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Abstract 
The social cost of carbon (SCC) is the monetized damage from emitting one unit 
of CO2 to the atmosphere, often obtained from computational Integrated 
Assessment Models (IAMs). We develop a closed-form formula that 
approximates the SCC for a general economy, and then explore the capacity of 
the analytical approach to capture the key SCC drivers and thus to replicate the 
results of the deterministic IAMs. The formula explains the parameter-driven 
SCC variation of a mainstream IAM without a systematic bias. The sensitivity 
analysis identifies and measures the performance limits of the closed-form 
formulas. We then use the analytic formula to structurally interpret a 
distribution of SCCs from deterministic IAMs, and develop an analytical 
breakdown and quantification of how different sets of parameters contribute to 
the SCC distribution. This allows the user of the formula to evaluate where 
particular parameter choices tend to place the resulting SCC outcome in the 
distribution of outcomes for the universe of deterministic IAMs. 
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1. Introduction 
The Social Cost of Carbon (SCC) monetizes the damage from releasing a ton of 
CO2 to the atmosphere today. The monetization of damages is essential for the 
determination of optimal climate policies; pricing carbon according to the SCC 
provides the correct economic incentive for reducing current emissions. The SCC 
can be obtained by using computational Integrated Assessment Models (IAMs) 
that connect the global carbon cycle and temperature dynamics to a global 
economy description to assess the marginal welfare costs of emissions. There are 
several widely used IAMs.1  While the IAMs overarch the contributions from 
various disciplines in climate-change research, they are not easily accessible to 
policymakers and researchers in general. 2  There are various systematic 
assessments of the assumptions in the IAMs and their effects on outcomes 
(Weyant, de la Chesnaye & Blanford, 2006; Hope, 2008; Nordhaus, 2008; Anthoff 
& Tol, 2013). The assessments show that higher climate sensitivity, higher 
estimates of damages for given temperature change, and lower discount rates 
generally lead to higher estimates for the SCC. They do not, however, solve a 
fundamental problem: to the wider audience, the IAMs remain a black box and 
the resulting SCC is a number accepted or rejected on the basis of trust or 
distrust in the models and their developers (Kelly & Kolstad, 1999a). Newbold et 
al. (2013) build a parsimonious and transparent IAM to help the user in 
understanding “how	the	SCC	is	likely	to	respond	to	alternative	assumptions	and	
input	parameter	values.”	Still, the user needs to ask the authors for the model, 
study it, run it, and analyze the outcomes.3 
 Golosov et al. (2014) derive an analytical formula for the SCC in an 
integrated assessment model, based on specific assumptions such as logarithmic 
utility and climate-change damages proportional to output and exponential in 
the atmospheric CO2.4 Gerlagh and Liski (2012) add a more comprehensive 
description of the climate system and associated temperature-change delays, and 
study the implications of the formula for the optimal policies in a general-
equilibrium context with time-inconsistent preferences. In the current paper, we 
build on this emerging analytical literature to develop a closed-form SCC formula 
that approximates a general economy, and to provide a systematic testing of the 
                                                        
1 Most notable IAMs include DICE (Nordhaus W. D., 1992; 2008), CETA (Peck & Teisberg, 1992), 
PAGE (Hope, Anderson, & Wenman, 1993), MERGE (Manne & Richels, 2005), FUND (Tol, 2005), 
Webster et al. (2003), R&DICE (Nordhaus & Boyer, 2000). 
2 The proof of the pudding is in the eating. Here we consider accessibility as revealed through use 
by others. Most policymakers (need to) rely on supporting researchers who can run IAMs for 
policy assessments. Some IAMs are considered relatively simple, but only DICE (Nordhaus W. D., 
1992) is sufficiently simple and comprehensive enough to have attracted a large group of users 
in the research community. R&DICE and FUND have publicly available descriptions and full 
source codes. R&DICE is used by a few researchers, but, to our knowledge, Ackerman & Munitz 
(2012) are the only researchers who used FUND, other than the developers. Learning to work 
with a model developed by someone else typically requires a very long learning time. Ackerman 
& Munitz (2012) reported	 on	 the	 results	 of	 their	 difficult	 process	 of	 running	 someone	 else’s	
model; they required help by the developers.  
3 The current literature considers the existing simple models, such as DICE, as the furthest point 
to which one can get towards practical and accessible tools for assessment, away from large-scale 
‘black	box’ models, without sacrificing what is seen to be the essential structure for the climate-
economy interactions. 
4 See Barrage (2014) for a sensitivity analysis of the assumptions. 
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formula. The objective is to explore the capacity of the analytical approach to 
capture the key SCC drivers and thus to replicate the results of the deterministic 
IAMs. 

To evaluate the “internal validity” of the formula we test its performance 
against a mainstream numerical IAM (DICE, Nordhaus 2008). 5  Using a 
conservative sampling of the IAM parameters, we find that, on average, the 
formula explains the parameter-driven variation in the IAM SCC: the eight 
central parameters that enter the formula predict the IAM outcome, which 
depends on 14 parameters, without quantitatively significant systematic bias. 
The largest gaps in outcomes are associated with situations where climate 
damages are either strongly concave or convex, and, at the same time, the 
discount rate takes extreme values (low or high). The reasoning behind the 
deviations helps in understanding and measuring the performance limits of the 
closed-form formula. 

To consider	 the	 “external	 validity”	 of	 the	 formula, we generate a 
distribution for the SCC from the underlying parameter distributions derived 
from the literature. The resulting distribution compares well with the existing 
distribution of SCC estimates produced by a sample of numerical IAMs (Tol, 
2009). Since the formula is a structural interpretation for the SCC distribution, 
we can develop an analytical breakdown and quantification of how different sets 
of parameters contribute to the SCC distribution. The right-skewness of the SCC 
distribution has little to do with the carbon cycle and temperature delay 
parameters; damages and the determinants of discounting have a large 
contribution. In addition, due to the non-depreciating climate boxes, some 
climate impacts are permanent, fattening the tail of the SCC distribution when 
discounting falls towards zero. Importantly, analytical models without a multi-
box description of the climate system ignore this tail-fattening effect.  

In contrast with Golosov et al. (2014) and Gerlagh and Liski (2012), we 
derive the SCC in closed-form for a general economy whose development is 
approximated by a balanced-growth path. The approximation allows extending 
the formula to cover elements that have been noted important in the literature: 
non-unitary elasticity of marginal utility (Jensen and Traeger, 2014); climate-
change damages increasing more or less than proportionally with income (Hoel 
and Sterner, 2007; Traeger, 2014); a climate-response function based on a more 
comprehensive emissions-temperature model (Gerlagh and Liski, 2012). The 
formal derivation thus requires a balanced-growth path; then, we test how the 
formula performs outside the balanced growth path.6 

The current study should be understood as an investigation into the basic 
mechanisms of the numerical IAMs; we do not consider climate policy making 
under uncertainty or learning (e.g., Kelly and Kolstad, 1999b; Keller et al., 2004; 
Leach 2007, Crost and Traeger, 2013). Thus, the formula, as currently expressed, 
cannot provide guidance on how the optimal polices should develop over time 

                                                        
5 Because of its public availability, conciseness, transparent documentation, and middle-of-the-
road assumptions, we choose DICE (Nordhaus, 2008) for testing the accuracy of the formula. We 
extend DICE with damages that grow more or less than proportional with output, see footnote 
22. 
6 In spirit, the approach is similar as in Nordhaus (1991); he considers a steady-state 
approximation. 
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when new information about the climate-economy interactions arrive (e.g., 
Lemoine and Traeger, 2014; Gerlagh and Liski, 2014), or how attitudes towards 
uncertainty might shape the current SCC (Jensen and Traeger, 2014).7 8 Instead, 
the objective is to link the predictions of the commonly used deterministic 
simulation models and those of the analytical representations for the current 
carbon price. With this focus in mind, the formula seeks to bring the knowledge 
that has been accumulated in the climate research, to the domain of analytical 
economics and further democratize it: by use of our formula, any reader can 
perform his or her own informed assessment about the SCC.9 Given its 
performance, the formula can be seen as a useful policy tool. Without the need 
for assistance in running an IAM, it allows the policymaker to assess the 
sensitivity of the SCC estimate to climate sensitivity, climate-change damages, 
and discounting. That is, the formula directly shows an estimate for the SCC, 
given the choices for the set of fundamental parameters.  Moreover, since we 
have evaluated how different parameter sets contribute to the SCC distribution, 
the user of the formula has tools for discussing where particular parameter 
choices tend to place the resulting SCC outcome in the distribution of outcomes 
for the universe of deterministic IAMs. For example, using median values for the 
carbon cycle parameters does not tend to place the estimate above or below the 
mean for the SCC outcomes; however, the median for damages places the output 
clearly below the mean SCC. 
 The paper is structured as follows. In Section 2, we introduce the climate-
economy decision problem, and derive, without specifying the structure of the 
economy, a general expression for the SCC. We build on optimization, but the SCC 
expression turns out to be valid irrespective of whether the economy follows the 
optimal policy or not. The result allows us to obtain the closed-form SCC that 
approximates the general economy. We then run two types of experiments with 
the formula. In Section 3, we perform the sensitivity analysis of the formula 
against an extended version of DICE. In Section 4, we generate the SCC 
distribution and elaborate the sources of variation in the distribution. Section 5 
concludes. 

2. Model 
2.1. Base model 

We derive the SCC expression first for a general climate-economy model.10 There 
is a representative consumer who maximizes the stream of future aggregate 
                                                        
7 Rezai and van der Ploeg (2015) also take the simple formula from van den Bijgaart et al. (2013) 
to elaborate its validity under various extensions. Their paper is complementary to ours because, 
in particular, they use the formula to assess the time paths of the SCC in comparison with those 
produced by a benchmark model. They find minimal welfare losses if one applies the simple rule 
as the basis for the climate policy over time. 
8 The impact of short-term fluctuations on the choice of the optimal policy instrument has been 
considered, for example, in Hoel and Karp (2001, 2002) and in Karp and Zhang (2006). 
9 The reader can fill in the parameters and see the results immediately through an Excel file 
available through 
https://www.dropbox.com/s/mjtodx670mnf8bv/SCC%20tool%20v2.xlsx?dl=0. 
10 Golosov et al. (2014) provide formal conditions under which a simple formula is valid in a 
general equilibrium framework; the formula here deviates from their result as we present a 
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utilities, discounted at rate ρ. Population is denoted by L. Output F depends on 
capital K, emissions E, and the global average surface temperature T, and on time 
t that may capture technological development. Output is used for consumption C, 
replacement of depreciated capital δKK, or net investments. Emissions add to the 
atmospheric CO2 stock S, which depreciates at rate δS. Here, we define S as the 
CO2 stock over and above the pre-industrial level of CO2. Temperatures adjust at 
rate ε	to their physical long-run equilibrium level φ(S).  
 
(1) 𝑚𝑎𝑥 ∫ 𝑒ିఘ௧𝐿𝑈(𝐶/𝐿)ஶ

଴ 𝑑𝑡. 

(2) 𝐶 + 𝐾̇ = 𝐹(𝐾, 𝐸, 𝑇; 𝑡) − 𝛿௄𝐾 
(3) 𝑆̇ = 𝐸 − 𝛿ௌ𝑆, 
(4) 𝑇̇ = 𝜀(𝜑(𝑆) − 𝑇) 
 
A dot denotes a time derivative.  We suppress time scripts for variables, but keep 
the time script for production F(.;t), to remind us that we assess climate change 
in a context of continued economic growth through technological change.11  

The model assumes perfect foresight, and there is no uncertainty within 
the model; we assess the sensitivity of the SCC with respect to the parameters 
and do not assess the effect of within-the-model uncertainty on the policies. 
Demography, innovation and income growth may respond to environmental 
conditions, we neglect such feedback mechanisms and assume an exogenous 
innovation and population growth path. Emissions are endogenously 
determined; however, it is not obvious if changes in emissions are important for 
the level of the social cost in comparison to the contribution of the key 
parameter choices. We quantify the effect of policy choices on the SCC in our 
analysis. 
 We thus assume a continuous physical climate-change process. We seek 
to include a meaningful impulse-response functions that connect CO2 emissions 
to atmospheric concentrations, and concentrations to temperature rise. For 
exposition, we postpone the full impulse-response to Section 2.3.  We abstract 
from thresholds or tipping points where the dynamics of the carbon cycle or 
temperature adjustment change dramatically; see Lemoine and Traeger (2014) 
for further analysis. 

Consider now the shadow-cost variables p, τ, χ for state equations (2)-(4), 
respectively. We interpret all shadow costs such that they take a positive value. 
That is, τ measures the marginal-utility weighted social cost of carbon – dividing 
by marginal utility, gives the monetized SCC that, when the optimal policy is 
implemented,	equals	the	marginal	product	of	energy	use,	∂F/∂E=SCC. Variable χ 
measures the current-value marginal cost of an increase in temperatures. In 

                                                                                                                                                               
richer description of damages depending on temperature change and income, time lags in climate 
change, and a non-unitary elasticity of marginal utility. 
11 Most IAMs assume implicitly or explicitly that both costs and benefits of emissions reductions 
are small compared to the economic benefits of technological progress over the relevant time 
scale (Azar & Schneider, 2002; Gerlagh & Papyrakis, 2003). That is, the decrease in F(.) when 
emissions E drop to zero, or when temperatures increase by 3 degrees Celsius, is typically very 
small compared to the increase in F brought by innovation as captured through time t.  
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Appendix 6.1, we provide the Hamiltonian for the problem (1)-(4), and describe 
the first-order conditions in (40)-(44). These conditions include for C, E, K, S, T:12 
 
(5) డ௎

డ஼
= 𝑝 

(6) 𝑝 డி
డா

= 𝜏 

(7) 𝑝̇ = 𝑝 ቀ𝜌 − డி
డ௄

+ 𝛿௄ቁ, 

(8) 𝜏̇ = (𝜌 + 𝛿ௌ)𝜏 − డఝ
డௌ

𝜀𝜒, 

(9) 𝜒̇ = (𝜌 + 𝜀)𝜒 + 𝑝 డி
డ்

, 
 
We note that (5) and (7) determine the optimal capital-investment versus 
consumption decision, while (8) and (9) are accounting equations that define the 
net present value of future marginal damages. The optimal climate policy is 
implemented through (6),	 defining	 ∂F/∂E=SCC= 𝜏/𝑝. But note that we can 
calculate the SCC also for non-optimal climate policies. For example, if we 
substitute	∂F/∂E=0 for (6), and maintain (5), (7)-(9), we find 𝜏/𝑝 as the SCC for 
the business-as-usual scenario.13 

For notational convenience, we write η	 for the (negative) elasticity of 
marginal utility, g for per capita consumption growth rate, r for the net rate of  
return on capital, and R(s;t) for the consumption discount factor between time t 
and s: 
 

(10) 𝜂 ≡ −
஼ങమೆ

ങ಴మ

௅ങೆ
ങ಴

, 

(11) 𝑔 ≡ ஼̇
஼

, 

(12) 𝑟 ≡ డி
డ௄

− 𝛿௄, 

(13) ோ̇
ோ

≡ −𝑟, 

(14) 𝑅(𝑠; 𝑡) ≡ 𝑅(𝑠)/𝑅(𝑡). 
 
We normalize R(0)=1, so that we can write for shorthand R(s) ≡R(s;0). 
Substituting the time derivative of (5) into (7) gives then the Ramsey rule: 
 
(15) 𝑟 = 𝜌 + 𝜂𝑔. 

Using the notation above, we can rewrite (8) and (9) to derive an explicit 
formula for the SCC at time zero (see Appendix 6.1 for details) as the net present 
value of marginal damages: 
 
(16) 𝑆𝐶𝐶(0) = − ∫ 𝑒ିఋೄ௧𝑅(𝑡) డఝ

డௌ
(𝑡) ∫ 𝜀𝑒ఌ(௧ି௦)𝑅(𝑠; 𝑡) డி

డ்
(𝑠)ஶ

௧
ஶ

଴ 𝑑𝑠𝑑𝑡. 

 

                                                        
12 Note	that	∂F/∂T<0, so that the last term in (9) is negative, similar to the last term in (8). 
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This expression for the SCC continues to hold even when the policy choices are 
not optimal.13 
2.2. Adding structure 

We follow most of the IAM literature and assume that the relation between 
atmospheric CO2 concentrations and equilibrium temperatures can be described 
through a logarithmic curve: 

 
(17) 𝜑(𝑆; 𝑐, 𝑚) = 𝑐 ୪୬(ଵାௌ/௠)

୪୬(ଶ)  , 

where c is the climate sensitivity parameter, that is, the temperature rise at a 
doubling of atmospheric CO2, and m is the pre-industrial atmospheric CO2.  
 The net output is gross output minus climate damages. Climate damages 
are assumed to increase with output changes, with elasticity ξ, and to increase 
with temperatures, with elasticity ψ: 
 

 (18) 𝐹(𝐾, 𝐸, 𝑇; 𝑡) = 𝑌(𝐾, 𝐸; 𝑡) ൤1 − ω𝑇ట ቀ௒(௄,ா;௧)
௅௬ത

ቁ
కିଵ

൨ 

 
where Y(.) is gross output before subtracting climate damages, and 𝑦ത is the 
reference per capita income level at which a one-degree temperature rise leads 
to relative damages ω.  
 The above functional form assumes that the costs of climate change are a 
smooth function of income, population, and temperature rise.14  Most IAMs 
assume that damages are proportional to income. If the value of ecosystems lost 
by climate change increases more than proportional to income, ξ>1, the cost of 
climate change increases and we expect a higher SCC (Hoel and Sterner, 2007; 
Sterner and Persson, 2008). On the other hand, if economic growth allows 
society to cope more easily with the consequences of climate change, ξ<1, and we 
expect a lower SCC. Another typical assumption in IAMs is that damages are 
quadratic in temperatures, but some researchers suggest a higher or lower order 
damage function (e.g. Kopp & Mignone, 2013). Below we use quadratic costs as 
the median value for ψ; in the experiments we consider 1≤ψ≤4.  
 Considering a climate system close to a stationary state, that is T=φ(S), it 
is not immediately evident whether output damages are concave or convex in S –
damages are given by a convex function of temperatures which in turn depend 
on S through a concave function. Indeed, for costs that rise quadratically with 
temperature change, ψ=2, the composite dependence of damages on 

                                                        
13 Equation (16) is an accounting equation therefore it must hold for all optimal and non-optimal 
paths. Yet, obtaining a well-defined non-optimal path is not straightforward. Rezai et al. (2012) 
note that, in the representative agent framework, it is inconsistent to ignore the carbon price and, 
at the same time, to anticipate and internalize the impacts of capital investments, through 
induced emissions and climate change, on future production possibilities. 
14 Theoretically, (18) allows for net output to become negative. The purpose of this formulation is 
that it gives a simple analytical result. We compare the analytical results with those from a 
numerical model where damages are formulated such that output never becomes negative. 
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concentrations is close to linear over the domain where S is between 400 and 
550 ppm15: 

 

(19) 
డቀ௖ౢ౤(భశೄ/೘)

ౢ౤(మ) ቁ
మ

డௌ
≈ 1.3𝑐ଶ/𝑚. 

 
Considering that the expected concentrations for the coming decades are in the 
range between 400 and 550 ppm, we use the average slope of the curve for our 
formula, and postulate the same approximation for other values of ψ. Writing 
𝐷 = 𝑇ట, we approximate the damage response as 
 
(20) డ஽

డௌ
≈ 1.3𝑐ట/𝑚, 

(21) డி
డ஽

= −ω ቀ௒(௧)
௅௬ത

ቁ
కିଵ

𝑌(𝑡), 

(22) డி
డ்

డఝ
డௌ

= డி
డ஽

డ஽
డௌ

≈ −1.3 ன௖ഗ

௠
ቀ௒(௧)

௅௬ത
ቁ

కିଵ
𝑌(𝑡) 

 
We foresee the following shortcoming of approximations (20)-(22). Consider an 
increasing temperature path. The formula assumes that marginal damages are 
constant over the range 400-550 ppm, but when ψ is high (>2), marginal 
damages are increasing with temperatures. Thus, the formula understates 
marginal damages in the long run where the temperatures are high; it overstates 
marginal damages in the short run where the temperatures are low. When the 
discount rate ρ is small, the long-run understatement of the damages becomes 
important and the formula SCC will tend to return a too low value. For high 
discount rate, the	formula’s	overstatement	of	the	shorter-term damages receives 
more weight, and then the formula tends to overshoot the true SCC. When ψ is 
low (<2), damages are concave and the approximation leads to opposite effects: 
shorter-term damages are understated and the longer-term damages are 
overstated. That is, we conjecture the formula to work best for values of ψ 
around 2, and a potential structural bias in the SCC formula when both 
discounting and the elasticity of damages with respect to the temperature are far 
from average. 
 
To approximate the development of the economy, we consider a balanced 
growth path with constant savings rate, where the economy grows at constant 
growth rate g+l, with g the per-capita income growth and l the population 
growth rate. The climate-economy models do not typically satisfy the balanced-
growth assumptions that effectively require all technological change to be labor-
augmenting (Uzawa, 1961). Since the true economy does not follow a balanced 
growth path, the formula is meant to be an approximation to be tested.16  

                                                        
15 At the time of writing CO2 concentrations are about 400 ppm, which compared with a pre-
industrial stock of approximately 275 ppm gives S/m=(400-275)/400≈0.45. 
16 Note that the closed-form formulas can also be obtained without the balanced growth 
assumption under specific structures for the preferences and technologies (Golosov et al. 2014). 
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Technically, however, we can use formula (16) to obtain the SCC for any growth 
path since the formula basically is an accounting equation. 
 Balanced growth ensures that the discount factor R decreases at constant 
rate ρ+ηg. In the definition of the SCC (16), within the integrals we also find 
marginal damages, డி

డ்
డఝ
డௌ

, which equation (22) tells us grow at rate ξg+l. We 
define σ the	“climate	discount	rate”, as the decrease in the value we attribute to 
future damages, corrected for the tendency of future damages to increase. 
Technically, σ is the negative overall growth rate of the terms within the 
integrals of (16), excluding the atmospheric CO2 depreciation δS  and 
temperature adjustment ε: 
 
(23) 𝜎 = 𝜌 + (𝜂 − 𝜉)𝑔 − 𝑙. 
 
Proposition 1. Consider the economy (1)-(4), approximated by a balanced growth 
path with a constant population growth, and a constant per capita income growth. 
Assume damages that have a constant elasticity with respect to temperatures	ψ	
and with respect to output	ξ.	The	approximate social costs of carbon, as defined by 
expression (16), is then given by the reduced form formula: 
 

(24) 𝑆𝐶𝐶 = ଵ.ଷఠ௖ഗ

௠
ଵ

ఋೄାఙ
ఌ

ఌାఙ
𝑌, 

 
where 𝜔, c, ψ,	m,	δS, 𝜀, are the primitives, Y is the current output, and σ	depends	on	
the	primitives	ρ,	g,	l,	η	,	ξ,	as	in (23). 
 
The proof follows from substituting the growth rates into (16) which gives 
 
(25) 𝑆𝐶𝐶(0) = ଵ.ଷఠ௖ഗ

௠
𝑌(0) ∫ 𝑒ି(ఋೄାఙ)௧ ∫ 𝜀𝑒ି(ఌାఙ)(௧ି௦)ஶ

௧
ஶ

଴ 𝑑𝑠𝑑𝑡 

(26) = ଵ.ଷఠ௖ഗ

௠
𝑌(0) ଵ

ఋೄାఙ
ఌ

ఌାఙ
. 

  
  There are no restrictions on 𝜎 to ensure that it is strictly positive. If 𝜎 is 
sufficiently negative, the SCC is without bound.17 In this situation however, the 
simple formula also loses relevance. If the SCC grows very large, future 
abatement options become important.18 Note also that, as long as information 
regarding the appropriate parameter values is not updated, the SCC is expected 
to grow at the rate of income, Y, although we do not intend to consider SCC time 

                                                        
17 For (23), this would be the case either if 𝜎 < −𝛿ௌ or 𝜎 < −𝜀 . In Section 2.3 we consider a 
refinement with more detailed climate dynamics. As these dynamics account for the fact that a 
very small share of emissions remain in the atmosphere for more than a 1000 years, the SCC is 
without bound already for 𝜎 = 0. 
18 For a high SCC value, it becomes profitable to capture CO2 from the air. The trade-off is then not 
so much between future benefits of preventing climate change and present costs of reducing 
emissions, but between the latter and the future costs of CO2 air capture. The, the policy will be 
determined by the lowest-cost abatement strategy instead of the tradeoff between emission cost 
and benefits. 
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paths in this paper.  
 An intricate part of the formula (24) is in the last two terms. The first 
term, 1/(δS+σ), measures the economic lifetime of atmospheric CO2. Both a rapid 
carbon depreciation, through high δS, and a high discount rate, σ, reduce the 
economic lifetime of CO2. When there is no discounting, σ=0, 1/δS measures the 
mean lifetime of atmospheric CO2, about 50 to 100 years. For a 2 per cent annual 
climate discount rate, the economic lifetime of atmospheric CO2 drops to a level 
between 1/(.02+.02)=25 and 1/(.01+.02)=33 years. 

The second term, ε/(ε+σ), measures the carbon price discount related to 
the	 delay	 of	 damages	 caused	 by	 the	 earth’s	 heat	 inertia.	 An	 immediate	 full	
temperature adjustment, εof, results in no discount. Slower adjustment implies 
that the impact of increases in atmospheric CO2 is more distant, which reduces 
the carbon price. For a typical 2 to 4 percent annual temperature adjustment 
speed, and an annual 2 per cent climate discount rate, the delay discount factor 
lies between .02/(.02+.02)=0.5 and .04/(.02+.04)=0.67. The delay discount 
factor can be approximated by a temperature lag. Suppose temperature change 
is lagged by N years after the corresponding change in the atmospheric CO2 
stock, and the discount rate is σ, then the lag results in a discount factor  𝑒ିఙே for 
the net present value of damages.  If we substitute N=25 years, and consider a 
discount rates of 2% per year, we find that X=e–0.5=0.61, which is within the 
range 0.5-0.67 stated above. A simplified interpretation of the 2 to 4 percent 
temperature adjustment speed is thus that temperature change lags about 25 
years behind atmospheric carbon dioxide concentrations. 

Jointly, the terms 1/(δS+σ) and ε/(ε+σ) weigh the persistence and delay of 
climate change; they cumulate the damage response over time, with weights 
decreasing exponentially at rate σ. Through these terms the SCC formula 
approximate the connection between emissions and damages in the IAMs.  

 
2.3. Extension of the climate dynamics 

The simple model assumes a single depreciation factor for the atmospheric CO2 
and a single temperature adjustment speed. We use the simple model in testing 
the	 formula’s	 performance	 against	 DICE in Section 3. In this subsection, we 
extend the simple model to allow for a more flexible representation of the carbon 
cycle and temperature adjustments.19 The extension allows us to quantitatively 
assess the contribution of climate system parameters to the carbon price 
distribution in Section 4. Thus, the simple and extended models have different 
roles in the quantitative exercise; the former identifies the key parameters 
necessary for matching the DICE outcomes, and the latter provides an extension 
connecting to the wider literature. Moreover, the extension shows that the 
simple climate description used in the previous Section, by assumption, puts a 
bound on the contribution of discounting to the carbon price. 

In the extension, the atmospheric CO2 depreciation is described through a 
set of impulse response functions with exponential decays, where each function 
                                                        
19 We have also considered other extensions while maintaining a closed form solution. For 
example, we can allow for a declining, instead of exponential, population growth. However, this 
extension turned out to be less important for the quantitative evaluation than the climate system 
description. 
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is labeled by 𝑖 ∈ 𝐼 = {1, … , 𝑛}, and ai  is	the	share	of	emissions	with	decay	rate	δi, 
as in Maier-Reimer and Hasselmann (1987) and Hooss et. al. (2001): 
 
(27) 𝑆(𝑡) = ∑ 𝑆௜(𝑡)௜∈ூ , 
(28) 𝑆̇௜(𝑡) = 𝑎௜𝐸(𝑡) − 𝛿ௌ௜𝑆௜(𝑡), 
 
In the Appendix, we present 16 carbon-cycle models as proxied by Joos et. al. 
(2013) through an ensemble of exponential decay functions (see Figure 7). All 
models show a rapid decay in the first decade, and most models suggest that a 
substantial fraction of CO2 remains in the atmosphere after 1000 years.20 

In analogy to the atmospheric carbon depreciation that is represented 
through a multi-response function, temperature change can be represented 
through a multi-temperature response function (Caldeira & Myhrvold, 2013). 
The more general concentration-temperature response function then becomes: 
 
(29) 𝑇(𝑡) = ∑ 𝑇௝(𝑡)௝∈௃ , 
(30) 𝑇̇௝ = 𝜀௝(𝑏௝𝜑(𝑆; 𝑐, 𝑚) − 𝑇௝) 
 
with ∑ 𝑏௝(𝑡)௝∈௃ = 1. We can now establish 
 
Proposition 2. For the same assumptions as in Proposition 1, but with a multi-
response function for atmospheric CO2 and temperature change, the social costs of 
carbon is given by the reduced-form formula: 
 

(31) 𝑆𝐶𝐶(0) = ଵ.ଷఠ௖ഗ

௠
𝑌(0)𝑊(𝜎, 𝑎, 𝛿ௌ)𝑋(𝜎, 𝜀), 

(32) 𝑊(𝜎, 𝒂, 𝜹𝑺) = ∑ ௔೔
ఙାఋೄ೔

௜∈ூ ; 𝑋(𝜎, 𝜺) = ∑ ௕ೕఌೕ
ఙାఌೕ

௝∈௃  

 
The formula is derived in a similar manner as equations (22) and (23) for 

the one-box model. For interpretation, note that 𝑊(. ) measures the economic 
life-time of emissions. When the climate discount rate approaches zero, 𝜎 → 0, 
𝑊(. ) becomes 

 
(33) 𝑊(0, 𝒂, 𝜹𝑺) = ௔భ

ఋೄభ
+ ⋯ + ௔೙

ఋೄ೙
. 

 
Thus, the economic life-time of CO2 becomes the physical life-time of CO2. In 
particular, if a share of emissions, say 𝑎௜ > 0, depreciates slowly, 𝛿ௌ௜ → 0, term 
𝑊(. ) becomes unbounded. This is an important difference to the simple model 
where, with vanishing discounting, the economic life-time of CO2 converges to 
1/δS. See also Gerlagh and Liski (2012) for further discussion.  In Section 4, we 
                                                        
20 The earth system models suggest that the fraction remaining in the atmosphere increases with 
cumulative emissions. Such can increase the SCC, an effect that we, as most IAMs, do not account 
for. 
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quantify how the climate system uncertainty, in the form of very low possible 
decay rates in some parts of the climate system, together with low discounting, 
translates into a tail-fattening effect in the SCC distribution. 
 Similarly, 𝑋(𝜎, 𝜺)  is the discount factor associated with the slow 
temperature adjustment. We postpone the further analysis of this factor to 
Section 4. 

3. Experiment I: testing the formula 
We now evaluate quantitatively how well the formula predicts the SCC of DICE 
(Nordhaus, 2008).21 The experiment is conducted by assuming distributions for 
14 key climate and economic parameters entering DICE, and then sampling 
100,000 draws for the parameter vector. Each draw defines also the subset of 
parameters that enter our formula. In the analysis, our dependent variable is the 
difference between the formula SCC and the DICE SCC (or, the SCC gap); the 
independent variables are the parameter realizations. We evaluate the 
contributions of various parameters to the SCC gap.  
3.1. Sampling procedure 

The 14 parameters for DICE describe the climate sensitivity, damage severity, 
the structure of time preferences, population growth, income growth, baseline 
emissions, and abatement costs.22  The full list of the parameters is provided in 
the Appendix (Table 4), together with the quantitative values that we obtain 
from the literature. Specifically, we use the values in the literature to present 
each parameter by a right-skewed distribution, taken to be log-normal and 
distinct for each parameter. This set of log-normals defines our primitive 
parameter distributions, used also in the analysis of Section 4. However, in this 
Section,	 for	 the	 purpose	 of	 setting	 a	 conservative	 test	 for	 the	 formula’s	
performance, we want to oversample the extreme parameter realizations far 
from the median. To this end, for each parameter, we transform the primitive 
log-normal to a log-uniform distribution, while matching the median of the 
original distribution; effectively, the sampling is from a uniform distribution 
applied to the logarithm of the parameters. This sampling procedure 
oversamples the corners of the original parameter space, compared to the 
primitive distribution.23  
 
                                                        
21 DICE is the single-most used IAM. To the knowledge of the authors, DICE is the only IAM that 
satisfies three conditions: (i) the source code is publicly available and can be run easily, (ii) for 
each major version of the model, an integrated and complete model description is publicly 
available, (iii) it is convenient in use. For other IAMs, either the model code is unavailable, or the 
model descriptions are scattered over various publications, or the model is built using software 
for which few researchers have the required skills.  
22 The damage specification in DICE implicitly assumes ξ,	 the rate of increase of marginal 
damages with income, is equal to unity.  Here, we extend the DICE damage specification to allow 
for ξ≠1. 
23 This transformation would be unnecessary if it was numerically possible to cover all corners of 
the parameter space. Below, the sensitivity analysis suggests that the current sampling 
proceduce has sufficient coverage of the parameter space: the estimated parameter contributions 
to the gap between DICE and the formula remain stable as we include larger subsets of 
parameters. 
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There are eight parameters that enter our formula: climate sensitivity (c), 
relative damages at 3K temperature increase (ω), damage-temperature elasticity 
(ψ), damage-output elasticity (ξ), elasticity of marginal utility (η), time discount 
rate (ρ), consumption growth rate (𝑔), and population growth rate (𝑙).24 25 To 
save on the dimensions of the parameter space, we do not consider variations in 
the parameters of the carbon cycle when testing the performance of the formula; 
for the contribution	of	the	“natural	science”	parameters to the carbon price, see 
Section 4. For the experiment in this Section, we use a one-box approximation of 
the climate system, assuming that 25% of CO2 emissions decay very rapidly, and 
75% decays at 1 per cent per year. The temperature adjustment process in our 
experiment formula assumes that 25% of temperature adjustment is reached 
immediately, while the remaining 75% of the temperature adjustment happens 
at 1 per cent per year. The two factors W and X of Section 2.3 become: 
 
(34) 𝑊(𝜎) = ଴.଻ହ

ఙା଴.଴ଵ
; 𝑋(𝜎) = 0.25 + ଴.଴଴଻ହ

ఙା଴.଴ଵ
. 

 
In the following charts, each dot presents an outcome from one parameter 

draw.  
 
3.2. The choice of the benchmark: climate policy effect 

Before testing the formula we should ask if the formula outcome should be 
tested against the DICE SCC with optimal climate policies or against the DICE SCC 
in the business-as-usual scenario. The optimal climate policy has an effect on the 
DICE SCC level – the effect depends on the shape of the damage curve. One may 
conjecture that a higher order damage exponent, ψ >2, tends to lead to damages 
that are convex in concentrations, while a smaller exponent imply concave 
damages. For a convex damage curve, marginal damages are increasing in S. 
Hence, a cut in emissions results in a reduction in the SCC, so that an active 
climate policy (a first-best scenario) lowers the SCC as compared to a business-
as-usual scenario.  Similarly, for ψ<2, one may conjecture that the optimal policy 
increases the SCC.  

To make an informed choice, we first quantify the above effect of the 
climate policy on the SCC in DICE. For each parameter draw, we calculate two 
scenarios. The first scenario assumes a baseline policy without emission 
reductions. The second scenario is based on optimal policy, implying that 
abatement options and their development over time also enter the SCC 
calculations. 

Figure 1 shows the policy impact on the SCC, calculated as the relative 
change [SCC policy – SCC nopolicy]/SCC nopolicy. The Figure confirms that for 
low values of ψ	 (<1.5), climate policy increases the SCC, as damages are a 
concave function of emissions, and thus lower emissions lead to higher marginal 
                                                        
24 The first six have direct counterparts in DICE. For the last two, the growth rates are not 
constants in DICE; we use the average growth for the first 50 years to obtain the corresponding 
parameter in the formula. 
25 Illustrating a feature in DICE that is not included in the formula, we note that DICE describes an 
autonomous decarbonization of the economy and the availability of abatement technologies and 
their costs. 
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costs. For high values of ψ (>2), climate policy decreases the equilibrium 
marginal costs of emissions. For very convex damages (ψ=4), responsive climate 
policy reduces the marginal costs of emissions on average by 40%. For climate 
damages that are quadratic in the temperature rise, the equilibrium carbon price 
is relatively insensitive to policies, with an average decrease of <10% brought by 
optimal climate mitigation policies. This result is not a surprise: Nordhaus 
(2008) reports the SCC both under the baseline and optimal policy scenario and 
finds that optimal policy reduces the SCC by less than 5 percent. 

 
[*** FIGURE 1 HERE ***] 

Figure 1: Climate policy effect on the SCC. Efficient climate policies 
reduce (increase) the SCC for large (low) values of ψ. On the vertical 
axis, the relative gap in the SCC between the climate policy scenario 
and the baseline with no policies. Each dot presents one parameter 
draw. The figure shows also the moving median, p5 and p95 lines. 
Dark dots present observations overlaying each other. Black dots 
indicate areas with more than 10 observations per square of 
0.012x0.005. 

 
The average change, over the full sample, of the SCC brought by climate 

policy is 15%.26 The change is relatively large for SCC values far from the median. 
With this observation in mind, we note that in spirit our formula is closer to 
gauging the no-policy SCC than the policy SCC: the formula has no policy 
variable. We thus use the business-as-usual DICE SCC as our benchmark in the 
analysis.27  

 
3.3. Testing the formula 

We look first at the values of the outcome variables, that is, the SCC values 
predicted by the formula and DICE.  In Figure 2 (left), we show the full set of 
outcomes on log-scale. The SCC outcomes are clustered along the 45-degree line, 
with a correlation of 0.985: there is a close association between the relative 
changes of the outcomes. Figure 2 shows the center of the distribution (median) 
as the solid line, and the 5 and 95 per cent cutoffs of the cumulative distribution 
as the dashed lines. 
 

                                                        
26 Let ge=policy/no_policy be the effect; 0.15 is the average value for |ge–1|. 
27 There are also reasons of analysis that rationalize the choice. In particular, to ensure that we 
cover the entire parameter space, parameter values far from the median are oversampled 
compared to a more realistic parameter distribution. Hence, the expected difference between 
policy and no-policy SCCs is smaller than implied by the sampling procedure. As we will see 
below, for the full range of parameter values, the SCC varies by factor 10.000, from 0.1 to 1000 
€/tCO2,	so	that	the	effect	of	policy	is	small,	compared	to	the	effect	of	parameter	variations.	Also,	
on the relevant domain the interaction of the convex damages and concave temperature 
adjustment approximately cancel out. 
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[*** FIGURE 2 HERE ***] 

Figure 2: The DICE and formula SCC. Each dot corresponds to one 
parameter vector realization with the horizontal and vertical co-
ordinates presenting, respectively, the DICE and our formula SCC 
values for the year 2015, in 2010 Euros. Left panel: logarithmic scale. 
Right panel: absolute values, with highest values eliminated for 
exposition. Both graphs show also the moving median, p5 and p95 
lines. Dark blue dots present observations overlaying each other. 
Black dots indicate areas with more than 10 observations per square 
of 0.02x0.02 (left) or more than 100 observations per square of 1x1 
(right). 

 
In Figure 2 (right), we show the same information for the raw values. For 
visibility, the Figure shows the observations having lower value than 500 
€/tCO2. The correlation between the absolute values of the outcomes is .920. The 
overall take-way from the two Figures is that the formula predicts the absolute 
level of the DICE SCC with a slight upward bias; the relative changes are closely 
connected. Moreover, the relative precision (log-scale) does not noticeably 
change when moving to extreme parameter draws while the absolute prediction 
error, naturally, depends on the SCC level (absolute scale).  
 We turn to address the precise sources of the prediction error (the SCC 
gap), using classical regression analysis. We regress the log difference 
[ln(𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑆𝐶𝐶) − ln(𝐷𝐼𝐶𝐸 𝑆𝐶𝐶)] on the independent variables (parameters) 
to assess the contribution of each parameter to the gap. As usual, the log 
specification facilitates a percentage change (right-hand side variable linear) or 
elasticity interpretation (right-hand side variable in logs) of the estimated 
parameters. Specifically, we identify the parameters that explain majority of the 
variation in the gap by a stepwise inclusion of parameter sets in Table 1 below.  
 The first column reports the eight most important parameters for 
explaining the gap. They are introduced as linear terms in the regression, so that 
the reported coefficient gives the main effect of each parameter on the gap.28 In 
the analysis, we subtract the mean from the parameter; the coefficients for the 
linear terms can be interpreted as the marginal effects at the mean value. Thus, 
for example, one per cent increase in the climate sensitivity leads to 0.26 per 
cent increase in the gap. The parameters reported in column 1 all enter the 
formula. The reported eight parameters explain 32 per cent of the variation in 
the gap (R2=.32). This is perhaps not surprising since the same parameters 
explain the majority of the variation also in the DICE outcomes (see Table 8 in 
the Appendix for the precise analysis of the explanatory power of the reported 
eight parameters for the DICE outcomes). 
 The second column introduces two additional terms: interactions ψ x ρ 
and ψ x η. We see that the explained gap variation doubles to R2=.64, while the 
estimated main effects in the first eight rows remain stable. These two 
interaction terms have the largest within-sample explanatory power (column 6, 
to be explained shortly) of all possible 14 linear and 91 interaction terms. This 
finding is consistent with the conjecture stated after equations (20)-(22). The 

                                                        
28 As we take the gap in logs, and we know that the dependent variables are about linear in ln(c) 
and	ln(ω),	it	is	natural	to	transform	these	two	parameters	into	their	logarithms. 
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interactions are absent in our formula but they are relatively important for the 
DICE SCC (see Table 8 in the Appendix). Intuitively, the loss from not having the 
interactions in the formula is best understood by considering a high value for ψ 
(>2) combined with a low discount rate ρ. Marginal damages are increasing with 
temperatures over time; but this is not taken into account by the formula since 
marginal damages are assumed independent of the temperature levels. Thus, by 
not including the temperature dependence, the formula understates the damages 
in the long run which receives a high weight when discount rate ρ is below the 
mean discount rate (i.e., independent	variable	“discounting”	is	negative).29 For ρ 
is above the mean value, the formula’s overstatement of the shorter-term 
damages receives more weight, and then the formula overshoots the DICE SCC. 
 When ψ is low (<2), damages are concave and the mistake from not 
including temperature dependence in the formula leads to opposite conclusions: 
shorter-term damages are understated and the longer-term damages are 
overstated; discounting dictates which bias is important in the overall 
determination of the SCC gap. In Appendix 6.5, we provide a more detailed 
analysis of the parameter draws where the formula either over- or undershoots 
by factor 2: there is clear evidence that interaction ψ x ρ contributes strongly to 
the gap in these worst cases. Finally, most of the variation in the climate discount 
rate σ in (23) comes through the pure discount rate ρ and the elasticity of 
marginal utility η; the interaction terms ψ x ρ	 and ψ x η can be similarly 
interpreted. 
 The third column adds all remaining linear terms (14-8=6 parameters). 
This has no practical impact on the results; R2 and the previously reported 
effects remain stable. The fourth column adds all the remaining interactions, 
leading to the full set of parameters used in explaining the gap variation. The R2 
increases to .82. We note that all reported parameter contributions remain 
stable as we move from left to the right, column by column, excluding the 
contribution of discounting. The movement of the estimated coefficient for the 
discount rate is suggestive of relevant interactions between the discount rate 
and the remaining parameters; however, individually, none of these stand out 
statistically or quantitatively important in a sense that we discuss next. 
 To gauge the potential of any given parameter (or interaction) to cause a 
large SCC gap, we report the spread of the parameter in the sample; that is, the 
fifth column reports the difference between the max and min values of the 
parameter (or, interaction) in the support. The final column then reports the gap 
caused when the parameter (or, interaction) moves from its mean value to its 
maximal or minimal value, to identify the most important contributions to the 
gap. This number is calculated as half the parameter spread multiplied with the 
estimated coefficient. Clearly, interaction ψ x ρ stands out. For intuition, moving 
from the mean ψ x ρ value to the min or max value of the interaction implies an 
increase of .7 in the gap, which, since the regression expresses the gap in logs, 
implies a factor two increase in the absolute value of the gap. None of the other 
reported (or non-reported) effects or interactions come close in quantitative 
magnitudes. The second-largest contribution comes from interaction ψ x η, and 

                                                        
29 The interaction term ψ x ρ is negative (ψ above average, ρ below average), so the positive 
coefficient of 9.3 is consistent with the interpretation. 
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the third-largest, but by factor 2 smaller, comes from the climate sensitivity 
parameter. We thus expect that those cases where the gap between the formula 
and DICE will exceed a factor 2 will most likely be found in the far corners of 
ψ x ρ, which is confirmed by Figure 8 in Appendix 6.5. 
 
Table 1: Relative gap between formula and DICE SCC values: dependence on main parameters. 
 OLS 

gap 
OLS 
gap 

OLS 
gap 

OLS 
gap 

within-sample 
spread 

corner-center 
effect 

 (1) (2) (3) (4) (5) (6) 
ln(c) 0.255 0.255 0.255 0.225 1.563 0.199 
ln(ω)  0.043 0.044 0.044 0.045 3.219 0.072 
ψ -0.037 -0.037 -0.037 -0.038 2.900 0.055 
ξ	 0.202 0.202 0.202 0.226 1.263 0.143 
ρ	 1.733 1.692 1.693 1.093 0.075 0.041 
η	 -0.100 -0.100 -0.100 -0.103 2.478 0.127 
g -3.793 -3.825 -3.849 -3.313 0.109 0.032 
l 10.13 9.894 9.886 10.39 0.005 0.029 
ψ	x ρ  9.279 9.278 9.803 0.142 0.694 
ψ	x η  0.192 0.192 0.194 4.582 0.446 
Other	linear	var’s NO NO YES YES   
Other interactions NO NO NO YES   
Nr independent vars 8 10 16 105   
Nr obs 100.000 100.000 100.000 100.000   
R2 0.316 0.640 0.642 0.815   
Note: All regressions include a non-reported constant. All reported coefficients are significant at p=0.01; t-
values for reported coefficients are 10 or above. First 4 columns regress the gap between the formula SCC 
(log) and the DICE SCC (log). Column 5 presents the full spread of the independent variable in the sample 
(max–min). The last column multiplies the absolute value of the coefficient with the spread, to assess the 
maximum change in the gap within the sample explained by the independent variable. 
 
With this background on the sensitivity analysis, we conclude the testing of the 
formula by plotting the raw value of the SCC gap on the level of the DICE SCC in 
Figure 3. It depicts the ratio of the SCCs plotted against the level of the DICE SCC. 
Over our parameter space, the SCC ranges by a factor 10.000, from 0.1 to 
1000 €/tCO2.	 Throughout this range, in 90% of all observations the formula 
returns a value between 65% and 174% of the value calculated by DICE, with the 
average ratio between the two 1.04, and standard deviation of 0.36.30 The figure 
shows more details: the tendency of the formula to exceed the DICE value at the 
high end of the distribution, and to fall short of the DICE value at SCC values close 
to 1 €/tCO2. Given the above sensitivity analysis, we evaluate that the largest 
part of the deviations arise from the non-linear relationships between CO2 
concentrations, temperatures, and damages that are not captured by the 
formula. 

 

                                                        
30 The average of the natural log of the ratio equals –0.01, with standard deviation 0.30 with an 
overall 5-95% interval [–0.43,0.55]. 
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 [*** FIGURE 3 HERE ***] 

Figure 3: The ratio of the SCCs. Each dot corresponds to one 
parameter vector realization with the horizontal and vertical co-
ordinates presenting, respectively, the formula-DICE SCC ratio and the 
DICE SCC values for the year 2015, in 2010 Euros. Both axes have log 
scale. The figure shows also the moving median, p5 and p95 lines. 
Dark blue dots present observations overlaying each other. Black dots 
indicate areas with more than 10 observations per square of 
0.02x0.01. 

4. Experiment II: carbon price distribution 
Our second experiment builds on the extended version of the formula that allows 
for a more flexible description of the climate system (Proposition 2 in Section 
2.3). We conduct a Monte Carlo experiment as in Section 3; that is, we take 
100,000 draws for the parameters entering the formula using right-skewed log-
normal distributions.31 In addition, in contrast with the experiment in Section 3 
where the climate system was fixed, here we also sample the climate system 
parameters. The overall objective of this second experiment to generate, from 
the underlying parameter distributions, a carbon price distribution that is 
comparable to the distribution of outcomes from the IAMs in the literature. Since 
our representation of the SCC distribution builds on a closed-form formula, it 
allows us to provide a breakdown of how different sets of parameters such as 
those related to the climate system or damages contribute to the SCC 
distribution. 

We start by introducing the sampling of the climate system parameters. 
Recall from Section 2.3 that carbon cycle parameters enter the formula through 
term 𝑊(𝜎, 𝒂, 𝜹𝑺)   that measures the economic life-time of emissions; the 
temperature adjustment enters through the term 𝑋(𝜎, 𝒃, 𝜺). We use 16 different 
models for the carbon cycle from Joos et. al. (2013), and 20 different models for 
the temperature adjustments from Caldeira & Myhrvold (2013); see Appendix 
6.3. In the experiment, we randomly select one of the 16 carbon cycle models 
and one of the 20 temperature adjustment models. This defines a draw for the 
climate system. 

Figure 4 presents the economic life-time of CO2, (𝜎, 𝒂, 𝜹𝑺) , as a function of 
the discount rate, for the ensemble of carbon cycles in Joos et. al. (2013) that we 
use in the analysis. The Figure shows the mean and the full support of W(.) for a 
given discount rate. We see that for a discount rate of 3% per year, the economic 
life-time is approximately 20 years. For a discount rate of 1%, the economic life-
time increases to 50 years. The variation between carbon cycles is small 
compared to the variation caused by the moving discount rate. Thus, Figure 4 
suggests a limited economic meaning for the variation between carbon cycles. 

 

                                                        
31 Recall that in Section 3, for the purpose of testing the formula, we translated the log-normals to 
log-uniforms. Here, since the testing is not the focus, we use the original log-normal distributions 
for the draws. 
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[*** FIGURE 4 HERE ***] 

Figure 4: Economic life-time W(σ,a, 𝛿ௌ) of atmospheric CO2 as a 
function of the discount rate. Based on 16 models provided in 
Appendix 6.3. 

 
Similarly, Figure 5 presents the discount factor X(.) associated with the 

slow temperature adjustment and the ensemble of temperature adjustment 
models from Caldeira & Myhrvold (2013). For a discount rate of 3% per year, the 
discount factor is between .45 and .58. For a discount rate of 1% per year, the 
discount factor is between .68 and .8. Hence, omitting the temperature delay, as 
in Golosov et al. (2014), easily biases the carbon price by factor 2. This point has 
been elaborated also in Gerlagh and Liski (2012). The figure also shows that the 
variation between temperature delay models is more important, in economic 
terms, though the effect of changing the discount rate is still substantially larger. 

Combining the two factors W and X, we see that a drop in the discount 
rate from 3%/yr to 1%/yr increases the factor WX from about 10 to about 40: a 
2%/yr decrease in the discount rate increases the net present value of future 
damages by about 4. 
 

[*** FIGURE 5 HERE ***] 

Figure 5. Discount factor X(σ, ε) for the net present value of damages 
because of the delay in temperature adjustment. Based on 20 models 
provided in Appendix 6.3. 

 
 Figure 6 depicts the density distribution of the SCC, obtained by sampling 
all parameters, as explained. 
 

[*** Figure 6 HERE ***] 

Figure 6: Density distribution of the SCC. Values are reported for the 
year	2015,	in	2010	Euros.	Tol’s	distribution	comes	from	the	database	
that supports his paper (Tol, 2009). SCC values in Tol were divided by 
3.67	to	convert	1995$/tC	into	2010€/tCO2,	and	then	increased	by	3%	
for each year between publication and 2015 to correct for the trend. 
Further	 information	 on	 the	 parameters’	 distributions	 is	 provided	 in	
Appendix 6.3. 

 
The resulting distribution is strongly right-skewed with a median SCC of 20 
€/tCO2, mean 44 €/tCO2, and more than 10 percent probability for a SCC higher 
than	100	€/tCO2. A distribution from IAM outputs of 232 distinct studies results 
in a similar distribution when the numbers are converted to comparable units 
(Tol, 2009).  
 It is not straightforward to develop a statistical test for the goodness of 
the match with the distribution from the literature, given the elusive nature of 
this	“data”.	We	take	it	as	given	that	Figure 6 is suggestive of consistency with the 
wider literature, and now we identify the determinants of the properties of the 
SCC distribution. 

We want to identify measures for the first and second moments of the SCC 
distribution. We define a skewness measure (SM), equal to the relative gap 
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between the expected or mean value E[.] and the median value M[.]. For a log-
normally distributed variable, it is given by 

 
(35)  𝑆𝑀[𝑋] = ா[௑]

ெ[௑] − 1 = 𝑒
భ
మఙమ

− 1, 

 
where 𝜎 = 𝑠𝑑[𝑙𝑛𝑋] is the standard deviation of the underlying normal variable. 
Since a greater spread in an underlying variable translates into a greater 
standard deviation, the value of SM[.] is the increase in the expected value, 
relative to the median. It follows from the definition of the skewness measure 
and its formula for a lognormal distribution that, if the factors composing the 
SCC are lognormal distributed, then the SCC is lognormal distributed, and the SM 
for the SCC can be decomposed into the SM of its parts: 
 
(36) 𝑍 = 𝑍ଵ ∙ 𝑍ଶ and 𝑍ଵ, 𝑍ଶ~𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 � 
(37) 1 + 𝑆𝑀[𝑍] = (1 + 𝑆𝑀[𝑍ଵ])(1 + 𝑆𝑀[𝑍ଶ]) 
 
The numbers in Table 2 provide some initial insight in the contribution of the 
SCC’s	parts	to	the	gap	between	mean	and	median	SCC.	The	table	shows	that	the	
carbon cycle and temperature adjustment speed uncertainty have a low 
skewness measure.  

But climate sensitivity, damages, and discounting each individually 
introduce considerable spread and right-skewedness to the SCC distribution. 
Furthermore, the table shows that, indeed, the skewness measure for the SCC is 
approximately equal to the (multiplicative) cumulative of its parts:  
 
(38) 𝑆𝑀[𝑆𝐶𝐶] ≈ (1 + 𝑆𝑀[𝑊])(1 + 𝑆𝑀[𝑋])(1 + 𝑆𝑀[𝑐ଶ]) × 

× (1 + 𝑆𝑀[ω])(1 + 𝑆𝑀[𝑊𝑋]) − 1 
 
where SM[W], SM[W], and SM[WX] denote the skewness measures of W(.), X(.), 
and W(.)X(.), associated with the carbon cycle parameters, temperature 
adjustment parameters, and climate discount rate, respectively. 
 

Table 2: Sources of SCC variation and skewness measures. Each row presents results from the 
Monte Carlo experiment, where only the first column parameters are varied. For the carbon 
cycle and temperature adjustment we estimated a median cycle (see Tables 4-6). 
Source of variation Median  

€/tCO2 
Mean 
€/tCO2 

St. deviation 
€/tCO2 

Skewness 
Measure 

None 16.4 16.4 0 0% 
Carbon cycle 31.3 32.8 3.2 +5% 
Temperature adjustment 19.5 18.6 1.7 -5% 
Climate sensitivity 29.6 38.9 30.4 +31% 
Damage 29.3 39.3 31.8 +34% 
Discount rate 29.5 34.1 18.9 +16% 
All 20.2 43.9 75.5 +117% 
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 The joint interaction of all uncertainties leads to a distribution where, as 
shown in Figure 6, the mean is twice as large as the median. The result is 
consistent with previous studies on the sensitivity (Hope, 2008; Nordhaus W. D., 
2008; Newbold et al., 2013), but importantly, the formula helps to identify how 
the uncertainties for these parameters add up in shaping the SCC distribution. A 
one per cent increase in the skewness measure for the damage parameter 
translates into approximately a one percent increase in the SCC SM. Similarly a 
one percent increase in the climate sensitivity SM translates into approximately 
a 2 percent increase in the skewness measure of the SCC.  

The formula also allows us to assess the sensitivity of the distribution to 
the annual discount rate as part of the distribution analysis (Table 3). The mean 
and median SCC increase by half when the discount rate, σ, falls from 3 to 2 
percent, increase by factor 2 when the discount rate falls from 2 to 1 percent, but 
they increase more than eight-fold when σ falls from 1 to .1 percent. Due to the 
non-depreciating climate boxes, some climate impacts are permanent, fattening 
the tail of the SCC distribution when discounting falls towards zero. For a 
discount rate converging to zero, the expected SCC is without bound. This effect 
cannot be captured by analytical formulas having only one climate box. 

 
Table 3: Discount rate sensitivity of the SCC. 

Discount rate Median  
€/tCO2 

Mean 
€/tCO2 

St. deviation 
€/tCO2 

0.1 % 280 511 698 
1 % 35.7 63.5 83.8 
2 % 18.3 32.6 43.0 
3 % 12.3 21.9 28.9 

Note: Each row presents outcomes from the Monte Carlo experiment, 
where only the discount rate is fixed. 

5. Conclusion 
This study offers a relatively simple, closed-form, formula for determining the 
SCC. We have derived the formula under a specific set of assumptions regarding 
economic growth, population growth and savings to provide an approximation of 
richer climate-economy descriptions. The formula is tested by comparison with a 
mainstream IAM. 

In this exercise, draws are taken from parameter distributions for the key 
variables, of which some also enter the formula. A comparison then reveals that, 
despite its low informational requirement, the formula explains the parameter-
driven variation of the SCC in DICE, the IAM used for the comparison. An 
application of the formula shows that for a parameter distribution, the formula 
generates a SCC distribution that comes close to that obtained in a 
comprehensive survey of previous SCC estimates.  

The approach has limitations: it does not present an analysis of policy 
making under uncertainty. However, the results are quite informative about the 
basic mechanisms of SCC determination in deterministic IAMs. First, they imply 
that the SCC, as presented by the benchmark IAMs, is relatively independent of 
current or future policy choices and abatement options. The analytics 
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demonstrates that only a few mechanisms are needed to understand the core of 
the determination of the SCC, as described by the mainstream IAMs.  

Second, the analytic structure allows assessment of how different 
parameter sets contribute to the SCC value.  Based on primitive parameter 
distributions, we found a strongly right-skewed SCC distribution, with a median 
of 20 €/tCO2, mean 48 €/tCO2, and a 10% probability of the SCC exceeding 100 
€/tCO2. The median (or best-guess) value for the SCC can readily be calculated 
using rule-of thumb values for the main parameters; however, the mean SCC is 
the more relevant measure for policymaking. Spread regarding the appropriate 
discount rate, climate sensitivity and damages mostly contributed to skew in the 
SCC distribution. The formula can easily be exploited to understand the effects of 
subjective choices on the deterministic SCC outcomes. In particular, the climate-
system description with some fraction of carbon slowly depreciating, explains 
the effect of the discount rate: a reduction in the effective discount rate from 2% 
to 1% approximately doubles the SCC outcome, while the SCC increases more 
than 8-fold if this discount rate is reduced from 1% to 0.1%.  

Finally, the formula indicates, and as has been noted in the literature, that 
the trajectory of the SCC is expected to increase approximately with income 
levels, as the size of the economy determines what is at stake. Yet, the scope of 
the current formula for such analysis is restricted since it excludes within-model 
parameter uncertainty (see Gerlagh & Liski, 2014, for analytical steps in this 
direction). 

From a science-policy perspective, the formula answers to a call for a 
better connection between research in the climate-economics domain and the 
users of that knowledge (Gerlagh & Sterner, 2013). Without ignoring the insights 
gained in recent years on fat tails for damages, climate tipping points, and policy 
under uncertainty, much of the basic understanding about the cost-benefit 
analysis of climate policy is still close to the insights of the early 1990s. The 
formula captures some of these insights, enabling the stakeholders to reflect on 
the methods used to derive the SCC. By doing so, it can facilitate the 
communication between stakeholders and the research community. 

6. Appendix.  
6.1. The optimal control problem (1)-(4) 

The current-value Hamiltonian for (1)-(4) reads 
 
(39) ℋ = 𝐿𝑈 ቀ஼

௅
ቁ + 𝑝[𝐹(𝐾, 𝐸, 𝑇; 𝑡) − 𝛿௄𝐾 − 𝐶] 

−𝜏[𝐸 − 𝛿ௌ𝑆] − 𝜒[𝜀(𝜑(𝑆) − 𝑇)] 
 
Since we defined τ and χ to measure the negative value of the stock of 
atmospheric CO2 and global temperature change, respectively, the first order 
conditions are 
 
(40) డℋ

డ஼
= 0 

(41) డℋ
డா

= 0 
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(42) 𝑝̇ = 𝜌𝑝 − డℋ
డ௄

, 

(43) 𝜏̇ = 𝜌𝜏 + డℋ
డௌ

, 

(44) 𝜒̇ = 𝜌𝜒 + డℋ
డ்

. 
 
After substituting the functional forms, we derive the FOCs (5)-(9). The FOCs (8) 
and (9), we can rewrite as 
 
(45) 𝜏(𝑡) = 𝜀 ∫ 𝑒ି(ఘାఋೄ)(௦ି௧)𝜒(𝑠)ஶ

௧
డఝ
డௌ

(𝑠)𝑑𝑠. 

(46) 𝜒(𝑡) = − ∫ 𝑒ି(ఘାఌ)(௦ି௧)𝑝(𝑠) డி
డ்

(𝑠)ஶ
௧ 𝑑𝑠. 

 
In order to express the social costs of carbon as the net present value of marginal 
damages, we use (7) and identities (12), (13), (14), to connect the price deflator 
R(.) to the marginal utility measure p: 
 
(47) 𝑅̇/𝑅 = 𝑝̇/𝑝 − 𝜌  ⇒  𝑅(𝑠) = 𝑐𝑛𝑠𝑡 𝑒ିఘ௦𝑝(𝑠) ⇒ 

(48) 𝑅(𝑠, 𝑡) = 𝑒ିఘ(௦ି௧) ௣(௦)
௣(௧)

 

 
We can now rewrite (45) and (46) as 
 
(49) 𝜏(𝑡) = 𝜀𝑝(𝑡) ∫ 𝑒ିఋೄ(௦ି௧)𝑅(𝑠; 𝑡) ఞ(௦)

௣(௦)
ஶ

௧
డఝ
డௌ

(𝑠)𝑑𝑠. 

(50) 𝜒(𝑡) = −𝑝(𝑡) ∫ 𝑒ିఌ(௦ି௧)𝑅(𝑠; 𝑡) డி
డ்

(𝑠)ஶ
௧ 𝑑𝑠. 

 
Substitution of t=0 in the first equation, substituting t for s, and substituting 
R(t,0)=R(t), and SCC(t)=τ(t)/p(t), gives (16). 
 
6.2. Parameters for the Monte Carlo experiment comparing the extended 

DICE model with the formula 

We included 12 major parameters from DICE (Nordhaus, 2008) in our Monte 
Carlo parameter sample, and add the damage temperature elasticity and damage 
income elasticity. These parameters are listed in the table below. For each 
parameter, we derived distributions from the literature as stated in the last 
column of the table below. The central values are more or less in line with the 
typical values used for DICE, apart from the elasticity of marginal utility. 
Compared to the parameters listed for the sensitivity assessment for DICE (Table 
VII-1), we included the pure rate of time preference, the elasticity of marginal 
utility, the decline rate of labor productivity growth and decarbonization, and 
short- to long-term backstop costs. We excluded the fossil fuel resources and a 
transfer coefficient in the climate module. For consistency between the 
parameters and initial values, we recalibrated the DICE model with respect to 
the initial capital stock, productivity, population size and growth in the first 
decade 2005-2015.  
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Table 4: DICE parameter distributions. 

Parameter [Units] Median 
Lower 
cutoff 
value* 

Upper 
cutoff 
value* 

Source 

Climate sensitivity [K ] 3 1.3719 6.5601 (a) 
Damages at 3K (relative to output) 0.027 0.0054 0.135 (b) 
Damage temperature power coefficient 2 1 4  
Damage income elasticity 1.15 0.67 2 (i) 
Pure rate of time preference [ yr-1] 0.02 0.005 0.08 (c) 
Elasticity of marginal utility 1.2 0.5 3   
Asymptotic size of population [mn] 10,000 7,300 13,699 (d) 
Productivity growth [dec-1] 0.154 0.109 0.218 (e, f) 
Decline rate of productivity growth [dec-1] 0.001 0.0005 0.002 (g) 
Decarbonization rate [dec-1] 0.073 0.0479 0.1113 (e, g, h) 
Decline rate of decarbonization [dec-1] 0.003 0.0013 0.007 (e, g, h) 
Backstop price [USD/tC] 1,170 768 1783 (g, h) 
Ratio initial to final backstop price 2 1.3122 3.0482 (g, h) 
Decline rate of backstop price [dec-1] 0.05 0.0275 0.0909 (g, h) 

Parameter distributions are log-normal, truncated at 2 standard deviations from the median; *for truncated distribution. 
Sources: (a) Dietz & Asheim (2012); (b) Tol (2009); Gerlagh & Liski (2012); (c) Weitzman (2001); (d) UN (2011); (e) 
World Bank, World Development Indicators. (2012), (f) OECD, OECD Productivity Statistics. (2012), (g) Nordhaus 
(2008), (h) Solomon et al (2007), (i) Hoel and Sterner (2007). 

 
The literature on climate damages deals with damages for a given temperature 
increase. To match distributions as suggested by this literature, we jointly 
estimate the damage parameter and damage temperature power coefficient as 
follows. We rewrite (18), normalizing ω as a measure for damages at 3 Kelvin 
temperature perturbation: 
 

(51) 𝐹(𝐾, 𝐸, 𝑇; 𝑡) = 𝑌(𝐾, 𝐸; 𝑡) ൤1 − ω(𝑇/3)ట ቀ௒(௄,ா;௧)
௅௬ത

ቁ
కିଵ

൨ 

 
Using this formulation, we draw ω and ψ independently, and (31) becomes 
 
(52) 𝑆𝐶𝐶(0) = 𝜔 ଵ.ଷ௖మ

ଽ௠
𝑌(0)𝑊(𝜎, 𝑎, 𝛿ௌ)𝑋(𝜎, 𝜀), 

 
6.3. Parameters for the Monte Carlo experiment using the SCC formula 

For the second experiment, we vary the parameters c, ω and σ, and use 16 
alternative carbon cycle representations and 20 temperature adjustment models 
(see Tables 5 and 6) to calculate the SCC according to equation (30). The 
parameter Y in the formula is fixed at 66.2 trillion Euros.  The parameters c, ω 
and σ	 are drawn from a lognormal distribution as specified in Table 4. The 
lognormal distributions are based on the literature as noted in the last column of 
Table 4, and chosen to reflect the fact that the dispersion regarding the 
appropriate parameter values is highly asymmetric, with greater dispersion for 
high values. Still, some very high (or low) values are deemed unrealistic. The 
latter is captured by our use of cutoffs.. 
 We generated a Monte Carlo parameter set and derived the SCC using 
Stata; the full source code is available online through 
https://www.dropbox.com/s/b3gdhwhmhmxirms/BGKL%20SCC%20v10.zip?dl
=0. 
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Table 5: SCC parameter distributions. 

Parameter [Units] Median Mean* Standard 
deviation* 

Lower 
cutoff 
value* 

Upper 
cutoff 
value* 

Source 

Climate sensitivity [K ] 3 3.218 1.222 1.3719 6.5601 (a) 
Damage parameter 0.003 0.004 0.0032 0.0006 0.015 (b) 
Climate discount rate [ yr-1] 0.018 0.0224 0.0154 0.005 0.072  

Parameter distributions are log-normal, truncated at 2 standard deviations from the median; *for truncated distribution 
. Sources: (a) Solomon et al (2007); (b) Tol(2009) and Gerlagh & Liski (2012). 

 
Table 6: Carbon cycle parameters. 
Model a0 a1 a2 a3 δS1 δS2 δ31 
NCAR_CSM1.4 0 0.367 0.354 0.279 0.0006 0.0353 0.1881 
HadGEM2-ES 0.434 0.197 0.189 0.180 0.0433 0.0433 0.2550 
MPI-ESM 0 0.586 0.183 0.231 0.0056 0.1106 0.1112 
Bern3D-LPJ 0 0.515 0.263 0.222 0.0005 0.0218 0.2583 
Bern3D-LPJ 0.280 0.238 0.238 0.244 0.0036 0.0260 0.2029 
Bern2.5D-LPJ 0.236 0.099 0.385 0.280 0.0043 0.0171 0.3865 
CLIMBER2-LPJ 0.232 0.276 0.490 0.003 0.0037 0.1494 0.1494 
DCESS 0.216 0.291 0.241 0.252 0.0026 0.0275 0.2943 
GENIE 0.215 0.249 0.192 0.344 0.0037 0.0254 0.2323 
LOVECLIM 0 0.361 0.450 0.189 0.0006 0.0461 0.4384 
MESMO 0.285 0.294 0.238 0.183 0.0022 0.0400 0.4965 
UVic2.9 0.319 0.175 0.192 0.315 0.0033 0.0377 0.2632 
ACC2 0.178 0.165 0.380 0.277 0.0026 0.0271 0.2686 
Bern-SAR 0.199 0.176 0.345 0.279 0.0030 0.0252 0.2433 
MAGICC6 0.205 0.253 0.332 0.210 0.0017 0.0455 0.3339 
TOTEM2 0 0.203 0.700 0.097 0.00001 0.0089 63.29114 
Median 0.220 0.279 0.278 0.222 0.0035 0.0507 0.2892 

Parameters taken from Joos et al (2013),	η0=0 for all models. The median cycle has been determined based on the 16 
individual models. 

[*** Figure 7 HERE ***] 

Figure 7. Airborne fraction of CO2 emissions for 16 models, as in Joos 
et al. (2013) 

 
Table 7: Temperature adjustment parameters. 
Model b0 b1 b2 ε0 ε1 ε2 
BCC-CSM1.1 0.235 0.352 0.412 1.447 0.162 0.007 
BCC-CSM1.1(m) 0.303 0.334 0.363 1.678 0.116 0.008 
CanESM2 0.458 0.245 0.298 0.469 0.037 0.003 
CSIRO-Mk3.6.0 0.197 0.212 0.591 1.248 0.113 0.005 
FGOALS-g2 0.333 0.227 0.44 0.621 0.036 0.003 
FGOALS-s2 0.079 0.453 0.468 5.155 0.212 0.003 
GFDL-CM3 0.181 0.284 0.535 1.342 0.139 0.005 
GFDL-ESM2G 0.13 0.432 0.438 3.390 0.315 0.003 
GFDL-ESM2M 0.16 0.385 0.455 2.688 0.242 0.004 
INM-CM4 0.197 0.481 0.322 3.106 0.188 0.002 
IPSL-CM5A-LR 0.216 0.394 0.39  0.062 0.002 
IPSL-CM5A-MR 0.185 0.379 0.436 2.262 0.097 0.003 
IPSL-CM5B-LR 0.292 0.316 0.393 2.075 0.114 0.006 
MIROC5 0.259 0.384 0.356 1.565 0.212 0.004 
MIROC-ESM 0.204 0.364 0.432 1.449 0.107 0.003 
MPI-ESM-LR 0.278 0.315 0.407 1.106 0.149 0.006 
MPI-ESM-MR 0.23 0.38 0.39 2.463 0.172 0.006 
MPI-ESM-P 0.302 0.317 0.38 1.733 0.141 0.006 
MRI-CGCM3 0.305 0.356 0.339 1.473 0.095 0.006 
NorESM1-M 0.223 0.297 0.480 1.942 0.145 0.005 
Median 0.2218 0.3306 0.4476 0.9787 0.1980 0.0036 

Parameters taken from Caldeira & Myhrvold (2013). The median cycle has been determined based on the 20 individual 
models. 
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6.4. Explaining the DICE outcome using regression analysis 

The sensitivity analysis looks at the gap log(formula SCC/DICE SCC). We can also 
regress the log(formula SCC) and log (DICE SCC) separately on the same right 
hand side variables; the results in text can also be obtained by merging the 
results of these two separate regressions. However, it is of some interest to see 
how the central parameters explain the levels; we present the results for DICE in 
the table below. We present in the table below all parameters that have a max 
within-sample effect of at least 2, meaning that their variation can cause a factor 
2 change in the DICE SCC. 
 Column 1 shows that the eight most important parameters explain more 
than 90 per cent of the variation; the parameters are the same as in the main 
text. The most important interaction terms (column 2) include those in the text 
but also one additional interaction.  
 
Table 8: DICE SCC value dependence on main parameters. 
 OLS 

DICE 
OLS 

DICE 
OLS 

DICE 
OLS 

DICE 
within-sample 

spread 
Center-corner 

effect 
 (1) (2) (3) (4) (5) (6) 
ln(c) 1.890 1.889 1.889 1.888 1.563 4.37 
ln(ω)  0.947 0.947 0.947 0.946 3.219 4.58 
Ψ 0.0389 0.0385 0.0385 0.0393 2.900 1.06 
ξ	 0.585 0.661 0.661 0.689 1.263 1.55 
ρ	 -38.96 -39.95 -39.95 -40.51 0.075 4.57 
η	 -0.837 -0.838 -0.838 -0.854 2.478 2.88 
g 4.570 6.600 6.612 7.585 0.109 1.08 
l 47.28 49.21 49.22 49.45 0.005 1.15 
ln(c) x	ψ  0.797 0.797 0.796 2.718 2.95 
ψ	x ρ  -9.135 -9.134 -9.643 0.142 1.98 
ψ	x η  -0.188 -0.188 -0.192 4.582 1.55 
Other	linear	var’s NO NO YES YES   
Other interactions NO NO NO YES   
Nr independent vars 7 9 16 105   
Nr obs 100.000 100.000 100.000 100.000   
R2 0.918 0.977 0.977 0.983   
Note: All regressions include a non-reported constant. All reported coefficients are significant at p=0.01. 
First 4 columns regress the DICE SCC (log). Column 5 presents the full spread of the independent variable in 
the sample (max–min). The last column multiplies the absolute value of the coefficient with half the spread, 
and then takes the exponent, to assess the change in the SCC when moving from the center of the parameter 
space to the furthest corner for that parameter. 
 
6.5. Sensitivity analysis: the parameters associated with extreme 

deviations  

The sensitivity analysis in the text shows that interactions ψ x η and ψ x ρ are 
important explanatory variables for the gap between the formula and DICE 
outcomes.  We complement the regression analysis here by collecting all 
realizations where the formula deviates from the DICE value by more than factor 
two. In Figure 8 below all observations where the formula presents less than half 
the DICE value are characterized by high ψ and low ρ (left panel). Observations 
where the formula more than doubles the DICE SCC are characterized by either 
high ψ and high ρ, or low ψ and low ρ. There is no other pair of parameters with 
such clear patterns. The interaction effect of the next most-important 
interaction, ψ and η, is too small to see a comparable pattern as below. 
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[***FIGURE 8 HERE ***] 

Figure 8. Projections of all 1081 observations with SCC formula < 0.5 
SCC DICE (left panel) and all 2280 observations with SCC formula > 
2*SCCDICE, on 2-parameter plane: ψ and ρ. 
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Figure 1: Climate policy effect on the SCC. Efficient climate policies reduce (increase) the SCC for large (low) values of ψ. On the vertical 
axis, the relative gap in the SCC between the climate policy scenario and the baseline with no policies. Each dot presents one parameter 
draw. The figure shows also the moving median, p5 and p95 lines. Dark blue dots present observations overlaying each other. Black dots 
indicate areas with more than 10 observations per square of 0.012x0.005.  
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Figure 2: The DICE and formula SCC. Each dot corresponds to one parameter vector realization with the horizontal and vertical co-
ordinates presenting, respectively, the DICE and our formula SCC values for the year 2015, in 2010 Euros. Left panel: logarithmic scale. 
Right panel: absolute values, with highest values eliminated for exposition. Both graphs show also the moving median, p5 and p95 lines. 
Dark blue dots present observations overlaying each other. Black dots indicate areas with more than 10 observations per square of 
0.02x0.02 (log-scale left) or more than 100 observations per square of 1x1 (right). 
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Figure 3: The ratio of the SCCs. Each dot corresponds to one parameter vector realization with the horizontal and vertical co-ordinates 
presenting, respectively, the formula-DICE SCC ratio and the DICE SCC values for the year 2015, in 2010 Euros. Both axes have log scale. 
The figure shows also the moving median, p5 and p95 lines. Dark blue dots present observations overlaying each other. Black dots indicate 
areas with more than 10 observations per square of 0.02x0.01 (log scales). 
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Figure 4: Economic life-time W(σ, a, 𝛿ௌ) of atmospheric CO2 as a function of the discount rate. Based on 16 models provided in Appendix 
6.3. 
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Figure 5: Discount factor X(σ, ε) for the net present value of damages because of the delay in temperature adjustment. Based on 20 models 
provided in Appendix 6.3. 
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Figure 6: Density distribution of the SCC. Values are reported for the year 2015, in 2010 Euros. Tol’s	distribution comes from the database 
that supports his paper (Tol, 2009). SCC values in Tol were divided by 3.67 to convert 1995$/tC into 2010€/tCO2, and then increased by 
3% for each year between publication and 2015 to correct for the trend. Further information on the parameters’ distributions is provided 
in Appendix 6.3. 
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Figure 7. Airborne fraction of CO2 emissions for 16 models, as in Joos et al. (2013) 
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Figure 8: Projections of all 1256 observations with SCC formula < 0.5 SCC DICE (left panel) and all 2279 observations with SCC 
formula > 2*SCCDICE, on 2-parameter plane: ψ and ρ. Black dots indicate areas with more than 10 observations per square of 0.08x0.0016. 


