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Abstract

The exhaustible-resource monopsony problem provides a basis for understand-

ing the dynamic relationship between resource importers and suppliers. We find

that the mere presence of a substitute supply creates a time-inconsistency problem

for the monopsonist. When the buyer can commit to delaying the arrival of the

substitute, he obtains a substantial reduction in resource prices but not enough as

to appropriate the entire resource rent. In the absence of commitment, the equi-

librium exhibits Coasian dynamics with sellers typically capturing a larger share of

the rent; paradoxically, however, the sellers’ surplus vanishes when the price of the

substitute approaches infinity. The notion of the substitute can be mapped into the

well-known connection between the durable-good monopoly and the exhaustible-

resource monopsony.
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1 Introduction

There has long been an interest in understanding how a single buyer of an exhaustible

resource –e.g., policy-maker interested in maximizing consumer surplus– might extract

rents from (competitive) resource suppliers. Bergstrom (1982) first showed how an im-

port tariff could allow the importer to extract the entire resource rent. Later, Maskin

and Newbery (1990) and Karp and Newbery (1993) noticed that under more general

conditions (e.g., increasing extraction costs) the resource importer suffers from a time-

inconsistency problem that prevents him to extract the entire rent. They explain that if

the importer can commit to tariffs, he would commit to higher tariffs in the future so as

to force sellers to supply today at lower prices. In the absence of commitment, however,

such threats are not necessarily credible, much the same way the durable-good monopolist

may fail to commit to high prices in the future, as conjecture by Coase (1972). Indeed,

Hörner and Kamien (2004) show that the two problems –durable-good monopoly and

exhaustible-resource monopsony– are mirror images of each other, i.e., one problem can

be obtained from the other by renaming variables.

In this paper, we revisit the exhaustible-resource monopsony problem but paying ex-

plicit attention to the fact that at the exhaustion of the resource stock the monopsonist

switches to a substitute good that is in perfectly elastic supply. While it is central in

resource economics that the price of the resource depends on the price of the substitute

and the timing of its adoption (e.g., Nordhaus, 1973; Dasgupta and Heal, 1979), the

time-inconsistency problem arising solely from the switch to the substitute and its im-

plications for the equilibrium price path have not been noticed in the literature.1 Given

the importance of this feature in resource exhaustion, it is also of interest to see how the

substitute maps into the connection identified by Hörner and Kamien (2004).

We find that under full commitment the resource buyer delays the switch to the

substitute in order to postpone the arrival of the final price of the resource and, thereby,

depress the price at which the resource is supplied today (in some cases the buyer may

1The issue does not arise in Maskin and Newbery (1990), for example, because they let the price

of the subsitute, which is known to arrive at some point in the future, say at T, be lower than the

(constant) cost of extracting oil. A time inconsistency problem still arises in their model because they

add a fringe of competitive buyers that, from the perspective of the strategic buyer, brings heterogeneity

to the supply side; otherwise the strategic buyer would face no commitment problems and would capture

the entire rent as in Bergstrom (1982). Had the substitute been costlier than extracting oil, as in most

resource models, it is not evident how the buyer in Maskin and Newbery (1990) could have resisted not

buying the remaining oil at T together with the substitute and at the same (or slighly lower) price.
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even commit to zero consumption during an interval of time in the future). Notice

that despite full commitment the buyer fails to appropriate the entire resource rent;

some surplus is lost due to the sellers’ ability to compete with the substitute. The

buyer’s commitment solution is not time-consistent, however: delaying the arrival of

the substitute leads to a price discount on all future consumption, so as the remaining

resource stock is depleted the buyer has an incentive to move the switch to the substitute

sooner than what was originally announced.

In the absence of commitment, the equilibrium exhibits Coasian dynamics with sellers

typically capturing a larger fraction of the resource rent compared to that under com-

mitment. Paradoxically, the sellers’ surplus vanishes when the price of the substitute

approaches infinity. The intuition is simple: when the substitute becomes extremely

costly, the buyer can commit to postpone its arrival indefinitely, which destroys the

sellers’ ability to compete (and supply together) with it.

These results can be interpreted using the insights from the durable-goods monopoly

problem. Kahn (1986) shows that the durable-goods monopolist can capture part of

the surplus when there is production smoothing (coming from strictly convex costs) and

that he can take all of it if consumers exhibit no heterogeneity in valuations (recall that

such heterogeneity is necessary for the Coasian dynamics to arise in the durable-goods

problem). In the resource model, on the other hand, the monopsonist can capture part

of the surplus when there is consumption smoothing (coming from a strictly concave

utility) and he can take all of it if resource suppliers exhibit no heterogeneity in costs

(Hörner and Kamien, 2004). The substitute enters this picture by adding a higher-cost

reproducible supply to the seller-side of the resource market, i.e., by introducing (or

altering the existing) heterogeneity on the seller-side. However, the equilibrium timing

of the switch to the substitute cannot be seen from the existing durable-goods models,

simply because the notion of the substitute, or its analogue, is not present there. After

solving the resource model (with the substitute), we explain how the solution can be

mapped into the durable-goods framework by assuming a demand with durable and

non-durable segments.

The results of the paper have implications for when and how demand-side policies

can influence resource rents. In the context of climate change, for example, broad pol-

icy instruments that put a price on carbon emissions reduce the demand for fossil-fuel

resources, but since they do not prevent the resource sellers from competing with the

substitute technologies (e.g., renewable energies), they are distortionary and fall short in

extracting rents. For the latter we require of more targeted instruments that can dis-
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criminate between resource and substitute suppliers such as tariffs on resource imports

or subsidies on substitute technologies, in the spirit of discriminating price schedules for

durable-goods (Bagnoli et al., 1989). Interestingly, the durable-good theory can provide

insights on the optimal instrument design.2

Buyer power in resource markets can also arise in a situation where countries have

resource endowments of different sizes in relation to their domestic demands. Besides

stocks of crude oil, we can also think of other resources such as stocks of carbon quotas

as part of a global market design where scarcity increases over time. A large buyer

with a relatively small stock, like the US, must rely on supplies from countries with

abundant stocks (i.e., endowments above their domestic needs). The large buyer cannot

discriminate between the resource and substitute suppliers because of the remaining

buyers in the market. This is another example of substitute suppliers influencing the

Coasian dynamics (Liski and Montero, 2011).

2 Commitment solution

We assume that there is a single importer (buyer) of an exhaustible resource. The buyer’s

utility depends on the rate of consumption qt, where time t is a continuous variable.

Utility from consumption is given by a strictly concave, increasing, and differentiable

function U(qt). We assume that U 0(0) > p̄ where p̄ > 0 is the price of a (inexhaustible)

substitute good (note that the substitute is available at all times). In the absence of other

supply, the demand for this good is q = q̄, with p̄ = U 0(q̄), which generates a surplus flow

of W (q̄) = U(q̄)− p̄q̄.

There is an initial resource stock Q0 in the hands of a large number of suppliers. Each

resource supplier has one unit of the resource and a given cost of extracting and selling

that unit. We assume a continuum of suppliers indexed by Q ∈ [0, Q0] and that the unit

cost depends on this index. The unit cost is given by a non-increasing and differentiable

function c(Q). Let δ denote the discount rate, and let pt be the market price at which

the resource can be sold at time t. A seller with cost c(Qt) is indifferent between selling

at t or after ∆ units of time when pt − c(Qt) = e−δ∆(pt+∆ − c(Qt)). As ∆ → 0, this

indifference becomes
2Building upon the theory of optimal commodity taxation –where the government has to allo-

cate the burden of taxation across different sectors and can commit to tax schedules– Daubanes and

Lasserre (2011) show that exhaustible resources should be taxed in priority following the standard

inverse-elasticity (Ramsey) rule.
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dpt
dt
= δ(pt − c(Qt)),

which is the Hotelling rule. Obviously, the rule applies only when pt < p̄, so that in order

to create a market for the resource we assume that the substitute price p̄ strictly larger

than the unit cost of the last resource unit c(0).

The commitment solution is the consumption path (qt)t>0 that maximizes the buyer’s

surplus in present value. The buyer announces the path at time t = 0 taking into account

the resource constraint, the availability of the substitute, and the price arbitrage dictated

by the Hotelling rule (as long as sellers are holding some strictly positive stock). The

buyer’s problem can be written as the one where the choice is made over the resource

consumption path (qt)t>0 as well as end of the path T which also marks the switch to

the substitute:

Vt=0 = max
{qt,T}

Z T

0

{U(qt)− ptqt}e−δtdt+ 1
δ
e−δTW (q̄) (1)

dQt

dt
= −qt, Q0 > 0, QT = 0, (2)

dpt
dt

= δ(pt − c(Qt)), pT = p̄ > 0, (3)

We impose the constraints that the final price equals the substitute price, pT = p̄, and

that the resource stock is fully depleted, QT = 0. These boundary conditions follow

from the assumption that the buyer cannot prevent resource sellers from supplying at

the substitute price.

To illuminate, suppose c(Q) = 0 for all suppliers, and that the buyer’s commitment

solution involves leaving a minuscule ε-fraction of the stock in the ground and then

switching to the substitute. This would force sellers to race for early sales, so prices at

t = 0 and later would collapse to 0. It is immediately clear that the commitment solution

cannot achieve this full rent extraction if the buyer cannot prevent the resource sellers

from selling at p̄ at the time he starts purchasing from substitute suppliers (the buyer

has no means to price discriminate between resource and substitute suppliers). The price

will jump to p̄ right after the depletion of the stock and thus sellers will see p̄ as the

final price of the resource rather than zero.3 The commitment solution must respect the

stated restriction on the final price.

The buyer’s optimal plan can be obtained using control theory (see, e.g., Karp 1984).

Over the interval of time where resource sales are positive, the optimal consumption must

satisfy the first-order condition
3The same reasoning applies for positive costs c(Q) < p̄.
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c(Qt)− c0(Qt)(Q0 −Qt) = U 0(qt)− 1
δ
U 00(qt)

dqt
dt

. (4)

The left-hand side of (4) is the marginal cost from buying an extra unit, and the right-

hand side is the marginal benefit of consuming that unit today rather than tomorrow.

Equation (4) is important as it identifies the time-inconsistency problem coming from

heterogeneity in resource extraction costs. The buyer’s optimal consumption plan de-

pends on the initial stock Q0 (i.e., the stock at the time of the initial announcement)

because the monopsonist’s inframarginal costs from additional purchases depend on total

remaining consumption. If the monopsonist is allowed to revise his initial plan at some

future date t > 0, the relevant "initial" stock at the time of this new announcement is

not longer Q0 but Qt>0 < Q0, which implies the monopsonist would now like to consume

faster than initially announced. This source of time-inconsistency has been carefully

discussed in Karp and Newbery (1993). And Hörner and Kamien (2004) connect this

time-inconsistency to the durable-goods model where the supplier’s cost is replaced by

the consumer’s valuation.

Since our focus is the time-inconsistency problem coming from the substitute alone,

in what follows we abstract from resource cost heterogeneity and set c(Q) = c > 0.

Consider then the monopsonist’s optimal time T of switching to the substitute. The

optimal choice should balance the marginal increase in the total payoff when resource

consumption period is marginally prolonged against the cost from postponing the arrival

of the substitute surplus W (q̄). In Appendix A we derive the optimality conditions that

combined yield the following condition for the buyer’s optimal stopping time

W (q̄)− {U(qT )− U 0(qT )qT} = δ(p̄− c)Q0 > 0. (5)

The two conditions, (4) and (5), fully pin down the buyer’s commitment path.

Condition (5) carries the main economic insight of the commitment solution as it

captures the time-inconsistency problem coming from the substitute. While the resource

price at the time of its exhaustion is pT = p̄, the buyer’s consumption at that time is

only qT < q̄, i.e., the buyer commits to reduce consumption below the efficient level to

the very end of the resource consumption path. This can be seen from the left-hand side

of (5) which measures the deviation from the first-best surplus flowW (q̄) = U(q̄)− p̄q̄ at

time T . According to (5), this deviation must be positive, which requires qT < q̄.4 This

4Since qT ≥ 0, we cannot rule out the corner qT = 0 if W (q̄) is too small relative to Q0. In such a

case, the monopsonist commits to a consumption path that exhibits three stages: An initial stage where
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also makes intuitive sense. Efficiency requires "smooth landing" of consumption, namely,

qT = q̄, and by distorting consumption downwards the buyer balances out efficiency and

rent extraction.

Delaying consumption is costly to the buyer, but the right-hand side of (5) captures

the offsetting gain of doing so: it achieves a downward adjustment in the price path. In

fact, the right-hand side of (5) is the marginal discount on the purchasing cost of the

initial stock Q0 when the length of the (resource) consumption path (T ) is extended by

one marginal unit of time. To see this, note that the initial price is p0 = c+ (p̄− c)e−δT ,

so a marginal delay in T leads to a drop δ(p̄− c) in the initial price p0.

For the time-inconsistency problem, note that the downward distortion in the con-

sumption path depends on the initial stock Q0, which implies that the buyer would like

to reconsider his original plan if allowed to do so at some later date t > 0. For example,

near exhaustion the remaining stock is close to zero; hence, the buyer would like to bring

qT much closer to q̄. Since the buyer has already enjoyed the price reduction for most of

the stock, he would now like to eliminate the consumption distortion that was used to

obtain such price reduction.

3 Resource substitute and the Coasian dynamics

We now move to the analysis of equilibrium when the resource monopsonist cannot

commit. To simplify the exposition, we set the extraction cost equal to zero, i.e., c = 0.

In Appendix B we present the extensive form of the game for a discrete number of stages

where at each stage the buyer first announces his demand and then the market prices the

resource based on their (correct) expectations of future play. We show that the payoff-

relevant history ht at each date t is summarized by the remaining stock so that the buyer

consumption rule and the equilibrium price depend only on the remaining stock, that is

qt = Ct(Qt) and pt = Pt(Qt). (6)

We adopt next a continuous-time formulation to characterize these functions.5

the stock Q0 is consumed except for an ε-fraction of it (otherwise, the last supplier in this first stage

receives p̄), followed by an interval of time of no consumption at all, and then by the final long-run

stage with a flow consumption of q̄ from substitute suppliers and the remaining ε-fraction of resource

suppliers.
5As we explain in Appendix B, there is nothing in the structure of the game that prevents the

continuous time formulation from capturing the limit of the discrete time setting.
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3.1 Equilibrium solution

We look for a price equilibrium function P (Q) : R+ → [0, p̄] with the following properties:

(i) continuous and differentiable almost everywhere, (ii) stationary Pt(Qt) = P (Qt),

and (iii) decreasing from P (0) = p̄. We will construct such a price function from the

equilibrium conditions, as well as a stationary consumption rule qt = C(Qt) for the

buyer.6 For a pair (P (Qt), C(Qt)), we can write the buyer’s payoff as

V (Qt) =

Z ∞

t

[U(qτ )− P (Qτ )qτ ]e
−δ(τ−t)dτ (7)

where qτ = C(Qτ) and q̄ = C(0) so that the surplus flow is W (q̄) when the stock is zero.

Over a small interval of time ∆, we can approximate this value as

V (Qt−∆) = [U(qt)− P (Qt−∆ − qt∆)qt]∆+ e−δ∆V (Qt−∆ − qt∆). (8)

where Qt−∆ is the stock at the beginning of period t (see the discrete time formulation

in Appendix B) and Qt = Qt−∆− qt∆ is the stock at the end of period t or beginning of

period t+∆. The equilibrium consumption qt for a given Qt−∆, by definition, maximizes

the right-hand side of (8). The buyer’s payoff is generated by differentiable functions,

so we can describe the equilibrium choice by differential methods. Maximizing (8) with

respect to qt yields

[U 0(qt)− P (Qt) + P 0(Qt)qt∆]∆− e−δ∆V 0(Qt)∆ = 0

and letting ∆→ 0 gives (the direct price effect P 0(Qt)qt∆
2 vanishes as ∆→ 0)

U 0(qt)− P (Qt)− V 0(Qt) = 0. (9)

To evaluate now the opportunity cost of current consumption, i.e. V 0(Qt), we take

the total differential of V (Qt) in (7) with respect to Qt

dV (Qt)

dQt
=

Z ∞

t

[U 0(qτ)− P (Qτ )][
dqτ
dQt

]e−δ(τ−t)dτ + (10)Z ∞

t

[−P 0(Qτ)qτ ][
dQτ

dQt
]e−δ(τ−t)dτ (11)

6In Appendix B, we state a condition for the extensive form implying that resource consumption

stops before the end of the game, so the strategies become independent of the total time available for

the strategic interaction. Under this condition, it is not surprising that in the limiting equilibrium where

period length vanishes, a stationary equilibrium can be constructed.
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The first line (10) collects terms that are affected by the perturbations of the equilibrium

choice (dqτ)τ>t. But since we are evaluating these (marginal) perturbation along the

equilibrium consumption path, i.e., qτ = C(Qτ) for all τ ≥ t, line (10) must be zero,

otherwise the buyer could profitably deviate from function C(Qτ).

For the second line (11), the Hotelling rule implies P (Qt) = e−δ(τ−t)P (Qτ) for Qτ > 0,

from which we obtain the differential

dQτ

dQt
=

P 0(Qt)

P 0(Qτ)
eδ(τ−t) (12)

Recalling that T denotes the time of exhaustion of the stock and that P 0(0) = 0, we can

combine (12) with (10)-(11) to obtain

V 0(Qt) = −P 0(Qt)

Z T

t

qτdτ = −P 0(Qt)Qt, (13)

From (9) and (13), we finally get that equilibrium consumption qt satisfies

U 0(qt)− P (Qt) + P 0(Qt)Qt = 0 (14)

for all t.

The monopsonist follows the same general principle as its static analog: the mar-

ginal utility from consumption equals the marginal purchasing cost. However, the price

function P (Qt) is forward-looking in that the marginal effect of current consumption on

today’s price depends on the overall remaining consumption Qt.

We have verified that the buyer’s best-response to a price function satisfies (14), and

we will next verify that there exists a price function with the stated properties that solves

(14). From the Hotelling rule for Qt > 0 we have

P 0(Qt)
dQt

dt
= δP (Qt)

or

qt = −δP (Qt)

P 0(Qt)
(15)

that combined with (14) gives

U 0
µ
−δP (Q)
P 0(Q)

¶
− P (Q) + P 0(Q)Q = 0 (16)

This is a first-order ordinary differential equation for P (Q) ≥ 0, where Q ∈ [0,∞). The
solution is a function that declines from the boundary condition P (0) = p̄ and approaches

zero as Q becomes infinitely large.
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It is difficult to convey further intuition from (16) without explicitly solving it. Hence,

let us consider U(q) = ln(q), which implies that condition (16) becomes

P 0(Q) = − δP (Q)2

1− δP (Q)Q

and has the solution7

P (Q) = p̄

q
δ2p̄2Q2 + 1− δp̄2Q. (17)

This equilibrium price function exhibits Coasian dynamics. First, and perhaps ini-

tially surprising, when the substitute price P (0) = p̄ approaches infinity, the resource

price at any strictly positive stock level Q > 0 approaches zero, i.e., limp̄→∞ P (Q)|Q>0 =
0. In this limit, the equilibrium solution converges to the commitment outcome where

the monopsonist commits to leave a minuscule fraction ε of the stock in the ground that

makes prices collapse to zero, and thereby, allows him appropriate the entire resource

rent. The intuition is simple: when the substitute becomes extremely costly, the buyer

can commit to postpone its arrival indefinitely, which destroys the sellers’ ability to com-

pete with the substitute. Second, as the interest rate δ falls to zero, the price function

becomes almost flat at the choke level, i.e., P (Q) = p̄ for all Q > 0. The buyer then

suffers from the Coase conjecture: the entire resource surplus goes to the seller side.8

Outside these limiting cases, suppliers and monopsonist share the resource surplus.

Although it cannot be seen directly from the equilibrium function (17), the monopson-

ist can also capture the entire resource rent when his choke price is below the substitute

price, i.e., U 0(0) 6 p̄; in other words, when the substitute is worthless to him (W (q̄) = 0).

Proposition 1 Consider a given resource stock Qt to be consumed by a monopsonist at

an arbitrarily frequently rate. The full resource surplus goes to the buyer if (i) the price of

the substitute is arbitrarily large, or (ii) the substitute has no value to the buyer. The full

resource surplus goes to the sellers when discounting vanishes. With discounting and a

valuable substitute, the surplus is shared between the buyer and the competitive suppliers.

Proof. See above.
7In solving the equation, we took advantage of the one-to-one relationship between P and Q and

solved instead for Q(P ). Inverting that solution gives equation (17).
8However, one may argue that highly frequent trading is the limit where the conjecture should

be tested both in durable goods and exhaustible resources, and there is no reason to consider zero

discounting per se. In durable goods, frequent trading translates into a short time to be served, meaning

a low effective discounting. This is the meaning of patience in durable goods, and not zero discounting.
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With the aid of (17) we can also visualize how equilibrium prices and consumption

evolve over time. In Figure 1, the thick solid line is the equilibrium price path pt = p0e
δt,

where p0 = p̄
p
δ2p̄2Q2

0 + 1− δp̄2Q0, while the thin solid line is the perfectly competitive

price path p∗t = p∗0e
δt, where p∗0 = 1/(1+δQ0). This latter path also represents the socially

optimal marginal utility path. Interestingly, the equilibrium marginal utility u0(qt) –

the broken line– follows closely the socially optimal price when the stock is relatively

large, suggesting that the monopsony seeks to avoid large consumption distortions when

scarcity is still low. This is turn indicates that the price discount is mostly achieved

by consuming near (and above) the long-run level q̄ for an extended period of time.

The reason why the buyer can credibly postpone the switch to the substitute when

approaching the exhaustion of the resource is the proximity to the competitive allocation

where the buyer’s surplus loss from consumption distortion is small.

*** INSERT FIGURE 1 HERE OR BELOW ***

It is natural to ask now whether and to what extent the above logic changes when

extraction costs depend on the remaining stock, i.e., when unit cost increases with de-

pletion, c0(Qt) < 0. Using the boundary for the price path and the Hotelling rule, we can

express the equilibrium price as

pt = e−δ(T−t)p̄+
Z T

t

δc(Qτ)e
−δ(τ−t)dτ.

The resource cannot be sold for anything less than p̄ and, therefore, the equilibrium

price converges to this level independently of whether the stock is economically (last

units not extracted, p̄ < c(0)) or physically depleted (all units extracted, p̄ > c(0)). The

equilibrium delay in buyer’s consumption lowers the price path by postponing the arrival

of the substitute much the same way as explained above –the substitute price appears

independently of the cost structure in the price equation. This effect is a source of the

above delay dynamics, as long as the buyer is switching to the substitute at some point in

the future (i.e., W (q̄) > 0). For these reasons, Proposition 1 applies under more general

cost structures.
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3.2 Connections to the durable-good monopoly

We are now in a position to connect these results to the literature on the Coase con-

jecture.9 First, the buyer can implement his first-best if he can separate the resource

sellers from the substitute suppliers. This would be the case if, for example, there were

a single importer of oil capable of producing the substitute himself and setting a tariff

on oil imports. From the resource sellers’ point view, this situation is not different than

assuming W (q̄) = 0; in either case there is no market after the depletion of the stock.

This corresponds to the solution suggested by Bagnoli et al. (1989) where the Coase

conjecture is avoided by a discriminating price schedule.10

Second, in the absence of the substitute our setting coincides with that in Kahn

(1986) and thus also with Hörner and Kamien (2004) who build the connection between

the two problems. To export the notion of the substitute into the Kahn’s framework, one

could consider two groups of consumers as follows. The first group of consumers includes

a continuum of agents indexed by S ∈ [0, S̄] with valuations represented by function
P (S) depending on the index; the valuations go from P (0) to P (S̄) ≤ P (0). The second

group is an almost infinite measure of identical consumers each with positive valuation

p < P (S̄) for the durable. If γ(q) is the monopolist’s strictly convex production cost, his

long-term surplus is W (q) = pq − γ(q) > 0, where γ0(q) = p. Provided the monopolist

cannot price discriminate between the two group of consumers, he would suffer from the

same time-inconsistency problems than our resource monopsonist, even if P (S̄) = P (0).

Our conjecture is that the solution to this durable-good problem would be a mirror-image

of the resource monopsony solution, as concluded by Hörner and Kamien (2004) for the

model without the substitute.

Finally, we note some key differences between our equilibrium with a substitute and

the one obtained in Kahn. As discounting vanishes, the monopolist in Kahn can almost

perfectly price discriminate among consumers (pp. 287-288). The exact opposite, how-

ever, occurs in the resource model with a substitute: competitive agents (i.e., sellers)

9The conjecture was presented in Coase (1972). In the literature that follows, the conjecture is un-

derstood as the entire loss of monopoly power when consumers are patient enough. Early formalizations

are Stokey (1981), and Bulow (1982). The monopolist may escape the conjecture, at least partially, if:

marginal production costs are convex (Kahn, 1986); reputational strategies can be used (Ausubel and

Deneckere, 1989); a price-quantity scheme can be used to discriminate among discrete buyers (Bagnoli

et al., 1989); the good depreciates (Karp, 1996); there is entry of new consumers (Sobel, 1991); or there

are capacity costs (McAfee and Wiseman, 2008).
10This approach requires the precise of knowledge of the (discrete) type distribution; see Levin and

Pesendorfer (1995).
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appropriate all the surplus. The instance of the Coase conjecture in the resource model

requires not only frequent trades (i.e., continuous-time actions) but also extreme patience

(i.e., no discounting); the standard requirement for the conjecture to hold is only frequent

trades. An other difference between our model and Kahn is that the equilibrium tim-

ing of the substitute adoption takes place in finite time, and therefore we developed an

approach that departs from the one in Kahn.

4 Concluding remarks

We believe it is a fruitful agenda to further explore elements that may shape strategic

interactions in resource markets. For example, in this paper we adopted the traditional

and somewhat stark view on the substitute arrival. Once the choke price is reached, the

substitute enters the market with perfectly elastic supply. Recent research has developed

a multi-sector description of the resource substitution process such that the transition is

gradual as sectors move substitutes at different times (e.g., Chakravorty, Roumasset, and

Tse 1997). Gerlagh and Liski (2011) have shown that adjustment costs, in the form of

a time-to-build period for the substitute, can bring about considerable bargaining power

to the buyer side of the resource market –to the extent that sellers have to increase

supplies over time. This, again, is a resource-market specific addition to the Coase

conjecture discussion.

Another interesting area to be explored further is the buyer power in renewable-

resource markets, and here too it should be possible to learn from the well-explored

Coase conjecture. For example, Bond and Samuelson (1984) consider, using the resource

terms, "a renewable consumer stock". The connections to the renewable resource are yet

to be explored.

5 Appendix : Commitment solution

We derive here the commitment solution for the resource monopsonist when he cannot

discriminate between resource and substitute suppliers. Assume c < p̄ = U 0(q̄) < U 0(0),

as in the text, and use the definition W (q̄) = U(q̄) − p̄q̄ for the long-run surplus flow.
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The buyer’s problem can be written as

V = max
{qt,T}

Z T

0

{U(qt)− ptqt}e−δtdt+ 1
δ
e−δTW (q̄)

s.t.
dQt

dt
= −qt, Q0 > 0, QT = 0.

dpt
dt

= δ(pt − c), pT = p̄ > 0

This problem is well defined due to our assumption on the objective functions and the

linearity of the state equations (Seierstad and Sydsaeter, 1988). Thus, the first-order

conditions are also sufficient for the optimum. To obtain these conditions, write the

current-value Hamiltonian as

Ht = U(qt)− ptqt − λtqt + ηtδ(pt − c)

where λt and ηt are the co-states of Qt and pt, respectively. The (interior) optimality

conditions include

∂Ht

∂qt
= U 0(qt)− pt − λt = 0 (18)

dλt
dt

= δλt − ∂Ht

∂Qt
= δλt (19)

dηt
dt

= δηt −
∂Ht

∂pt
= qt. (20)

In addition, a boundary condition for choosing the optimal T is needed. The Hamiltonian

evaluated at T measures the marginal value of increasing T , so that the present-value

effect is e−δTHT . On the other hand, the marginal value of postponing the arrival of the

substitute surplus is −e−δTW (q̄), evaluated at t = 0. The optimal T , chosen at t = 0,
equates the two marginal effects, that is

∂V

∂T
= e−δTHT − e−δTW (q̄) = 0. (21)

Conditions (18)-(21) are enough for determining the solution; the boundary values of the

states are fixed, so they require no transversality conditions. Combining (18) and (19)

gives

c = U 0(qt)− 1
δ
U 00(qt)

dqt
dt

(22)

consistent with the consumption equation (4) in the text. In addition, condition (20)

implies

ηt = Q0 −Qt. (23)
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Using the definition of HT and pT = p̄ together with (18), (19) and (23), allows us to

write (21) as

{U(qT )− U 0(qT )qT}+ δ(p̄− c)Q0 −W (q̄) = 0. (24)

Rearranging leads to the stopping condition in the text. Note that (22) is a well-defined

first-order differential equation with a boundary value given by qT satisfying (24).

6 Appendix B: The extensive form

Assume a finite number of periods i = 1, ..., N <∞ for the interaction between the buyer

and the resource market; after N the interaction stops and the buyer consumes q̄ units

of the substitute indefinitely. Each period lasts ∆ > 0 units of time.

The buyer’s strategy is a collection of consumption functions

C = (C1(·), ..., CN(·))

that defines consumption qi = Ci(hi) at any period i as a function of the history hi at i,

where

hi = ((q1, p1), , .., (qi−1, pi−1)) ∈ R2(i−1)+

for i > 1.

Similarly, market price is given by a collection of price functions

P = (P1(·), ..., PN(·))

that depend on hi and the buyer’s choice qi, i.e., Pi(hi, qi). These price functions will be

constructed from the structure of the economy such that the sellers will be indifferent

between selling at stage i and saving their stock for a later stage j > i.

A given profile (C,P ) generates consumption, price and stock paths, that is, qi =

Ci(hi), pi = Pi(hi, Ci(hi)) and Qi = Q0 −
Pi

j=1∆qj, respectively, for all i = 1, ..., N .

Note that Q0 is the initial stock, Qi−1 is the stock at the beginning of period i and

Qi = Qi−1 − qi is the stock at the end of period i.

The payoff to the buyer is then a matter of accounting:

Vi(hi, C, P ) =
XN

j=i
∆{U(qj)− pjqj}e−∆δ(j−i) +

e−∆δ(N+1)

1− e−∆δ
W (q̄).

The long-run surplus is enjoyed after the end of the resource consumption game, but

the buyer can choose to consume q̄ units of the substitute at any stage before that (the

substitute is available, at price p̄, from the start of the game).
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The subgame-perfect equilibrium of the game is defined as the profile (Ce, P e) that

for any hi, (i) Ce maximizes Vi(hi, C, P e) and (ii) P e satisfies the Hotelling condition

Pi(hi, C
e) ≥ e−∆δPi+1(hi+1, C

e),

where the equality holds whenever Qi > 0.

The equilibrium is found by backward induction. If the stock left at the final stageN is

equal or larger than the substitute supply, i.e., QN−1 ≥ q̄, the buyer will demand slightly

less than the remaining stock, and since sellers have no remaining trading opportunities,

the resource price would collapse to zero. If, on the other hand, QN−1 < q̄, the buyer’s

optimal demand is either (i) consume q̄ at price p̄, or (ii) buy the remaining stockQN−1−ε
at zero price with ε arbitrarily small. The former occurs if and only ifW (q̄) > U(QN−1−
ε). The best-responses and equilibrium prices are thus well defined functions of the stock

at stageN . The same reasoning applies to stageN−1 except that the sellers continuation
price is given by the remaining trading opportunity at stage N . Proceeding this way one

can verify that the payoff-relevant history is fully summarized by the remaining stock,

that is,

Ci(hi) = Ci(Qi−1) and Pi(hi, qi) = Pi(Qi−1 − qi) = Pi(Qi). (25)

Consider now the limiting case where ∆ is small. We want to state a relationship

between N and ∆ such that there is scarcity over the N potential consumption periods.

Remark 1 For finite N satisfying N > Q0/∆z, where W (q̄) = U(z), the equilibrium

interaction stops at M < N .

To establish the lower bound for the length of the game that introduces resource

scarcity, consider a constant consumption flow of z < q̄ and N such that W (q̄) = U(z)

and QN−1 = Q0 − (N − 1)∆z = ∆q̄. From the arguments above, the flow z would be

consumed at zero price if N ≤ N . We can then define the lower bound for the number

of strategic interactions needed for scarcity as N > Q0/∆z. The buyer cannot consume

z throughout because there is not enough resource for doing so (∆zN > Q0). The

resource will thus be exhausted before N , and as a result the price that will prevail in the

market before the interaction stops is p̄. Now, letting ∆ approaches zero while satisfying

N > Q0/∆z preserves the property that the stock is the only payoff relevant variable.

In the text we construct a stationary equilibriumwith these properties in the continuous-

time limit. That such a stationary equilibrium emerges is consistent with Maskin and

Tirole’s (2001) requirement for Markov perfection in the sense that strategies should be
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identical in states where the continuation payoffs are identical. In a game of a few periods,

strategies surely depend on calendar time since the continuation game is not the same at

different periods, even if the stock were the same. Furthermore, the stationarity property

should remain as we transit from the discrete-time to the continuous-time formulation as

long as Remark 1 holds, that is, as long as the equilibrium strategic interaction endoge-

nously stops before N . In such a case the precise value of N is irrelevant for the payoffs,

so it is not surprising that the equilibrium strategies we find do not depend on calendar

time.11
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