) value of

the resource by supplying qt =
(

rV (st)
σ(1−σ)

) 1
σ

> qL(s). We thus find the equilibrium supply

level for all s > s∗ to be

η(st) = max{qL(st),

(
rV (st)

σ(1 − σ)

) 1
σ

} (54)

Finally, we prove that η(st) is increasing for sufficiently large st. Regarding the first

term, we note that there exists an s̃ > s∗ with I(s̃, ωs̃) = 0, and q′L(s) > 0 iff s > s̃.

Function qL(s) is thus strictly decreasing on [s∗, s̃) and increasing on (s̃,∞).Regarding

the second term, we note that d
dst

(
rV (st)
σ(1−σ)

) 1
σ

> 0. The intuition is that the seller’s profit

maximization defines a supply level that increases with the stock level for reasons similar

to the Hotelling rule. Thus, for sufficiently large stock levels, irrespective of whether

the seller prefers to sell more than needed to prevent the buyer from investing, or the

buyer’s indifference condition determines supplies, supplies will decrease when the stock

is depleted.

The proposition in text is now proved by Lemmas 6-8.
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