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Abstract

We consider climate policies when time preferences deviate from the standard

exponential type and there is no commitment to future policies. The conceptual

and quantitative results follow from the observation that, with time-declining dis-

counting, the delay and persistence of climate impacts provide a commitment device

to policy-makers. We quantify the commitment value in a climate-economy model

by solving time-consistent Markov equilibrium capital and emission taxes explic-

itly. The equilibrium returns on capital and climate investments are no longer

equal, leading to a large increase in emission taxes, compared to a benchmark with

equalized returns.
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1 Introduction

The choice of the long-run discount rate is central when evaluating public projects with

very long-run impacts such as the optimal response to climate change. While there is

no general consensus on the discount rate to be used for different time horizons, there is

certainly little evidence for using the same constant rate for all horizons. For example,

recent revealed-preference evidence suggest that “Households discount very long-run cash

flows at low rates, assigning high present value to cash flows hundreds of years in the

future” (Giglio et al., 2015), consistent with earlier findings based on stated preference

surveys.1

It is not unreasonable to think that policy-makers discount utility gains within their

lifetime differently from those after their time. Moreover, if policies have impacts at the

level of the economy and if future policy-makers’ decisions cannot be dictated today, the

setting becomes an intergenerational game between agents who make decisions in the

order they enter the time-line.

We consider the climate-policy implications of discounting that deviates from the

standard geometric case in such a policy game. Our analysis is normative in the sense

that we describe the best-responding policies for a representative aggregate planner,

given the future decision rules which, of course, depend on the equilibrium concept. We

start with a Markov equilibrium that does not condition on the behavior of the previous

planners and, thereby, has certain appeal in the intergenerational context. In the Markov

equilibrium, the extreme delays and persistence of climate impacts provide a commitment

device for policy-makers. Climate-related variables are much more persistent than the

economic variables that we are used to, and so the climate policies of today have a peak

impact on future utilities with a considerable delay, that is, after 60-70 years in our

quantitative model.

Climate policies, when responding to future policies, should exploit the commitment

to future utility impacts. When doing so, they depart from the idea that the same return

requirement holds for all investments in the economy. Intuitively, the climate asset,

1For stated-preference evidence, Layton and Brown (2000) and Layton and Levine (2003) used a sur-

vey of 376 non-economists, and found a small or no difference in the willingness to pay to prevent future

climate change impacts appearing after 60 or 150 years. Weitzman (2001) surveyed 2,160 economists for

their best estimate of the appropriate real discount rate to be used for evaluating environmental projects

over a long time horizon, and used the data to argue that the policy maker should use a discount rate

that declines over time — coming close to zero after 300 years. See Cropper et al. (2014) for various

interpretations of declining discount rate schedules.
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through its extreme persistence, provides a “golden egg” for present-day policies, with

commitment value arising endogenously in the equilibrium.

We assess the commitment value by restricting attention to a parametric class for pref-

erences and technologies, and solving for the time-consistent Markov equilibrium policies

explicitly. We introduce quasi-geometric discounting in a general-equilibrium growth

framework,2 building on Nordhaus’ approach to climate-economy modelling (2008) and

its recent gearing towards the macro traditions by Golosov, Hassler, Krusell, and Tsyvin-

sky (2014). Following Krusell, Kurusçu, and Smith (2002), we also describe the fiscal

instruments, that is, the capital and carbon emission tax policies that decentralize the

outcome of the policy game.

Table 1 contains the gist of the quantitative assessment. The model is calibrated to 25

per cent gross savings, when both the short- and long-term annual utility discount rate is

2.7 per cent. This is consistent with Nordhaus’ DICE 2007 baseline scenario (Nordhaus,

2007),3 giving 7.1 Euros per ton of CO2 as the optimal carbon tax in the year 2010

(i.e., 34 Dollars per ton C). The first row provides the optimal, consistent-preferences,

benchmark carbon price.

In the second row of Table 1 we show the Markov equilibrium capital and carbon taxes

that are the optimal best responses in the climate policy game.4 The Markov planner

introduces a distorting tax on capital, as in Krusell et al. (2002), but complements this

with a carbon tax that is considerably higher than Nordhaus’ benchmark. The planner

differentiates between the persistence of capital and climate investments. The persistence

gap is important for the planner as each asset has its own commitment value through its

effect on future utilities. The large increase in the carbon tax reflects the policy-maker’s

willingness to pay for a commitment to long-lasting utility impacts.

A zero capital tax is a natural benchmark that removes the distortion between the

planner’s and private returns on capital (Krusell et al. 2002). Similarly, ensuring equal

returns for investments both in capital and climate is another natural benchmark as

it removes a distortion in the asset portfolio. This second benchmark would use the

2Formally, we consider quasi-geometric discount functions as defined by Krusell et al. (2002). They

are quasi-hyperbolic in the sense that, for certain parameter values, they bear resemblance to hyperbolic

functions.
3Nordhaus uses an annual pure rate of time preference of 1.5 per cent; our value 2.7 is the equiv-

alent number when adjusting for the difference in the consumption smoothing parameter, and labor

productivity growth. See Nordhaus (2008) for a detailed documentation of DICE 2007.
4For the sake of illustration, we choose the short- and long-run time discount rates so that savings in

the Markov equilibrium remain the same as in the first row.
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economy’s return on capital savings as the return requirement for climate investments: it

would reset the carbon tax to the level identified by Nordhaus.5 We know from Krusell

et al. (2002) that a commitment to a zero capital tax increases welfare for both present

and future consumers, and in our analysis we show that policy-makers can coordinate on

zero capital taxes in a subgame-perfect equilibrium — even negative capital taxes can

be sustained. But, interestingly, we find that even if policy-makers had the option to

commit to use capital returns when evaluating climate investments, the commitment is

not welfare-improving: all consumers are better off under the Markov equilibrium carbon

taxes.

discount rate

short-term long-term savings capital tax carbon tax

“Nordhaus” .027 .027 25% 0% 7.1

Markov Equilibrium .037 .001 25% 29% 133

“Stern” .001 .001 25% 0 174

Table 1: Carbon taxes in EUR/tCO2 year 2010.

The capital and climate policies are closely related. The Markov equilibrium sav-

ings become distorted under non-geometric discounting: there is a wedge between the

marginal rate of substitution (MRS) and the marginal rate of transformation (MRT). The

wedge arises from a shortage of future savings leading to higher capital returns than what

the current policy-maker would like to see.6 As is well-known in cost-benefit analysis, a

distorted capital return is not the social rate of return for public investments.7 Coordi-

nation of capital taxes between subsequent planners can mitigate the return distortions,

bringing the future capital returns closer to the ones preferred today. However, even with

coordinated capital policies consumers are better off following the Markov carbon tax,

which remains above the carbon price based on capital returns.

The Markov carbon tax of 133 e/CO2 may seem surprisingly ambitious given that

the actual policies fall short of, rather than exceed, the benchmark proposals (7.1 e/CO2

by Nordhaus, and 174 e/CO2 by Stern (2006) in the third row of Table 1). However,

our analysis is not descriptive. Instead, the focus is on a global planning problem with

5Nordhaus advocates this approach as follows: “[...] As this approach relates to discounting, it

requires that we look carefully at the returns of alternative investments —at the real interest rate— as

the benchmarks for climate investments.” Nordhaus (2007, p. 692).
6This distortion is the same as in Barro (1999); and Krusell, Kurusçu, and Smith (2002).
7See Lind (1982), or, e.g., Dasgupta (2008).
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intergenerational distortions but without more immediate obstacles to policies such as

those arising from international free-riding. The objective is to find rules or institutions

that support consistency in global policy-making over time. The analysis thus suggests

that the gap between observed, low or non-existent, carbon taxes and the optimal one

is even larger as the gap that is already suggested by models based on time-consistent

preferences.

The relevance of hyperbolic discounting in the climate policy analysis has been ac-

knowledged before; however, the broader general equilibrium implications have been over-

looked. Mastrandrea and Schneider (2001) and Guo, Hepburn, Tol, and Anthoff (2006)

include hyperbolic discounting in simulation models assuming that the current decision-

makers can choose also the future policies. That is, these papers do not analyze if the

policies that can be sustained in equilibrium; we introduce such policies in a well-defined

sense.8 Karp (2005), Fujii and Karp (2008) and Karp and Tsur (2011) consider Markov

equilibrium climate policies under hyperbolic discounting without commitment to future

actions, but these studies employ a stylized setting without intertemporal consumption

choices. Our tractable general-equilibrium model features a joint inclusion of macro and

climate policy decisions, with quasi-hyperbolic time preferences, and a detailed carbon

cycle description — these features are all essential for a credible quantitative assessment

of the commitment value.

Several recent conceptual arguments justify the deviation from geometric discounting.

First, if we accept that the difficulty of distinguishing long-run outcomes describes well

the climate-policy decision problem, then such lack of a precise long-term view can imply

a lower long-term discount rate than that for the short-term decisions; see Rubinstein

(2003) for the procedural argument.9 Second, climate investments are public decisions

requiring aggregation over heterogenous individual time-preferences, leading again to a

non-stationary aggregate time-preference pattern, typically declining with the length of

the horizon, for the group of agents considered (Gollier and Zeckhauser, 2005; Jackson

and Yariv, 2014). We may also interpret Weitzman’s (2001) study based on the survey

of experts’ opinions on discount rates as an aggregation of persistent views. Third,

the long-term valuations must by definition look beyond the welfare of the immediate

8Iverson (December 2012), subsequent to our working paper (June 2012), shows that the Markov

equilibrium policy identified in our paper is unique when the equilibrium is constructed as a finite-

horizon limit.
9From the current perspective, generations living after 400 or, alternatively, after 450 years look the

same. That being the case, no additional discounting arises from the added 50 years, while the same

time delay commands large discounting in the near term.
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next generation; any pure altruism expressed towards the long-term beneficiaries implies

changing utility-weighting over time (Phelps and Pollak 1968 & Saez-Marti and Weibull

2005).

The paper is organized as follows. Section 2 introduces the infinite-horizon climate-

economy model and develops the climate system representation that allows us to decom-

pose the contributions of the size, delay, and persistence of climate impacts to the carbon

tax, and their interaction with the time-structure of preferences. This structured quan-

tification is a contribution that applies even with constant discounting. For example,

adding the delay of impacts to the setting in Golosov et al. (2014) reduces the carbon

tax level by a factor of two.

Section 3 proceeds to the Markov equilibrium analysis for the policy maker (planner)

and presents the main conceptual results. The results in Section 3 are presented for

a parametric class of preferences and technologies. Complementing Section 3, the Ap-

pendix explicates the implications of the assumptions using general functional forms in

a three-period illustration. In general, savings and climate investments can be strategic

substitutes or complements for future savings and climate investments and, thus, lower or

above those implemented in the case of full commitment to future actions. For a widely

used parametric specification, covering for example those in Golosov et al. (2014), we

show that climate investments are not used for manipulating future savings and vice

versa; the “over-investment” in the climate asset reflects purely the greater persistence

of the utility impacts in comparison with shorter term capital savings.10 Thus, for the

parametric class considered, the generations “agree” that a lower rate of return should be

used for climate investments, so that current climate investments are not undermined by

reduced future actions, even though, in principle, such a response is available to agents

in equilibrium.

Section 4 introduces the decentralization of the planner’s Markov equilibrium, sepa-

rately for capital and carbon taxes. Section 5 provides the quantitative assessment of the

conceptual results. To obtain sharp results in a field dominated by simulation models,

we make specific assumptions. Section 6 discusses those assumptions, and some robust-

ness analysis as well as extensions to uncertainty and learning. Section 7 concludes. All

10Although the commitment problem is similar to that in Laibson (1997), self-control at the individual

level is not the interpretation of the “behavioral bias” in our economy; we think of decision makers as

generations as in Phelps and Pollak (1968). In this setting, the appropriate interpretation of hyperbolic

discounting is that each generation has a social welfare function that expresses altruism towards long-

term beneficiaries (see also Saez-Marti and Weibull, 2005).
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proofs, unless helpful in the text, are in the Appendix. The supplementary material cited

in the text is available in a public folder.11

2 An infinite horizon climate-economy model

2.1 Technologies

For a sequence of periods t ∈ {1, 2, 3, ...}, the economy’s production possibilities, captured

by function ft(kt, lt, zt, st), depend on capital kt, labour lt, current fossil-fuel use zt, and

the emission history (i.e., past fossil-fuel use),

st = (z1, z2, ..., zt−2, zt−1).

History st enters in production since climate-change, that arises because of historical

emissions, changes production possibilities.12 The economy has one final good. Capital

depreciates in one period, leading to the following resource constraint between period t

and t+ 1:

ct + kt+1 = yt = ft(kt, lt, zt, st), (1)

where ct is total consumption, kt+1 is capital built for the next period, and yt is gross

output.

For closed-form solutions, we put more structure on the primitives. We pull together

the production structure as follows:

yt = kαt At(ly,t, et)ω(st) (2)

et = Et(zt, le,t) (3)

ly,t + le,t = lt (4)

ω(st) = exp(−Dt), (5)

Dt =
∑∞

τ=1
θτzt−τ (6)

Gross production consists of: (i) Cobb-Douglas capital contribution kαt with 0 <

α < 1; (ii) function At(ly,t, et) for the energy-labour composite in the final-good produc-

tion with ly,t denoting labor input and et total energy use in the economy; (iii) total

11Follow the link https://www.dropbox.com/sh/q9y9l12j3l1ac6h/dgYpKVoCMg
12History can matter for production also because the current fuel use is linked to historical fuel use

through energy resources whose availability and the cost of use depends on the past usage. We abstract

from the latter type of history dependence; the scarcity of conventional fossil-fuel resources is not binding

when the climate policies are in place (see also Golosov et al., 2014).
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energy et = Et(zt, le,t) with fossil fuels zt and labour le,t; and (iv) the climate impact

given by function ω(st) capturing the output loss of production depending on the his-

tory of emissions from fossil-fuel use. We assume that the final-good and energy-sector

outputs are differentiable, increasing, and strictly concave in labor, energy, and carbon

inputs. The key allocation problem determining emissions at given time t is how to-

tal labor lt is allocated between the final-good and energy sectors. By ft(kt, lt, zt, st) =

maxly,t k
α
t At(ly,t, Et(zt, lt− ly,t))ω(st), the production structure is as reported in the right-

hand side of eq. (1). To simplify the analysis of the decentralized economy, we assume

that ft(kt, lt, zt, st) has constant returns to scale in (kt, lt, zt).
13

2.2 Preferences

The consumption, fuel use, labor allocation, and investment choices generate sequence

{cτ , zτ , kτ , sτ}∞τ=t and per-period utilities, denoted by ut, whose discounted sum defines

the welfare at time t as

wt = ut + β
∑∞

τ=t+1
δτ−tuτ (7)

where discounting is quasi-geometric and defined by factor 0 < δ < 1 for all dates

excluding the current date when β 6= 1.

Let us next introduce the agents in the economy. There is a representative consumer

who lives all periods t = 1, 2, 3, ... The consumer at each t = 1, 2, 3, ... has distinct

preferences, discounting the immediate-next postponement of utility gains with factor

βδ and then later postponements with δ. This is the standard quasi-geometric discount

function formulation that, for β < 1, becomes the quasi-hyperbolic approximation of a

generalized hyperbolic discount function as, for example, in Krusell et al. (2002). The

infinite-lived consumer can also be interpreted as a dynasty, that is, a chain of generations

t who disagree about the weights given to future generations’ welfare. In the dynastic

chain of generations, there is no individual-level behavioral inconsistency but, rather,

only a differential discounting of future agents’ utilities at different points in the future

(as in Phelps and Pollak, 1968). In fact, the parametric model below remains tractable

for an arbitrary sequence of discount factors, under certain conditions for boundedness,

13The assumption is not needed before Section 4 where it simplifies the equilibrium fiscal rules by

leaving out a redistribution of rents since the total value of output is exhausted by factor compensations.

The assumption requires that the nesting structure in (2)-(3) has constant returns to scale, and that the

energy-labor composite can be written as At(ly,t, et) = At(ly,t, et)1−α.
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but the quasi-hyperbolic approximation allows sharper analytical results.14 We take

the discount function as a primitive element but, equivalently, one can take altruistic

weights on future welfares as the primitive element and construct a discount function

for utilities.15 Together with the consumer, there is also a representative planner, who

has the same preferences as the consumer. The planner sets taxes on energy use and

also on the capital savings, understanding how the tax policies impact the competitive

equilibrium where consumers rent their capital holdings and labor services to firms who

combine energy with capital and labor in production. We first consider the planner’s

equilibrium, and introduce the decentralized economy with prices and taxes in Section 4.

The utility function is logarithmic in consumption and, through a separable linear

term, we also include the possibility of intangible damages associated with climate change:

ut = ln(ct/lt)−∆uDt. (8)

where ∆u > 0 is a given parameter. We include ∆uDt for a flexible interpretation of

climate impacts that we develop through a social cost formula covering both direct utility

and output losses.16 In the calibration, we let ∆u = 0 to maintain an easy comparison

with the previous studies.17

This parametric class for technologies and preferences builds on Brock-Mirman (1972).

With geometric discounting, β = 1, the parametric class for technologies and preferences

leads to a consumption choice model that is essentially the same as in Brock-Mirman

(1972); see Golosov et al. (2014). In particular, the currently optimal policies depend

14The qualitative effect of declining time preference can be understood by studying the quasi-geometric

case. See Iverson (2012) for the extension of our analysis to the flexible discounting case.
15We explicate this in the Appendix with a three-period model; see Saez-Marti and Weibull (2005)

for the general equivalence between generation-specific welfare functionals and discount functions. Note

that the preferences are specific for generation t, and in that sense, wt is different from the generation-

independent social welfare function (SWF) as discussed, e.g., in Goulder and Williams (2012) and Kaplow

et al. (2010).
16See Tol (2009) for a review of the existing damage estimates; the estimates for intangible losses are

very uncertain and mostly missing. Including such losses in the social cost formulas can be helpful if

one is interested in gauging how large they should be to justify a given carbon price level.
17Note that we consider average utility in our analysis. Alternatively, we can write aggregate utility

within a period by multiplying utility with population size, ut = lt ln(ct/lt)−lt∆uDt. The latter approach

is feasible but it leads to considerable complications in the formulas below. Scaling the objective with

labor rules out stationary strategies — they become dependent on future population dynamics —, and

also impedes a clear interpretation of inconsistencies in discounting. While the formulas in the Lemmas

depend on the use of an average utility variable, the substance of the Propositions is not altered. The

expressions for this case are available on request.
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only on the state of the economy, say, at year 2015, so that policies become free of the

details of the energy sector as captured by At and Et, although the full outcome path for

the economy depends on these details.18 In the policy game, with β 6= 1, we show that

the Markov equilibrium has the same convenient properties.

2.3 Damages and carbon cycle

We now provide micro-foundations for equations (5)-(6) that formalize the productivity

impact of climate change. Climate damages are interpreted as reduced output, depending

on the history of emissions through state variable Dt that measures the global mean

temperature increase. The weight structure of past emissions in (6) is derived from a

Markov diffusion process of carbon between various carbon reservoirs in the atmosphere,

oceans and biosphere (see Maier-Reimer and Hasselman 1987). Emissions zt enter the

atmospheric CO2 reservoir, and slowly diffuse to the other reservoirs. The deep ocean is

the largest reservoir, and the major sink of atmospheric CO2. We calibrate this reservoir

system, and, in the analysis below, by a linear transformation obtain an isomorphic

decoupled system of “atmospheric boxes” where the diffusion pattern between the boxes is

eliminated. The reservoirs contain physical carbon stocks measured in Teratons of carbon

dioxide [TtCO2]. These quantities are denoted by a n× 1 vector Lt = (L1,t, ..., Ln,t). In

each period, share bj of total emissions zt enters reservoir j, and the shares sum to 1.

The diffusion between the reservoirs is described through a n×n matrix M that has real

and distinct eigenvalues λ1, ..., λn. Dynamics satisfy

Lt+1 = MLt + bzt. (9)

Definition 1 (closed carbon cycle) No carbon leaves the system: column elements of M

sum to one.

Using the eigen-decomposition theorem of linear algebra, we can define the linear

transformation of co-ordinates Ht = Q−1Lt where Q = [ v1 ... vn ] is a matrix of

linearly independent eigenvectors vλ such that

Q−1MQ = Λ = diag[λ1, ..., λn].

18We study the future scenarios and specify At and Et in detail in Gerlagh&Liski (2016). Emissions

can decline through energy savings, obtained by substituting labor ly,t for total energy et. Emissions

can also decline through “de-carbonization”, obtained by allocating total energy labor le,t further be-

tween carbon and non-carbon energy sectors. Typically, the climate-economy adjustment paths feature

early emissions reductions through energy savings; de-carbonization is necessary for achieving long-term

reduction targets.
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We obtain

Ht+1 = Q−1Lt+1 = Q−1MQHt + Q−1bzt

= ΛHt + Q−1bzt,

which enables us to write the (uncoupled) dynamics of the vector Ht as

Hi,t+1 = λiHi,t + cizt

where λi are the eigenvalues, and c = Q−1b. This defines the vector of climate units

(“boxes”) Ht that have independent dynamics but that can be reconverted to Lt to

obtain the original physical interpretation.

For the calibration, we consider only three climate reservoirs: atmosphere and upper

ocean reservoir (L1,t), biomass (L2,t), and deep oceans (L3,t). For the greenhouse effect,

we are interested in the total atmospheric CO2 stock. Reservoir L1,t contains both

atmosphere and upper ocean carbon that almost perfectly mix within a ten-year period

(which is the period length assumed in the quantitative analysis). Let µ be the factor that

corrects for the CO2 stored in the upper ocean reservoir, so that the total atmospheric

CO2 stock is

St =
L1,t

1 + µ
.

Let q1,i denote the first row of Q, corresponding to reservoir L1,t. Then, the development

of the atmospheric CO2 in terms of the climate boxes is

St =

∑
i q1,iHi,t

1 + µ
.

This allows the following breakdown: Si,t =
q1,i
1+µ

Hi,t, a =
q1,i
1+µ

Q−1b, ηi = 1− λi, and

Si,t+1 = (1− ηi)Si,t + aizt (10)

St =
∑

i∈I Si,t. (11)

This is now a system of atmospheric carbon stocks where depreciation factors are defined

by eigenvalues from the original physical representation. When no carbon can leave the

system, we know one eigenvalue, λi = 1,19

Remark 1 For a closed carbon cycle, one box i ∈ I has no depreciation, ηi = 0.

19Note also that if the model is run in almost continuous time, that is, with short periods so that most

of the emissions enter the atmosphere, b1 = 1, it follows that
∑
i ai = 1/(1 + µ). Otherwise, we have∑

i ai < 1/(1 + µ).
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This observation will have important economic implications when the discount rate

is small. We say that the carbon cycle has incomplete absorption if this box is non-

negligible:

Definition 2 (incomplete absorption) Some CO2 remains forever in the atmosphere:

there is one box i ∈ I that has no depreciation, ηi = 0 and is non-negligible, ai > 0.

The carbon cycle description is well-rooted in natural science; however, the depen-

dence of temperatures on carbon concentrations and the resulting damages are more

speculative.20 Following Hooss et al (2001, table 2), assume a steady-state relationship

between temperatures, T , and steady-state concentrations T = ϕ(S). Typically, the

assumed relationship is concave, for example, logarithmic. Damages, in turn, are a func-

tion of the temperature Dt = ψ(Tt) where ψ(T ) is convex. The composition of a convex

damage and concave climate sensitivity is approximated by a linear function:21

ψ′(ϕ(St))ϕ
′(St) ≈ π

with π > 0, a constant characterizing sensitivity of damages to the atmospheric CO2.22

Let ε be the adjustment speed of temperatures and damages, so that we can write

for the dynamics of damages:23

Dt = Dt−1 + ε(πSt −Dt−1). (12)

This representation of carbon cycle and damages leads to the following analytical emissions-

damage response.

Theorem 1 For the multi-reservoir model with linear damage sensitivity (9)-(12), the

time-path of the damage response following emissions at time t is

dDt+τ

dzt
= θτ =

∑
i∈I

aiπε
(1− ηi)τ − (1− ε)τ

ε− ηi
> 0,

where

ηi = 1− λi

ai =
q1,i

1 + µ
ci

20See Pindyck (2013) for a critical review.
21Indeed, the early calculations by Nordhaus (1991) based on local linearization, are surprisingly close

to later calculations based on his DICE model with a fully-fledged carbon-cycle temperature module,

apart from changes in parameter values based on new insights from the natural science literature.
22Section 6 reports our sensitivity analysis of the results to this approximation.
23The equation follows from an explicit gradual temperature adjustment process, as modeled in DICE

also. See Gerlagh and Liski (2012) for details.
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For a one-box model (with no indexes i), the maximum impact occurs at time between

the temperature lifetime 1/ε and the atmospheric CO2 lifetime 1/η.24

Theorem 1 describes the carbon cycle in terms of a system of independent atmospheric

boxes, where I denotes the set of boxes, with share 0 < ai < 0 of annual emissions

entering box i ∈ I, and ηi < 1 its carbon depreciation factor. The last line of the

theorem informs us that long delays in climate change between emissions and damages

are described through small values for ε and η. The substantial implications of the delays

become clear in Proposition 4. The essence of the response is very intuitive. Parameter

ηi captures, for example, the carbon uptake from the atmosphere by forests and other

biomass, and oceans. The term (1 − ηi)τ measures how much of carbon zt still lives in

box i, and the term −(1 − ε)τ captures the slow temperature adjustment in the earth

system. The limiting cases are revealing. Consider one CO2 box, so that the share

parameter is a = 1. If atmospheric carbon-dioxide does not depreciate at all, η = 0,

then the temperature slowly converges at speed ε to the long-run equilibrium damage

sensitivity π, giving θτ = π[1− (1− ε)τ ]. If atmospheric carbon-dioxide depreciates fully,

η = 1, the temperature immediately adjusts to πε, and then slowly converges to zero,

θτ = πε(1− ε)τ−1. If temperature adjustment is immediate, ε = 1, then the temperature

response function directly follows the carbon-dioxide depreciation θτ = π(1 − η)τ−1. If

temperature adjustment is absent, ε = 0, there is no response, θτ = 0.

3 Markov equilibrium of the planning game

In this Section, we assume that each planner at t controls aggregates (kt+1, zt) directly.

The outcome of the planning game gives the equilibrium marginal social cost of using

one more unit of carbon energy for each planner t. We call the social cost defined this

way as the equilibrium carbon price. In Section 4, where we decentralize the planning

equilibrium through a set of fiscal rules, the carbon price becomes the equilibrium tax

on emissions.

24The CO2 lifetime is the expected number of periods that an emitted CO2 particle remains in the

atmosphere. The temperature life time is the average duration that a fictitious temperature shock

persists.
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3.1 The game

The game is played between a sequence of planners, indexed with t = 1, 2, 3, ... Planner t

has a Markov strategy, mapping from the current state to savings and emissions. Before

defining the Markov policies, we must identify the state relevant for the continuation

payoffs. When written in full, the state reads as (kt,Θt), where Θt = (Dt, S1,t, ..., Sn,t)

collects the vector of climate state variables. However, the climate affects the continuation

payoffs only through the weighted sum of past emissions, as expressed in (6); we replace

Θt by st since the history is the sufficient statistics for Θt.

The Markov policies, denoted by kt+1 = Gt(kt, st) and zt = Ht(kt, st), do not condition

on the history of past behavior (see Maskin and Tirole, 2001).25 Given the parametric

class for preferences and technologies, a Markov equilibrium can be found from a par-

ticular parametric class for kt+1 = Gt(kt, st) and zt = Ht(kt, st) that, together with the

implied welfare, we define next.

3.2 Planner’s welfare

For given policies Gt(kt, st) and Ht(kt, st), we can write welfare in (7) as follows

wt = ut + βδWt+1(kt+1, st+1),

Wt(kt, st) = ut + δWt+1(kt+1, st+1)

where Wt+1(kt+1, st+1) is the (auxiliary) value function. More specifically, consider the

payoff implications from a sequence of constants (gτ , hτ )τ>t where 0 < gt < 1 is the share

of the gross output invested,

kt+1 = gtyt, (13)

and ht is the climate policy variable that measures the social cost of current emissions;

it equals the current utility gain from increasing emissions marginally, ht = ∂yt
∂zt

∂ut
∂ct

. This

measure, through the functional assumptions, defines the marginal product of the fossil

fuel use, the carbon price, as
∂yt
∂zt

= ht(1− gt)yt. (14)

Similarly as gt measures the stringency of the savings policy, ht measures the strin-

gency of the climate policy. In particular, the marginal product of carbon (the planner’s

25We allow the policies to depend on time, which in turn allows us to analyze the payoff implications

of changes in policies; the (symmetric) equilibrium Markov policies as defined below do not depend on

time.
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carbon price), ∂yt
∂zt

, is monotonic in policy ht, which allows an interchangeable use of these

two concepts.26 Now, for any sequence of constants (gτ , hτ )τ>t such that (13) and (14)

are satisfied, we have a representation of welfare:

Theorem 2 It holds for every policy sequence (gτ , hτ )τ>t that

Wt+1(kt+1, st+1) = Vt+1(kt+1)− Ω(st+1)

with parametric form

Vt+1(kt+1) = ξ ln(kt+1) + Ãt+1

Ω(st+1) =
t−1∑
τ=1

ζτzt+1−τ ,

where ξ = α
1−αδ , ∂Ω(st+1)

∂zt
= ζ1 = ∆

∑
i∈I

aiπε
[1−δ(1−ηi)][1−δ(1−ε)]

, ∆ = ( 1
1−αδ + ∆u) and Ãt+1

is independent of kt+1 and st+1.

The future cost of the emission history is thus given by Ω(st+1), giving also the

marginal cost of the current emissions as ζ1 that is a compressed expression for the

climate-economy impacts. But, we can immediately see from Remark 1 that a closed

carbon cycle leads to persistent impacts (ηi = 0 for one i), implying thus unbounded

future marginal losses when the long-term discounting vanishes:

Corollary 1 For a closed carbon cycle with incomplete absorption, ∂Ω(st+1)
∂zt

→∞ as the

long-run time discount factor δ → 1.

The result has strong implications for the policies.

3.3 Markov policies

Theorem 2 describes continuation welfares for a class of policies, and now we proceed to

a Markov equilibrium that can be found from this class.

Definition 3 A Markov equilibrium is a sequence of savings and carbon price rules

(gt, ht)t≥1 satisfying (13) and (14) such that (gt, ht) maximizes welfare at each t, given

(gτ , hτ )τ>t.

26We show this in Lemma 5 of the Appendix.
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More precisely, just below, we look for a symmetric Markov equilibrium where all

generations use the same policy (gτ , hτ )τ>t = (g, h).27 28

Krusell et al. (2002) describe the savings policies for a one-sector model in the same

parametric class with quasi-geometric preferences. Our setting is more complicated since,

with two-sectors, the policies for the sectors can be either strategic substitutes or com-

plements; however, the Brock-Mirman (1972) structure for the consumption choice and

exponential productivity shocks from climate change eliminates such interactions, and

thus the savings and climate policies become separable.29 Each generation takes the

future policies, captured by constants (gτ , hτ )τ>t in (13)-(14), as given and chooses its

current savings to satisfy

u′t = βδV ′t+1(kt+1),

where u′t denotes marginal consumption utility and function V (·) from Theorem 2 cap-

tures the continuation value implied by the equilibrium policy.

Lemma 1 (savings) The planner’s Markov equilibrium investment share g = kt+1/yt is

g∗ =
αβδ

1 + αδ(β − 1)
. (15)

The proof of the Lemma is a straightforward verification exercise following from the

first-order condition. If future savings could be dictated today, then gτ>t = gβ=1 = αδ

for future decision-makers would maximize the wealth as captured by Wt+1(kt+1, st+1);

however, equilibrium g∗ with β < 1 is less than gβ=1 = αδ because each generation has

an incentive to deviate from this long-term plan due to higher impatience in the short

run (Krusell et al., 2002).

Consider then the equilibrium choice for the fossil-fuel use, zt, satisfying

u′t
∂yt
∂zt

= βδ
∂Ω(st+1)

∂zt
.

27There can be exogenous technological change and population growth, but the form of the objective,

(8) combined with (7), ensures that there will be an equilibrium where the same policy rule will be used

for all t.
28We will construct a natural Markov equilibrium where policies have the same functional form as

when β = 1. Moreover, Iverson (2012) shows for this model that the Markov equilibrium considered

here is the unique limit of a finite horizon equilibrium. For multiplicity of equilibria in related settings,

see Krusell and Smith (2003) and Karp (2007).
29In the online Appendix, we develop a three-period model with general functional forms to explicate

the interactions eliminated by the parametric assumptions.
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The optimal policy thus equates the marginal current utility gain from fuel use with the

change in equilibrium costs on future agents. Denote the equilibrium carbon price by

τ
z(β,δ)
t (= ∂yt/∂zt). Given Theorem 2, carbon price τ

z(β,δ)
t can be obtained:

Proposition 1 The planner’s Markov equilibrium carbon price is

τ
z(β,δ)
t = h∗(1− g∗)yt (16)

h∗ = ∆
∑

i∈I
βδaiπε

[1− δ(1− ηi)][1− δ(1− ε)]
(17)

∆ = (
1

1− αδ
+ ∆u)

When yt is known, say yt=2010, the carbon policy for t = 2010 can be obtained from

(16), by reducing fossil-fuel use to the point where the marginal product of z equals the

externality cost of carbon. If future policies could be dictated today, the externality cost

would be higher: hβ=1 > h∗.30

To obtain the current externality cost of carbon intuitively, that is, the social cost of

carbon emissions zt as seen by the current generation, consider the effect of damages Dt+τ

on utility in period t+τ . Recall that the consumption utility is ln(ct+τ ) = ln((1−g)yt+τ ) =

ln(1−g)+ln(yt+τ ) so that, through the exponential output loss in (5), ∂ln(ct+τ )/∂Dt+τ =

−1. As there is also the direct utility loss, captured by ∆u in (8), the full loss in utils at

t+ τ is

− dut+τ
dDt+τ

= 1 + ∆u.

But, the output loss at t+ τ propagates through savings to periods t+ τ +n with n > 0,

−dut+τ+n

dDt+τ

= αn,

leading to the full stream of losses in utils, discounted to t+ τ ,

−
∑∞

n=0 δ
ndut+τ+n

dDt+τ

=
1

1− αδ
+ ∆u = ∆.

The full loss of utils per increase in temperatures as measured by Dt+τ is thus a constant

given by ∆ for any future τ , giving the social cost of carbon emissions zt at time t,

30It is not difficult to verify that h∗(1− g∗) is increasing in β. The current planner would like to see

the future planners to save more and to choose a larger carbon price.
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appropriately discounted to t, as

−β
∑∞

τ=1 δ
τ dut+τ
dzt

=
∑∞

τ=1

∑∞
n=0 βδ

τ+ndut+τ+n

dDt+τ

dDt+τ

dzt

= ∆
∑∞

τ=1 βδ
τ dDt+τ

dzt

= ∆
∑

i∈I

βaiπε

ε− ηi
∑∞

τ=1 δ
τ (1− ηi)τ − δτ (1− εj)τ

= ∆
∑

i∈I

βδπaiε

[1− δ(1− ηi)][1− δ(1− ε)]
.

This is exactly the value of h∗. Thus, in equilibrium, the present-value utility costs of

current emissions remain constant at level h∗. However, since this cost is weighted by

income in (16), the equilibrium carbon price increases over time in a growing economy.

The planner’s Markov equilibrium carbon price depends on the delay structure in the

carbon cycle captured by parameters ηi and ε. Carbon prices increase with the damage

sensitivity (∂h/∂π > 0), slower carbon depreciation (∂h/∂ηi < 0), and faster temperature

adjustment (∂h/∂ε > 0). Higher short- and long-term discount rates both decrease the

carbon price (∂h/∂β > 0; ∂h/∂δ > 0). Consistent with Corollary 1, the carbon price

rises sharply if the discount factor comes close to one, δ → 1, and if some box has slow

depreciation, ηi → 0.31

4 Decentralization

The Markov equilibrium for the planning game identifies an allocation {cτ , zτ , kτ , sτ}∞τ=t,

but it is yet silent about the economic instruments implementing the outcome. Following

Krusell et al. (2002), we now re-interpret the game as one where each planner chooses

fiscal instruments (in our economy, current taxes on private savings and emissions),

without ability to commit to future taxes. We take the taxes as functions of the state

and derive them explicitly, after characterizing the recursive competitive equilibrium

resulting from given tax functions. Denote the taxes on capital investments and emissions

31If carbon depreciates quickly, ηi >> 0, then the carbon price will be less sensitive to the discount

factor δ. Fujii and Karp (2008) conclude that the mitigation level is not very sensitive to the discount

rate. Their representation of climate change can be interpreted as one in which the effect of CO2 on the

economy depreciates more than 25 per cent per decade. This rate is well above the estimates for CO2

depreciation in the natural-science literature; however, induced adaptation may lead to similar reduction

in damages.
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by (τ kt , τ
z
t ) = (τ kt (kt, st), τ

z
t (kt, st)), respectively.32

Factor markets are competitive. The representative firm maximizes profits given the

price of capital capital rt, the emissions price as given by policy τ zt , and wages qt:

∂ft(kt, lt, zt, st)

∂kt
= rt (18)

∂ft(kt, lt, zt, st)

∂zt
= τ zt (19)

∂ft(kt, lt, zt, st)

∂lt
= qt. (20)

The equilibrium price of capital rt is endogenous, equalizing the previous period’s savings

and current factor demand. Without climate policies, the competitive market factor

price for emissions is zero. Policy-determined factor price τ zt sets a price on emissions

in production. Labor lt is supplied inelastically and, through (20), its equilibrium factor

compensation qt is endogenous. The consumer takes the aggregate law of motions for kt

and st as given, as well as future factor prices and tax rates as functions of aggregate

variables rt = rt(kt, st), qt = qt(kt, st).

Revenues from emission taxes and capital investment taxes are returned lump sum

to households, denoted by Tt = Tt(kt, st). To separate the consumer’s decisions from the

planner’s, we denote the former by superscript i. The consumer’s budget constraint is

cit + (1 + τ kt )k
i
t+1 = qtl

i
t + rtk

i
t + Tt, (21)

Tt = τ kt kt+1 + τ zt zt. (22)

The consumer’s only decision is to choose how much capital to save kit+1, given total

income consisting of factor service compensations and the lump sum transfer of tax

returns Tt. The consumer maximizes utility uit = ln(cit)−∆uDt and future welfare

uit + βδwit+1 (23)

with the future values defined through33

wit = W i
t (k

i
t; kt, st) = uit + δW i

t+1(kit+1; kt+1, st+1). (24)

32For subscript t in policies, consider Proposition 1, and conjecture that the implemented tax policy

coincides with the Markov policy from the planning game, τzt = h∗(1 − g∗)yt. Output yt depends on

state (kt, st) but also on time since we do not restrict to stationary technologies and labor supply.
33We also write superscript i for individual value functions, to separate these from the aggregate value

functions. The individual functions are, though, not different between individuals.
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Definition 4 Given tax rules (τ kt (kt, st), τ
z
t (kt, st)), complemented with budget neutral

lump-sum transfers Tt(kt, st), a recursive competitive equilibrium consists of individual

savings policies kit+1 = Git(kit; kt, st), value function W i
t (k

i
t; kt, st), price functions rt =

rt(kt, st), qt = qt(kt, st), and emissions zt = zt(kt, st) such that (i) kit+1 = Git(kit; kt, st)
solves the consumer’s problem, (ii) W i

t (k
i
t; kt, st) is generated by the consumer’s policy,

(iii) market clearing conditions (18)-(20) hold, and (iv) aggregate capital dynamics satisfy

kt+1 = Gt(kt, st) = Git(kit; kt, st) when kit = kt.

We show now that a constant capital tax τ kt = τ k > 0 and a carbon tax proportional

to consumption (14), τ zt = h(1− gt)yt, can be used to decentralize the planner’s Markov

equilibrium. For the carbon tax, the planner’s marginal product of carbon coincides with

market clearing condition (19) if τ zt = h∗(1− g∗)yt as defined in Proposition 1. This tax

on emissions is clearly part of the decentralization. For the fiscal rules for capital, we

show, based on Krusell et al. (2002), that when facing a constant capital savings tax, the

households decisions in the recursive competitive equilibrium have a simple parametric

form:

Lemma 2 Consider a constant tax τ k on capital investments, and an emission tax rule

proportional to consumption τ zt (kt, st) = ht(1−gt)yt, where gt ≡ kt+1/yt. In the recursive

competitive equilibrium, aggregate savings are a constant share of output, gt = g, and the

equilibrium is parametrically characterized through

Git(kit; kt, st) = g
kit
kt
yt

W i
t (k

i
t; kt, st) = at + b ln(kt) + c ln(kt + ϕkit)

with at independent of capital, and parameters satisfy

b =
−(1− α)

(1− αδ)(1− δ)
,

c =
1

1− δ
,

ϕ =
α− g(1 + τ k)

1− α + gτ k
,

g =
1

1 + τ k
αβδ

1 + δ(β − 1)
. (25)

While the carbon tax internalizes the climate externality, the planner’s tax on sav-

ings has a more subtle reasoning. The current planner controls total resources for the

economy; the decentralized decisions by consumers build on a linear income constraint
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given factor prices, in which savings provide more commitment in equilibrium. Without

capital taxation τ k = 0, the competitive equilibrium savings share is given by

gτ
k=0 =

αβδ

1 + δ(β − 1)
> g∗

where g∗ is the Markov equilibrium savings fraction from the planning game (Lemma

1). As in Krusell et al. (2002), the laissez-faire decentralized savings exceed those in the

planning game, and thus the implementation of the planning game policies requires a

positive tax on savings τ k > 0, iff β < 1 :

Theorem 3 Consider the policy game where each planner t controls taxes and the result-

ing lump-sum transfers, (τ k, τ zt , Tt), given future fiscal rules {τ kτ (kτ , sτ ), τ zτ (kτ , sτ ), Tt(kτ , sτ )}τ>t.
Markov equilibrium taxes that decentralize the planning game outcome (g∗, h∗) are

τ k∗ =
δ(1− α)(1− β)

1− δ(1− β)
,

τ z∗t = h∗(1− g∗)yt.

complemented with lumpsum transfers (22).

4.1 Taxes on capital: a closer look

Krusell et al. (2002) show that removing capital taxes increases welfare for all generations.

Is it possible for the planners to sustain zero capital taxation as a subgame perfect Nash

equilibrium? For this question, with the aid of Theorem 2, it is useful to state how

changes in future savings impact current welfare:

Lemma 3 For β 6= 1 and any given τ > t,

∂wt
∂gτ

> 0 iff gτ < αδ.

The future savings maximize current welfare if they are consistent with the long-term

time preference δ; that is, if g = αδ. An equilibrium policy that manages to take future

savings closer to g = αδ increases current welfare.

Consider constant capital tax τ̂ k that the current planner would like to propose for all

planners, with the requirement that the planner at t has to comply with the proposal as

well. In view of Lemma 3, the planner would like to propose to all future planners a tax

implementing g = αδ (which requires subsidies to savings). This proposal is ruled out

by the current planner’s own incentive constraints. But, the current planner is willing
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to give up some consumption and increase savings, by lowering the capital tax below its

Markov equilibrium level, if all subsequent decision-makers will follow suit when facing

the same decision.

Proposition 2 For β < 1, zero capital tax τ k = 0 increases welfare for all generations.

The constant capital tax that maximizes current welfare is negative:

τ̂ k =
−αδ(1− δ)(1− β)

1− δ(1− β)
< 0.

Both τ k = 0 and τ̂ k can be sustained in subgame perfect equilibrium where a deviation

triggers all future planners to revert to the Markov equilibrium tax τ k∗.

Note that the Proposition considers only capital tax coordination, keeping the carbon

tax at the Markov level.34 Yet, if planners coordinate on capital taxes, the Markov carbon

tax changes according to

τ z∗t = h∗(1− g)yt.

We have considered three potential capital tax rules that are all in principle equilibrium

rules: subsidy τ̂ k, zero tax τ k = 0, and the Markov equilibrium capital tax, τ k∗. These

taxes are ordered τ̂ k < 0 < τ k∗, and implemented savings satisfy g∗ < gτ
k=0 < ĝ < αδ,

respectively. The respective carbon taxes have a reverse ordering.

For the further analysis of carbon taxes, it proves useful to define a utility-discount

factor 0 < γ < 1 for consumption, obtained from

u′t = γu′t+1Rt,t+1

where Rt,t+1 is the capital return between t and t+ 1. Thus,

γ =
u′t

u′t+1Rt,t+1

=
ct+1

ctRt,t+1

=
ct+1

ct

kt+1

αyt+1

=
g

α
. (26)

Capital tax τ k∗ in Theorem 3 implements savings policy g = g∗ and thus defines

γ∗ =
βδ

1 + αδ(β − 1)
. (27)

With no capital tax, the utility discount factor would be

γτ
k=0 =

βδ

1 + δ(β − 1)
.

34We define the subgame-perfect equilibrium and strategies considered in the Proposition formally in

the Appendix.
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With savings subsidy τ̂ k, the utility-discount factor obtained for ĝ from (26) becomes

γ̂ =
βδ

1− δ(1− β)(1 + α(1− δ))

with βδ < γ∗ < γτ
k=0 < γ̂ < δ. Thus, in this sense, coordination of capital policies

increases the equilibrium patience. The potential welfare effects from the subgame perfect

savings tax rule are particularly stark for vanishing long-run discounting; the welfare

maximizing subgame-perfect equilibrium converges to the golden rule, while the Markov

savings policy remains bounded away from the golden rule:

Corollary 2 For δ → 1,

τ̂ k → 0, ĝ → α, γ̂ → 1.

4.2 Taxes on carbon

What is a Pigouvian tax? The Markov outcome of the planning game implements tax

τ z∗t that conforms with the standard definition in the sense that the tax internalizes the

discounted future utility costs of marginal increases in energy use today. But the discount

factor used in this evaluation is not the same as the one used for capital investments, γ∗.

For a benchmark, we now develop a carbon tax rule that is based on the capital returns,

and then we show why and how the Markov equilibrium tax deviates from the principle

that all investments in the economy should earn the same return.

Proposition 3 Consider carbon tax τ
z(γ)
t that internalizes all future costs of current

emissions when utilities are discounted with geometric factor γ. It equals

τ
z(γ)
t = hγ(1− g)yt (28)

hγ = ∆γ
∑

i∈I
γπaiε

[1− γ(1− ηi)][1− γ(1− ε)]
(29)

∆γ =
1

1− αγ
+ ∆u.

When γ is taken from Euler equation u′t = γu′t+1Rt,t+1, giving γ = g/α through (26),

the tax will lead to today’s marginal carbon product, MCPt, to equal the sum of future

marginal carbon damages caused by current emissions, MCDt,T , for T > t, discounted

to the present with equilibrium capital returns, MCPt =
∑

T>tMCDt,T/Rt,T .

The Markov planner deviates from the principle of equalized returns on investments

since it looks at the real time-preference structure and understands that the equilibrium
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compound capital return between t and some future period T > t + 1, no longer re-

flects how the current policy-maker sees the consumption trade-offs: MRSt,T < Rt,T ,

future capital returns are excessive from the current point of view. As a result, the

Markov outcome implies tighter carbon policies than the one using capital returns:

MCPt =
∑

T>tMCDt,T/MRSt,T >
∑

T>tMCDt,T/Rt,T .35 We establish now the precise

conditions for the policies to differ:

Proposition 4 For β, δ < 1, the Markov equilibrium carbon tax τ z∗t strictly exceeds τ
z(γ∗)
t

if climate change delays are sufficiently long. Formally, ratio τ z∗t /τ
z(γ)
t is continuous in

parameters β, δ, ηi, ε, ai, and γ. Evaluating at γ = γ∗, and letting ηi, ε→ 0 gives

τ z∗t /τ
z(γ)
t > 1. (30)

The result also holds if γ = γτ
k=0 (no capital tax), or if γ = γ̂ (capital tax coordination).

If climate delays are long, as captured by ηi and ε (see the last line of Theorem 1),

climate policies affect future utility levels for longer periods than capital investments

(limit properties can be hard to assess, and for this purpose, we calculate the ratio for

various scenarios in the last column of Table 2 bleow).36 The equilibrium coordination

of capital taxes (Proposition 2) increases savings and thus brings future capital returns

closer to how the current planner sees the consumption-savings trade-offs. The last part

of the proposition states that for very long climate delays, such coordination cannot fully

eliminate the incentive to use the climate asset as a commitment device. The last part

also states that if capital taxes are not in the set of instruments (perhaps because of

policy frictions), so that planners have an institutional commitment to zero capital taxes

and make only the carbon tax choices in equilibrium, the commitment value delivered

by climate impacts will still be exploited in equilibrium.

The next proposition does not consider the long delays between emissions and im-

pacts, but their persistence. If the climate system is sufficiently persistent, as in Remark

1, the Markov decision-maker values the commitment to future utility impacts. The

commitment value has no bound in the following sense:

Proposition 5 For a closed carbon cycle with incomplete absorption and β < 1: τ z∗t /τ
z(γ)
t →

∞ for any γ < 1 as δ → 1.

35In the Appendix we provide a three-period model with general functional forms to explicate the

assumptions on preference and technologies that are needed for this result to follow. The parametric

class considered in the infinite-horizon model satisfies the assumptions.
36Note that in the limit, ε = 0, and both carbon prices are zero, τz∗t = τγt = 0. The proposition states

that there is a neighbourhood around ηi = ε = 0 in which τz∗t > τγt .
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When no carbon leaves the system, a fraction of the temperature increase caused by

current emissions never dies out. Then, with low long-run discounting, the difference

between the two carbon taxes becomes unbounded. Yet, recall that if planners succeed

in coordinating on the welfare maximizing capital-subsidy, τ̂ k, the utility discount factor

γ converges to 1, and the proposition does not apply. That is, climate as a commitment

device is not needed when generations can coordinate capital taxes and associate non-

vanishing weights to far-future utilities.

We have seen that the Markov planner’s equilibrium capital taxation moves future

savings in the wrong direction, away from the coordinated optimum, g∗ < gτ
k=0 < ĝ.

Eliminating part of this distortion, that is, reducing capital taxes, improves welfare. This

is why it is possible to sustain some coordination of capital taxation, τ̂ k, in equilibrium.

For carbon taxes, Proposition 4 suggests a distortion between capital and climate returns:

τ z∗t > τ γt . Possibly, Markov carbon policies also distort the equilibrium in the wrong

direction. Can we improve welfare by eliminating the gap between the returns on capital

and climate investments? We find that this is not the case. First, with the aid of Theorem

2, we state how changes in future climate policies impact current welfare:

Lemma 4 For β 6= 1 and any given τ > t,

∂wt
∂hτ

> 0 iff hτ < hδ.

Policy variable ht measures the strictness of the future climate policy so that any

equilibrium policy change that takes ht closer to hδ improves current welfare, where

h = hγ=δ is defined in Proposition 3. Proposition 4 shows that the carbon tax based on

the market returns is lower than the equilibrium Markov carbon tax, and thus Lemma 4

tells us that such a carbon tax rule decreases the present welfare if applied in the future.

Add to this insight that, by definition, the Markov carbon tax maximizes present welfare

for fixed future tax rules. It then becomes clear that a move from a Markov carbon tax

policy to externality pricing based on equalized returns for all assets must reduce welfare

throughout. We state the result formally in:

Proposition 6 For given (kt, st), sufficiently slow climate change, and any given con-

stant capital tax τ k: continuation policies (τ k, τ
z(γ)
τ )τ>t with γ = γ∗, or γ = γτ

k=0, or

γ = γ̂, all imply a lower welfare at t than policies (τ k, τ z∗τ )τ>t that price carbon according

to the Markov rule τ z∗τ .

Policy (τ k, τ
z(γ)
τ )τ>t with γ based on capital returns, conforms to the idea that all assets

earn the same return in the economy. The remarkable feature of the above proposition
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is that the efficiency gain from equal returns on the capital and climate assets cannot

prevent a decrease of welfare, not as a second-order effect, but as a first-order effect.37 For

this reason, such a cost-benefit requirement cannot be sustained as a welfare improving

subgame-perfect Nash equilibrium. On reflection, the result is not surprising since a

requirement for equal returns on capital and climate removes the equilibrium commitment

that is provided by the persistent climate asset. The results holds even when the planners

can coordinate the capital taxes.

5 Quantitative assessment

Our analysis is positive in the sense that the basis calibration of the parameters is consis-

tent with the observed savings rate. But the climate policies we determine assume global

coordination in the Markov equilibrium, and in addition intergenerational coordination

in the subgame-perfect equilibrium. We abstract from both international free-riding and

intertemporal political frictions. In that sense we provide a normative perspective on the

level of carbon taxes that would maximize welfare, under a set of well-specified conditions

for the policy game.

5.1 Emissions-damage response

Figure 1 shows the life-path of losses (percentage of total output) caused by an impulse

of one Teraton of Carbon [TtCO2] in the first period, contrasted with a counterfactual

path without the carbon impulse.38 The output loss is thus measured per TtCO2, and it

equals 1− exp(−θτ ), τ periods after the impulse. The graphs are obtained by calibrating

the damage-response, that is, weights (θτ )τ>1 in (6), to three cases.39 Matching Golosov

et al.’s (2014) specification produces an immediate damage peak and a fat tail of impacts,

while calibrating to the DICE model shows an emissions-damage peak after 60 years with

a thinner tail. Our model, that we calibrate with data from the natural sciences literature,

produces a combination of the effects: a peak in the emission-damage response function

after about 60 years and a fat tail; about 16 per cent of emissions do not depreciate

within the horizon of a thousand years.

37In a different context, Bernheim and Ray (1987) also show that, in the presence of altruism, con-

sumption efficiency does not imply Pareto optimality.
38One TtCO2 equals about 25 years of global CO2 emissions at current levels (40 GtCO2/yr.)
39See Appendix for the details of the experiment.
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Figure 1: Emissions-damage response for three specifications

Our emissions-damage response, used in the quantitative part and depicted in Figure

1 (“this paper”) has three boxes calibrated as follows. The physical data on carbon

emissions, stocks in various reservoirs, and the observed concentration developments are

used to calibrate a three-box carbon cycle representation leading to the following emission

shares and depreciation factors per decade:40

a = (.163, .184, .449)

η = (0, .074, .470).

Thus, about 16 per cent of carbon emissions does not depreciate while about 45 per

cent has a half-time of one decade. As in Nordhaus (2001), we assume that doubling

the steady state CO2 stock leads to 2.6 per cent output loss. This implies a value

π = .0156 [per TtC02].41 We assume ε = .183 per decade, implying a global temperature

adjustment speed of 2 per cent per year. This choice is within the range of scientific

40Some fraction of emissions enters the ocean and biomass within a decade, so the shares ai do not

sum to unity.
41Adding one TtCO2 to the atmosphere, relative to preindustrial levels, leads to steady-state damages

that are about 0.79% of output. Adding up to 2.13 TtCO2 relative to the preindustrial level, leads to

about 2.6% loss of output. The equilibrium damage sensitivity is then readily calculated as (2.56 −
0.79)/(2.13− 1) = 1.56%/T tCO2.
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evidence (Solomon et al. 2007).42 See the Appendix for further details.

5.2 Capital and carbon taxes

For the quantitative magnitudes of the results, we exploit the closed-form price formulas

to evaluate the taxes that the model predicts the present day.

The model is decadal (10-year periods),43 and year ’2010’ corresponds to period 2006-

2015. We set ∆u = 0. We take the Gross Global Product as 600 Trillion Euro [Teuro] for

the decade, 2006-2015 (World Bank, using PPP). The capital elasticity α follows from

the assumed time-preference structure β and δ, and observed historic gross savings g. As

a base-case, we consider net savings of 25% (g = .25), and a 2.7 per cent annual pure

rate of time preference (β = 1,δ = 0.761), consistent with α = g/δ = 0.329. Choices for

the climate-economy parameters are specified in Section 5.1.

With consistent preferences (β = 1), our model reproduces the carbon tax levels

of the more comprehensive climate-economy models such as DICE (Nordhaus, 2008).

We then introduce a difference between short- and long-term discounting, β < 1, while

controlling for the effective discounting in the economy. The quantitative evaluation is

thus structured such that we control for the capital savings, using the relationship be-

tween equilibrium savings g and discount factors β, δ— this allows keeping the Nordhaus

case as a well-defined benchmark and exploring how the time preferences matter for the

equilibrium tax structure.44

42In Figure 1, the main reason for the deviation from DICE 2007 is that DICE assumes an almost full

CO2 storage capacity for the deep oceans, while large-scale ocean circulation models point to a reduced

deep-ocean overturning running parallel with climate change (Maier-Reimer and Hasselman 1987). The

positive feedback from temperature rise to atmospheric CO2 through the ocean release is essential to

explain the large variability observed in ice cores in atmospheric CO2 concentrations. We note that our

closed-form model can be calibrated to very precisely approximate the DICE model (Nordhaus 2007).

Section 6 discusses further on the surprising prediction power of our carbon pricing formula for the DICE

results.The DICE 2013 model has updated the ocean carbon storage capacity.
43The period length could be longer, e.g., 20-30 years to better reflect the idea that the long-term

discounting starts after one period for each generation. We have these results available on request.
44One could also consider calibrating the short- and long-run discount rates. However, we are unaware

of any empirical paper that reports revealed-preference data for the pure rate of time-preference over

horizons such as 2-25, 26-50, 51-100 and so on years. Obviously, there is an extensive literature on

the time structure of preferences in the context of self-control, but this literature looks at intra-personal

short-term decisions and not the inter-generational trade-offs relevant for this paper. Giglio et al. (2015)

measure the discount of leasehold property versus freehold property. We interpret Giglio et al.’s finding

as a measure of the time-structure of returns on a specific private asset (houses). The time structure
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The parameter choices result in a consistent-preferences Pigouvian tax of 7.1 Euro/tCO2,

equivalent to 34 USD/tC, for 2010.45 This number is very close to the level found by

Nordhaus. Consider then the determinants of this number in detail.

We can decompose the carbon tax into three contributing parts: a base price that

would apply if damages are immediate and temporary, an accumulation factor for the

persistence of damages, and a discount factor for the delay in damages. First, consider

the one-time costs assuming full immediate damages (ID) taking place in the immediate

next period,

ID = βδ∆π(1− g)yt. (31)

This value is multiplied by a factor to correct for the persistence of climate change due

to slow depreciation of carbon in the atmosphere, the persistence factor (PF ),

PF =
∑

i∈I
ai

[1− δ(1− ηi)]
, (32)

which we then multiply by a factor to correct for the delay in the temperature adjustment,

the delay factor (DF ),

DF =
ε

1− δ(1− ε)
. (33)

Table 2 below presents the decomposition of the carbon tax for a set of short- and long-

term discount rates such that the economy’s savings policy remains the same. The first

row reproduces the efficient carbon tax case assuming consistent preferences when the

annual utility discount rate is set at 2.7 per cent: this row presents the carbon tax under

the same assumptions as in Nordhaus (2007). Keeping the equilibrium time-preference

rate at 2.7 per cent per year, thus maintaining the savings rate at a constant level

(reported also in Table 1 of the Introduction), we move to the Markov equilibrium by

departing the short- and long-term discount rates.

We invoke Weitzman’s (2001) survey for obtaining some guidance in choosing the

short- and long-run rates. In Weitzman, discount rates decline from 4 per cent for the

of returns on leaseholds follows from expectations about the duration of ownership, interacted with

expectations on costs over this period of ownership, and expectations on the time of sale of the asset,

interacted with the expected value of the asset at the time of sale of the asset and its net present

equivalent value. Specifically, for a property with an above 100 years leasehold, we see no mechanism

through which the price discount (for the finite leasehold) could measure the time-structure of preference

of the property owner over such a horizon. The owner will not live after 100 years, and there is no evidence

that the majority of owners expect the children to keep the asset over the full leasehold duration (in

which case one could invoke altruism). That is, there is no indication that pricing a 100 years leasehold

has any relation to the preferences of the owner concerning the possible lease costs after hundred years.
45Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD.
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immediate future (1-5 years) to 3 per cent for the near future (6-25 years), to 2 per cent

for medium future (26-75 years), to 1 per cent for distant future (76-300), and then close

to zero for far-distant future. Roughly consistent with Weitzman and our 10-year length

of one period, we use the short-term discount rate close to 3 per cent, and the long-term

rate at or above 1 per cent. This still leaves degrees of freedom in choosing the two rates

βδ and δ — we choose β and δ to maintain the utility discount factor implied by the Euler

equation for savings at γ = 0.76 (2.7 per cent annual discount rate).46 In other words,

the economy continues to choose savings g∗ = .25 consistent with (15) in all experiments

but the last.47

annual discount rate Markov Equilibrium

short-term long-term g∗ ID PF DF carbon tax EF

027 .027 .25 7.12 2.06 .48 7.1 1

.033 .01 .25 7.12 3.70 .70 18.5 2.6

.035 .005 .25 7.12 5.79 .82 33.8 4.8

.037 .001 .25 7.12 19.6 .96 133 18.8

.001 .001 .33 9.27 19.6 .96 174 1

Table 2: Decomposition of the carbon price [Euro/tCO2] year 2010. ID=immediate

damages, PF=persistence factor, DF=delay factor, Carbon price = ID × PF × DF .

Parameter values in text. EF=excess factor, the ratio given in Proposition 4.

For the carbon tax, the last column indicates the excess factor (EF ) that we have

formalized in Proposition 4: it tells the multiple by which the Markov tax exceeds the

benchmark tax using the capital returns to evaluate future impacts. The highest equilib-

rium carbon tax, 133 EUR/tCO2, corresponds to the case where the long-run discounting

is as proposed by Stern (2006); this case also best matches Weitzman’s values. For ref-

erence, we report the Stern case where the long-term discounting at .1 per cent holds

throughout; the carbon tax takes value 174 EUR/tCO2, and gross savings cover about

33 per cent of income. Thus, the Markov equilibrium closes considerably the gap be-

tween Stern’s and Nordhaus’ carbon taxes, without having unrealistic by-products for

the macroeconomy.48

46For example, 3 per cent short run and 1 per cent long run annual rates correspond to β = .788 and

δ = .904. See the supplementary material for all numerical values.
47Excluding the last row that is explained just below.
48The deviation between the Markov (thus Nordhaus) and Stern savings can be made extreme by

sufficiently increasing the capital share of the output that gives the upper bound for the fraction of yt
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The decomposition of the carbon tax is revealing. Leaving out the time lag between

CO2 concentrations and the temperature rise amounts to replacing the column DF by 1.

When preferences are consistent (the first line), abstracting from the delay in temperature

adjustments, as in Golosov et al. (2014), doubles the carbon tax level. For hyperbolic

discounting, as expected, the persistence of impacts, capturing the commitment value

of climate policies, contributes significantly to the deviation between the capital-market

based and Markov equilibrium prices.

For the same preferences, we now consider the quantitative significance of coordinated

capital taxes and their effect on savings and carbon taxes. Table 3 presents the Markov

equilibirum capital tax and the best constant tax on capital that can be sustained in a

subgame perfect equilibrium, defined in Proposition 2 as τ̂ k. The Markov equilibrium

capital tax is larger, the greater is the discrepancy between short- and long-run prefer-

ences. Arguably, the capital tax levels remain reasonable. The best achievable capital

policy involves subsidizing capital at low rate, converging to zero when the long-run

time preference involves no discounting. The increase in savings reduces the equilibrium

carbon tax, although the quantitative difference to the values in Table 2 is not large.

annual discount rate Markov equilibrium Subgame Perfect equilibrium

short-term long-term capital tax savings carbon tax capital tax savings carbon tax

027 .027 0 0.25 7.1 0 0.25 7.1

.033 .01 16% 0.25 18.5 −.7% 0.29 17

.035 .005 23% 0.25 34 −.5% 0.31 31

.037 .001 29% 0.25 133 −.1% 0.32 120

.001 .001 0 0.33 174 0 0.33 174

Table 3: Capital and carbon taxes [Euro/tCO2] year 2010 for both the Markov equili-

birum and the coordination subgame perfect equilibrium.

6 Discussion

To obtain transparent analytical and quantitative results in a field that has been domi-

nated by simulation models, we exploit strong functional assumptions. First, building on

Brock-Mirman (1972) we assumed that income and substitution effects in consumption

saved; close to all income is saved under Stern preferences as this share approaches unity (Weitzman,

2007). However, with reasonable parameters such extreme savings do not occur, as in Table 2.
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choices over time cancel out, leading to capital and climate policies that are separable.

With general functional forms, climate policies can generate income effects influencing

future savings, thereby creating interactions between the two policies. Based on a three-

period extension to general functional forms, presented in the online Appendix, we discuss

below the effects that are ruled out by the assumptions in the main analysis. Second,

we assumed a linearized model for carbon diffusion that might not well describe the

relevant dynamics when the system is far off the central path — that is, non-linearities

captured by more complicated climate simulation models may be important. Finally,

the quasi-hyperbolic discount functions are only rough approximations of more general

discount functions. Given the parametric class for preferences and technologies, it is

possible to solve this model for an arbitrary sequence of discount factors; this extension

is provided in Iverson (2012). The flexible discounting does not change the conceptual

substance matter in a material way, although the quantitative evaluations can depend

on the added flexibility.49 Yet, currently, there is no evident data for the path of the

time-preferences that would call for the flexible formulation. We now briefly discuss how

results may be expected to change for other functional forms of utility, production and

climate change.

6.1 Sensitivity of policies under geometric discounting

Before assessing the changes in strategic interactions when the functional forms are more

general, we discuss the sensitivity of policies in a context where the current and future

planners do not strategically interact but where policies follow a time-consistent planning.

Barrage (2014), in a supplement to Golosov et al. (2014), has numerically assessed the

loss of generality implied by logarithmic utility and full capital depreciation. Log utility

implies a relatively low preference for consumption smoothing over time: the decision

maker becomes more “patient”, increasing savings and the initial carbon price level when

compared to a case where the utility function has more curvature. As long as we stay in

the expected utility framework, this overshooting can be made to vanish by appropriate

adjustment of the time discount rate. The one period depreciation assumption tends

to decrease the carbon price level and its growth, since it implies a lower growth of

the economy than in the case if some capital survives to the next period. But, again,

49Iverson et al. (2015, Table 1), show similarly to our Table 2, that the carbon tax increases from the

’Nordhaus value’ close to the ’Stern value’ when time discounting after the first 20 years moves to the

Stern values.
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adjustments in the calibration can almost exactly offset the full depreciation, closing

the gap between the predictions of the numerical models with partial depreciation and

analytical models with full depreciation.

A further study on the sensitivity is presented in van den Bijgaart et al. (2016).

They devise a Monte Carlo experiment for testing how well the closed-form carbon price

formula, slightly extended from the one that we have developed, predicts the social cost

of carbon from a benchmark simulation model, DICE 2007. This benchmark model

assumes a more general parametric class for preferences and technologies, and also fea-

tures non-linearities of the climate system. Assuming geometric discounting and drawing

parameters from pre-determined distributions for all key parameters in DICE, including

those that appear in our formula as well as those not in our formula, they that the formula

explains the DICE prediction without systematic bias. The largest gaps in outcomes are

associated with situations where climate damages are either strongly concave or convex,

and, at the same time, the discount rate takes extreme values (low or high). The results

suggests that the loss of generality from not including the interactions between policies,

that capture mainly income and substitution effects in consumption are not central when

evaluating the social cost of carbon.50

Our reduced-form carbon cycle and damage representations assumed no uncertainty,

although great uncertainties describe both the climate system parameters as well as

the impacts of climate change. Golosov et al. (2014) make progress in this direction

showing that the optimal polices are robust to impact uncertainty; this effectively leads

to rewriting of the carbon price formula in expected terms. Iverson (2012) shows the

robustness of the Markov equilibrium policy rules in a stochastic Markov equilibrium

with multiple stochastic parameters. Arguably, the basic question is if “climate change

unknowns” undermine the usefulness of the closed-form model outcomes such as the ones

presented in the current paper. Gerlagh and Liski (2016) develop a tractable extension of

the current paper’s setting to allow for a quantitative assessment of the optimal carbon

price when the impacts of climate change are unknown and can be learned only gradually

over time. They find that the high-risk carbon price path need not be that different from

the mainstream policy ramp.

50Rezai and van der Ploeg (2015) consider further extensions by allowing for mean reversion in global

warming damages, negative effects of global warming on trend growth, and a non-unitary elasticity of

damages with respect to aggregate output. They find minimal welfare losses if one applies the simple

rule as the basis for the climate policy over time.
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6.2 Sensitivity of strategic carbon policies

Moving to a general description of preferences, technologies and climate change, opens

new opportunities to strategically influence the future policies by current decisions. In a

stylized but general three-period model (see the online Appendix), we can show that a

higher elasticity of marginal utility leads to laxer climate policy today, as current planners

foresee that future planners will tend to compensate a current increase in emissions

through changes in savings. Today’s climate policies and future savings become strategic

substitutes, which tends to lower the equilibrium carbon tax today. In addition, the

strategic substitutability of policies depends on the interaction between damages and

output. A less-than-proportional increase of damages implies that current emissions have

less of an effect on future returns on capital investments, and, thus, current emissions

become less of a substitute for future savings. Therefore, we find laxer climate policies

when damages are less dependent on output levels.

Yet, these effects are indirect and we have no reason to believe that they are quan-

titatively substantial.51 We believe there is more scope for strategically guiding future

decision makers by investing in specific capital stocks, including technology. Generally,

we expect that if capital and emissions are complementary in production, then planners

with quasi-hyperbolic preferences will tend to invest less in capital, as it commits fu-

ture planners to increased emissions. But, specific types of capital that substitute for

emissions, such as investments in clean energy or clean energy R&D, will attract larger

investments from a planner who wishes to commit future planners to lower emissions.

In spirit of Gul and Pesendorfer (2001), decision-makers may want to expend resources

to remove alternatives (such as cheap fossil fuels) from the future choice sets. That is,

if possible policy makers will choose options that induce strategic complementarity, as

these increase overall welfare, and technology choices provide a means for such policies.52

We can also assess how the details of climate change damages are expected to modify

results. If marginal damages tend to increase with past emissions, emissions will be

strategic substitutes over time, and the current generations can strategically increase their

own emissions expecting future generations to reduce theirs in response. The extreme

case of such a scenario is one in which there is a known catastrophe threshold. Suppose

51Iverson, in a revision of his (2012) manuscript, follows up on our analysis and develops a numerical

model to conclude: ”Nevertheless, in all cases the quantitative effect [of a different parametric form] is

tiny - on the order of one one-thousandth the magnitude of the initial period perturbation.” We note

though that Iverson abstracts from productivity growth.
52Harstad (2015) formalizes some of these ideas in a setting with quasi-hyperbolic discounting.
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that climate change is moderate up to levels of cumulative emissions in the range of

four thousand Gigaton of CO2, after which a trigger sets in dangerous climate change.

Given such known threshold, each generation can freely add their emissions, as long as the

threshold is not reached, as on the margin future policies will offset current emissions one-

to-one. Similarly, we may consider different greenhouse gases having different lifetimes,

and thereby, different commitment value. Long-lived gases, such as N2O, will typically

provide larger commitment, as compared to short-lived gases such as methane.

7 Concluding remarks

In September 2011, the U.S. Environmental Protection Agency (EPA) sponsored a work-

shop to seek advice on how the benefits and costs of regulations should be discounted for

projects with long horizons; that is, for projects that affect future generations. The EPA

invited 12 academic economists to address the following overall question: “What princi-

ples should be used to determine the rates at which to discount the costs and benefits

of regulatory programs when costs and benefits extend over very long horizons?” In the

background document, the EPA prepared the panelists for the question as follows: “So-

cial discounting in the context of policies with very long time horizons involving multiple

generations, such as those addressing climate change, is complicated by at least three fac-

tors: (1) the “investment horizon” is significantly longer than what is reflected in observed

interest rates that are used to guide private discounting decisions; (2) future generations

without a voice in the current policy process are affected; and (3) compared to shorter

time horizons, intergenerational investments involve greater uncertainty. Understanding

these issues and developing methodologies to address them is of great importance given

the potentially large impact they have on estimates of the total benefits of policies that

impact multiple generations.”

In this paper, we developed a methodology for addressing the over-arching question

posed above and a quantitative evaluation. Our analysis provides one way to incorporate

the idea, often invoked in practical program evaluations, that the time-discounting rate

should depend on the time horizon of the project. In general equilibrium, which is

the approach needed for climate policy evaluations, time-changing discount rates drive

a wedge between the marginal rate of substitution and transformation, stipulating a

correction to the carbon tax resulting from the evaluation of future damages based on

capital returns.

The resulting tool for policy purposes is a carbon pricing formula (Proposition 1)

35



that compresses the relevant elements of the climate and the economy — while it is not a

substitute for the comprehensive climate-economy models, the formula and its decompo-

sition (31)-(33) identifies the contributions of the key elements to optimal carbon prices

and allows discussing them transparently. For discount factors consistent with those in

the literature we show that the equilibrium correction to the standard Pigouvian pric-

ing principle is quantitatively significant. However, there is very limited solid empirical

evidence on the time-structure of social preferences over long time horizons. Our study

shows the relevance of such information; it has a large effect on the evaluation of cur-

rently observed energy-use patterns. The carbon price directly impacts the estimate of

“genuine savings” that are calculated by, for example, the World Bank. Currently valued

at 20$/tC, the World Bank estimates the “negative savings” due to CO2 emissions at

0.3 per cent of GDP for the US, and 1.1 per cent for China. Using a 100$/tC carbon

price (21EUR/tCO2) derived from a moderate quasi-hyperbolic preference structure, will

increase the estimate for the negative savings to above 1 percent for the US and above

5 per cent for China. More generally, the formula allows policy-makers to experiment

with their prescriptive views on longer-term discounting to see the effect on the optimal

carbon price.
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[33] Krusell P., Kurusçu B, Smith A.A. (2002), Equilibrium welfare and government

policy with quasi-geometric discounting, Journal of Economic Theory 105: 42-72.

[34] Krusell P. and A.A. Smith (2003), Consumption-savings decisions with quasi-

geometric discounting, Econometrica 71: 365-375.

[35] Kydland F.E., and E.C. Prescott (1977), Rules rather than discretion: the inconsis-

tency of optimal plans, J of Political Economy 85: 473-492

[36] Laibson D. (1997), Golden eggs and hyperbolic discounting, Quarterly Journal of

Economics 112: 443-477.

[37] Lind, R. C. (1982), ”A Primer on the Major Issues Relating to the Discount Rate

for Evaluating National Energy Options: Discounting for Time and Risk in Energy

Policy, RC Lind, ed., Johns Hopkins University Press, Washington, DC.”

[38] Layton, D.F., and G. Brown, Heterogeneous Preferences Regarding Global Climate

Change, The Review of Economics and Statistics, Vol. 82, No. 4 (Nov., 2000), pp.

616-624.

[39] Layton, D.F., and R. A. Levine (2003), How Much Does the Far Future Matter?

A Hierarchical Bayesian Analysis of the Public’s Willingness to Mitigate Ecological

Impacts of Climate Change, Journal of the American Statistical Association, Vol.

98, No. 463, pp. 533- 544.

[40] Maier-Reimer E. and K.Hasselman (1987), Transport and storage of CO2 in the

ocean - an inorganic ocean-circulation carbon cycle model, Climate Dynamics 2,

63-90.

[41] Nordhaus, W.D., (1991), To slow or not to slow: the economics of the greenhouse

effect. Econonomic Journal, 101 (407), 920?937.

39



[42] Nordhaus, W.D. (1997), Discounting in economics and climate change, an editorial,

in Climatic Change 37: 315-328.

[43] Nordhaus, W. D. (2007), A Review of The Stern Review on the Economics of Climate

Change, Journal of Economic Literature, 45 (3), 686-702.

[44] Nordhaus, W. D. (2008), A Question of Balance: Weighing the Options on Global

Warming Policies. (Yale University Press, New Haven, CT).

[45] Maskin, E., and J. Tirole. 2001), Markov Perfect Equilibrium I: Observable Actions,

Journal of Economic Theory 100, 191-219.

[46] Mastrandrea, M.D., and S.H. Schneider, Integrated assessment of abrupt climatic

changes, Climate Policy 1 (2001) 433-449.

[47] Rezai, A., van der Ploeg, R., (2015) Intergenerational Inequality Aversion Growth

and the Role of Damages: Occam?s Rule for the Global Carbon Tax. Oxcarre Re-

search 150.

[48] Pindyck, Robert S. (2013), ”Climate Change Policy: What Do the Models Tell Us?”

Journal of Economic Literature, 51(3): 860-72.

[49] Phelps E.S. and R.A. Pollak (1968), On second-best national saving and game-

equilibrium growth, Review of Economic Studies 35(2): 185-199.

[50] Rubinstein, A. (2003), Economics and psychology? The case of hyperbolic discount-

ing, International Economic Review 44: 1207-1216.

[51] Saez-Marti M. and J.W. Weibull (2005), Discounting and altruism to future decision

makers, Journal of Economic Theory 122: 254-266

[52] Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and

H.L. Miller (eds), ”Climate Change 2007: The Physical Science Basis”, Technical

Summary, Table TS2.5, footnote b.

[53] Stern, N. (2006), ”The economics of climate change: the Stern review”, Cambridge,

UK: Cambride University Press.

[54] Tol, R. (2009), The economic effects of climate change, Journal of economic per-

spectives, 23(2): 29-51.

40



[55] van den Bijgaart I., R. Gerlagh, M. Liski (2016), A simple formula for the social

costs of carbon, J. of Environm. Econ. and Management, 77:75-94.

[56] Weitzman, M. (2001). Gamma Discounting, American Economic Review, Vol. 91,

No. 1, pp. 260-271.

[57] Weitzman, M. (2007). A Review of The Stern Review on the Economics of Climate

Change, Journal of Economic Literature, 45 (3), 703-724.

Appendix

Proof of Theorem 1

Given the sequence of climate variables — carbon stocks Si,t and damages Dt — that we

developed in the text, it is a straightforward matter of verification that future damages

depend on past emissions as follows:

Si,t = (1− ηi)t−1Si,1 +
∑t−1

τ=1
ai(1− ηi)τ−1zt−τ (34)

Dt = (1− ε)t−1D1 +
∑

i∈I
πε

(1− ηi)t − (1− ηi)(1− ε)t−1

ε− ηi
Si,1 + (35)∑

i∈I

∑t−1

τ=1
aiπε

(1− ηi)τ − (1− ε)τ

ε− ηi
zt−τ ,

where Si,1 and D1 are taken as given at t = 1, and then values for t > 1 are defined by

the expressions. If some climate change has taken place at the start of time t = 1, we can

write the system dependent on Si,1,D1 > 0 — however, we can also rewrite the model to

start at t = T , possibly T < 0, indicating the beginning of the industrial era, say 1850;

we set zt = 0 for t < T , and Si,T = DT = 0. It is then immediate that the equation

reduces to (6). This defines the emissions-damage function θτ in Theorem 1. Q.E.D.

Lemma 5

We state first the following Lemma that will be used in other proofs and is also cited in

the main text. The first item of Lemma 5 is an independence property following from

the functional assumptions: the energy sector choices do not depend on the current state

of the economy (kt, st). The latter item in Lemma 5 allows us to interpret the policy

stringency as measured by h directly as the stringency of the carbon price τ .

Lemma 5 For all t:
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(i) Given policy sequence (gt, ht)t>0, emissions zt = z∗t at t implied by the policy are

independent of the current state (kt, st), but depend only on the current technology

at t as captured by At(.) and Et(.);

(ii) Given the current state (kt, st) at t, the carbon price, τ t = ∂yt/∂zt, satisfying τ t =

ht(1− gt)yt, is monotonic in the policy variable: dτ t/dht > 0.

Proof: For given state and labour supply, (kt, st, lt), output yt = ft(kt, lt, zt, st) is

increasing and concave in emissions zt, so that if the carbon price equals the marginal

carbon product τ t = ft,z = ∂yt/∂zt, we have dyt/dzt > 0 and dτ t/dzt < 0. For a policy

pair (gt, ht) at time t, we also derive dht/dzt = [ft,zzft − (ft,z)
2]/(1− g)(ft)

2 < 0, so that

the carbon price measured in units ht and the carbon price measured in units τ t are

monotonically related, dτ t/dht > 0.

The first-order conditions for fossil-fuel use zt, and the labor allocations over the final

goods ly,t and the energy sectors le,t give:

1

yt

∂yt
∂et

∂Et
∂zt

= ht(1− gt), (36)

∂At
∂ly,t

=
∂At
∂et

∂Et
∂le,t

(37)

Equation (37) balances the marginal product of labor in the final good sector with the

indirect marginal product of labor in energy production. We have thus four equations,

energy production (3), labour market clearance (4), and the two first-order conditions

(36)-(37), that jointly determine four variables: zt, ly,t, le,t, et, only dependent on technol-

ogy at time t through At(ly,t, et) and Et(zt, le,t), but independent of the state variables kt

and st. Thus, zt = z∗t can be determined independently of (kt, st). Q.E.D.

Proof of Theorem 2

The proof is by induction. Induction hypothesis: assume (i) that future policies are given

by a sequence of constants (gτ , hτ )τ>t such that

kτ+1 = gτyτ , (38)

∂yτ
∂zτ

= hτ (1− gτ )yτ , (39)

and (ii) that Theorem 2 holds for t+ 2. We can thus construct the value function for the

next period, as

Wt+1(kt+1, st+1) = ut+1 + δWt+2(kt+2, st+2).
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Consider policies at t + 1. From (38), kt+2 = gt+1yt+1. Emissions zt+1 = z∗t+1 can be

determined independently of the state variables kt+1 and st+1 as shown in Lemma 5.

Substituting the policies at t+ 1 gives:

Wt+1(kt+1, st+1) = [ln(1− gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))]−∆uDt+1

+δÃt+2 + δξ[ln(gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))] + δΩ(st+2)

Collecting the coefficients that only depend on future policies gτ and zτ for τ > t, and

that do not depend on the next-period state variables kt+1 and st+1, we get the constant

part of Vt+1(kt+1):

Ãt+1 = ln(1− gt+1) + δξ ln(gt+1) + (1 + δξ) ln(At+1)− δζ1zt+1 + δÃt+2. (40)

Collecting the coefficients in front of ln(kt+1) yields the part of Vt+1(kt+1) depending kt+1

with the recursive determination of ξ,

ξ = α(1 + δξ).

so that ξ = α
1−αδ follows.

Collecting the terms with st+1 yields Ω(st+1) through

Ω(st+1) = ln(ω(st+1))(1 + δξ)−∆uDt+1 + δΩ(st+2).

where zt+1 = z∗t+1 appearing in st+2 = (z1, ...zt, zt+1) is independent of kt+1 and st+1

so that we only need to consider the values for z1, ..., zt when evaluating Ω(st+1). The

values for ζτ can be calculated by collecting the terms in which zt+1−τ appear. Recall

that ln(ω(st+1)) = −Dt+1 so that

ζτ = ((1 + δξ) + ∆u)
∑

i∈I
aiπε

(1− ηi)τ − (1− ε)τ

ε− ηi
+ δζτ+1

Substitution of the recursive formula, for all subsequent τ , gives

ζτ = (
1

1− αδ
+ ∆u)

∑
i∈I

∑∞

t=τ
aiπεδ

t−τ (1− ηi)t − (1− ε)t

ε− ηi
To derive the value of ζ1, we consider∑∞

t=1
δt−1 (1− ηi)t − (1− ε)t

ε− ηi

=

∑∞
t=1[δ(1− ηi)]t −

∑∞
t=1[δ(1− ε)]t

δ(ε− ηi)

=

δ(1−ηi)
1−δ(1−ηi)

− δ(1−ε)
1−δ(1−ε)

δ(ε− ηi)

=
1

[1− δ(1− ηi)][1− δ(1− ε)]
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(When ηi = ε, ζ1 still has a closed-form solution; this derivation is available on request)

Q.E.D.

Proof of Remark 1

In text.

Proof of Proposition 1

In text.

Proof of Lemma 2

Competitive factor markets (18)-(20) and constant returns to scale with respect to these

inputs, ensure the value identity rtkt + τ zt zt + qtlt = yt. Lump-sum tax transfers, Tt =

τ kkt+1+τ zt zt, combined with the individual’s consumers budget (21) ensure that aggregate

budget balance holds, ct + kt+1 = yt. Using the consumer’s budget, the properties

of the production function, and the assumed savings function Gi = gyt, we can write

consumption, as given by the rule:

cit = [1− α + gτ k + (α− g(1 + τ k))
kit
kt

]yt.

Consumer’s utility maximization requires that kit+1 = Gi(kit; kt, st) is a solution to the

consumption choice that maximizes uit + βδwit+1 in (23), with budget cit + (1 + τ k)kit+1 =

qtl
i
t + rtk

i
t + Tt holding, giving

(1 + τ k)
∂uit
∂cit

= βδ
∂wit+1

∂kit+1

(41)

The consumer pays a tax on capital investments, so that effective costs of capital

relative to consumption is distorted by τ k. Using the assumed form W i
t (k

i
t; kt, st) =

at + b ln(kt) + c ln(kt + ϕkit) in (41):

1 + τ k

cit
= βδ

∂wit+1

∂kit+1

⇒

1 + τ k

[1− α + gτ k + (α− g(1 + τ k))
kit
kt

]yt
= βδc

ϕ

gyt + ϕg
kit
kt
yt
⇒

(g + ϕg
kit
kt

)(1 + τ k) = βδcϕ[(1− α + gτ k) + (α− g(1 + τ k))
kit
kt

].
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Since the equation must be valid for any kit, it results in two conditions. Condition (42)

is for the constant term (independent of kit), and (43) is for the linear term in
kit
kt

:

g(1 + τ k) = βδcϕ(1− α + gτ k) (42)

g(1 + τ k) = βδc(α− g(1 + τ k)) (43)

We now verify (24), W i
t = uit + δW i

t+1, by using the consumers choice rule and the

assumed functional form:

at + b ln(kt) + c ln(kt + ϕkit) = ln([1− α + gτ k + (α− g(1 + τ k))
kit
kt

]yt)+

δ[a+ b ln(gyt) + c ln(gyt + ϕgyt
kit
kt

)]⇒

at + (b+ c) ln(kt) + c ln(1 + ϕkit/kt) = α ln(kt) + ln(1 +
α− g(1 + τ k)

1− α + gτ k
kit
kt

)+

αδ(b+ c) ln(kt) + δc ln(1 + ϕ
kit
kt

) + ...

where we left out constant terms (independent of kit and kt) associated with at. We find

three more conditions:

b+ c = α + αδ(b+ c) =
α

1− αδ
(44)

c = 1 + δc =
1

1− δ
(45)

ϕ =
α− g(1 + τ k)

1− α + gτ k
(46)

Condition (46) is implied by (42)-(43). Thus, there is one redundant condition. We

have 4 conditions to determine the four parameters b, c, ϕ, g. The parameters b, c and

ϕ are directly derived above. Substitution of c in (43) gives (25): savings g as dependent

on the technology-preference parameters and policy τ k.

Proof of Theorem 3

The tax setting game is defined as follows. Each planner t = 1, 2, 3, .. has instru-

ments (τ kt , τ
z
t , Tt). Markov strategy for planner t consists of state-dependent triple

(τ kt (kt, st), τ
z
t (kt, st), Tt(kt, st)). For τ > t, the set of tax rules generates allocation

{cτ , zτ , kτ , sτ}∞τ>t, and through Theorem 2, the current planner’s continuation value

Wt+1(kt+1, st+1). If all future planners τ > t, use taxes

45



τ k∗ =
δ(1− α)(1− β)

1− δ(1− β)
,

τ z∗t = h∗(1− g∗)yt,

then, by Lemma 2, future policies are (g, h)τ>t = (g∗, h∗)τ>t. By Theorem 2, the planner’s

continuation value coincides with the Markov planning continuation value. The best

response for the planner at t is to implement (g, h)τ=t = (g∗, h∗)τ=t, which, by the

description of the competitive equilibrium, is obtained by setting (τ kt , τ
z
t ) = (τ k∗t , τ

z∗
t ),

and returning the tax receipts to the consumer.

Proof of Lemma 3

Consider a given policy path (gτ , zτ )τ≥t. We look at variations of policies at time τ , and

consider the effect on welfare at time t. All effects are captured by Wt+1 in Theorem 2.

The analysis in the proof of Theorem 2 implies: the value function at time t is separable

in states and the parameters ξ and ζ do not depend on future polices (gτ , zτ ), but term

Ãt does. Technically, we need to show that, for some given τ > t, Ãt increases in gτ

for gτ < αδ. In the proof of Theorem 2, consider (40). Term Ãt increases with Ãτ for

some τ > t. Moreover, Ãτ is strictly concave in gτ , and maximal when gτ maximizes

ln(1−gτ )+δξ ln(gτ ), that is, for gτ = δξ
1+δξ

= αδ. We have now shown the “if” part of the

Lemma. The “only if” follows from the strict concavity of Ãτ with respect to gτ . Q.E.D.

Proof of Proposition 2

We start by formally defining the subgame-perfect equilibrium. As for the Markov equi-

librium, we confine attention to policies defined through a sequence of constants (gt, ht)t≥1

satisfying (13) and (14) but now allow strategies to depend on the history of policies,

defined for t > 1 as

Ht−1 = ((g1, h1), ..., (gt−1, ht−1)).

Let H∞ be the set of all histories. Strategy is a function that maps from the history of

policies to current actions, s(Ht−1) : H∞ → R2
+.

Definition 5 A subgame-perfect equilibrium is a sequence of savings and carbon price

rules (gt, ht)t≥1 satisfying (13) and (14) such that s(Ht−1) = (gt, ht) maximizes welfare

at each t and all Ht−1, given s(Hτ−1) = (gτ , hτ )τ>t.

46



In the Proposition we consider subgame-perfect coordination of savings, that is, policy

ĝ differing from Markov policy g∗. The carbon price rule remains at the Markov level h∗.

Formally, for all t, the coordination strategy takes the form

s(Ht−1) =

{
(ĝ, h∗) if Ht−1 = ((ĝ, h∗), ..., (ĝ, h∗))

(g∗, h∗) otherwise.

Now we construct ĝ consistent with capital tax τ̂ k defined in the Proposition. Consider

the constant saving fraction of output, to be followed at each future date, that maximizes

welfare at t. Such ĝt maximizes wt = ut+βδWt+1(kt+1, st+1). From the proof of Theorem

2, we see that Wt+1(kt+1, st+1) depends on gt+1 only through Ãt+1 so that

Ãt+1 = ln(1− gt+1) + δξ ln(gt+1) + (1 + δξ) ln(At+1)− δζ1zt+1 + δÃt+2

(∀τ > t, gτ = g)⇒

Ãt+1 =
1

1− δ
ln(1− g) +

δξ

1− δ
ln(g) + (1 + δξ)

∑∞
τ=t+1 δ

τ−t−1[ln(Aτ )− δζ1zτ ]

⇒

arg max
g
wt = arg max

g
ln((1− g)y) + βδÃt+1

= arg max
g

ln(1− g) + βδξ ln(g) +
βδ

1− δ
ln(1− g) +

βδ2

1− δ
ξ ln(g)

⇒

gt = ĝ =
αβδ

1 + αδ(β − 1) + (1− αδ)(β − 1)δ
.

Since ĝ it is independent of t, this same proposal is optimal for any agent at τ > t. The

associated capital tax follows from (25) in Lemma 2.

Note that Ãt+1 is concave in g, so that welfare is monotonic in g between Markov g∗

and ĝ. This implies τ̂ k < 0, and for τ k = 0, welfare still exceeds the level reached for the

Markov policy τ k∗.

The proof that both the policies τ̂ k and τ̂ k = 0 are self-enforcing (subgame perfect)

is straightforward. Anticipating that any deviation from gt = ĝ triggers (gτ = g∗)τ>t, it

follows from Theorem 2 that any profitable deviation must be the Markov policy, gt = g∗.

But as we have shown above, the deviation that leads to the Markov policy leads to a

strict loss compared to both alternative capital tax policies. Q.E.D.
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Proof of Proposition 3

Set δ = γ and β = 1, and the optimal policy for the planner follows from Proposition

1. For such a planner, Theorem 2 defines the present-value future marginal utility losses

from emissions through

∂Ω(st+1)

∂zt
= ∆γ

∑
i∈I

γπaiε

[1− γ(1− ηi)][1− γ(1− ε)]

Since the planner sets

u′t
∂yt
∂zt

= γ
∂Ω(st+1)

∂zt
,

the policy has the interpretation given in Proposition 3. Q.E.D.

Proof of Proposition 4

Because of Lemma 5 (ii), the proposition, stated as τz(β,δ)

τ
z(γ)
t

> 1, can be rewritten, equiv-

alently, as one where carbon prices are measured in utility units: hβδ

hγt
> 1. We consider

the latter ratio for very long climate change delays, ηi = ε = 0, and, β < 1:

hβδ

hγt
=

(1− γ)2

(1− δ)2

βδ

γ

The equality follows from substitution of ηi = ε = 0 in the equation for the equilibrium

carbon price and efficient carbon price. We note that the ratio decreases in γ. It thus

suffices to check the ratio for highest γ : γ̂ = βδ
1−δ(1−β)(1+α(1−δ)) :

hβδ

hγt
=

(
1− βδ

1−δ(1−β)(1+α(1−δ))

)2

(1− δ)2
(1− δ(1− β)(1 + α(1− δ)))

=
(1− αδ(1− β)(1− δ))2

(1− δ)2(1− δ(1− β)(1 + α(1− δ)))

=
1

(1− δ)
1− δα(1− β)(1− δ)

1− δ
1− αδ(1− β)(1− δ)

1− δ(1− β)(1 + α(1− δ))
> 1

Q.E.D.

Proof of Proposition 5

From Proposition 1, τ z(β,δ) →∞ as δ → 1. From Proposition, 4, we see that τ z(γ) remains

bounded. Q.E.D.
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Proof of Lemma 4

The proof runs parallel to the proof for Lemma 3. Consider a given policy path (gτ , zτ )τ≥t.

We look at variations of policies at time τ , and consider the effect on welfare at time t.

All effects are captured by Wt+1 in Theorem 2. The analysis in the proof of Theorem 2

implies: the value function at time t is separable in states and the parameters ξ and ζ

do not depend on future polices (gτ , zτ ), but term Ãt does. Technically, we need to show

that, for some given τ > t, Ãt decreases in zτ for zτ > zδτ , where zδτ is the emission level

that is consistent with the policy variable hδ and zτ is the emission level consistent with

some h < hδ. In the proof of Theorem 2, consider (40). Term Ãt increases with Ãτ

for some τ > t. Moreover, Ãτ is strictly concave in zτ and maximal when zτ maximizes

(1 + δξ) ln(Aτ (zτ )) − δζ1zτ , that is, for d lnAt
Aτdzτ

= δζ1(1 − αδ). This is the value of zτ

consistent with hδ. We have now shown the “if” part of Lemma 4. The “only if” follows

from the strict concavity of Ãτ with respect to (gτ , zτ ). Q.E.D.

Proof of Proposition 6

Capital tax is a given constant so policy policy g remains unaffected; thus, we can focus

on the change in current welfare wt due to changes in carbon taxes. Also, by Lemma 5,

a higher policy h implies a higher carbon price τ . Let β < 1 so that βδ < γ < δ, and let

climate change be a slow process such that τ z(δ) > τ z(β,δ) > τ z(γ̂) > τ z(γ
∗); see Proposition

4. Imposing the capital-returns based carbon tax will then decrease the future carbon

price, taking it further away from τ
z(δ)
t , decreasing current welfare as shown in Lemma 4.

The same mechanism applies for β > 1, when we have τ
(δ)
t < τ

z(β,δ)
t < τ

z(γ)
t . Moreover,

imposing the capital-returns based carbon price on current policies implies a deviation

from the current best response. That is, both changes induced, those in the present and

future polices, decrease the present welfare.

Calibrating carbon cycle

For calibration, we take data from Houghton (2003) and Boden et al. (2011) for car-

bon emissions in 1751–2008; the data and calibration is available in the supplementary

material.53 We calibrate the model parameters M, b, µ, to minimize the error between

the atmospheric concentration prediction from the three-reservoir model and the Mauna

Loa observations under the constraint that CO2 stocks in the various reservoirs and flows

53Follow the link https://www.dropbox.com/sh/q9y9l12j3l1ac6h/dgYpKVoCMg
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between them should be consistent with scientific evidence as reported in Fig 7.3 from

the IPCC fourth assessment report from Working Group I (Solomon et. al. 2007). There

are 4 parameters to be calibrated. We set b = (1, 0, 0) so that emissions enter the first

reservoir (athmospere). The matrix M has 9 elements. The condition that the rows sum

to one removes 3 parameters. We assume no diffusion between the biosphere and the

deep ocean, removing 2 other parameters. We fix the steady state share of the deep ocean

at 4 times the atmospheric share. This leaves us with 3 elements of M to be calibrated,

plus µ. In words, we calibrate: (1) the CO2 absorption capacity of the “atmosphere plus

upper ocean”; (2) the CO2 absorption capacity of the biomass reservoir relative to the

atmosphere, while we fix the relative size of the deep ocean reservoir at 4 times the at-

mosphere, based on the IPCC special report on CCS, Fig 6.3 (Caldeira and Akai, 2005);

(3) the speed of CO2 exchange between the atmosphere and biomass, and (4) between

the atmosphere and the deep ocean.

We transform this annual three-reservoir model into a decadal reservoir model by

adjusting the exchange rates within a period between the reservoirs and the shares of

emissions that enter the reservoirs within the period of emissions. Then, we transform

the decadal three-reservoir model into the decadal three-box model, following the linear

algebra steps described above. The transformed box model has no direct physical meaning

other than this: box 1 measures the amount of atmospheric carbon that never depreciates;

box 2 contains the atmospheric carbon with a depreciation of about 7 per cent in a decade;

while carbon in box 3 depreciates 50 per cent per decade.54 About 20 per cent of emissions

enter either the upper ocean reservoir, biomass, or the deep ocean within the period of

emissions. In the box representation, they do not enter the atmospheric carbon stock, so

that the shares ai sum to 0.8. Our procedure provides an explicit mapping between the

physical carbon cycle and the reduced-form model for atmospheric carbon with varying

deprecation rates; the Excel file available as supplementary material contains these steps

and allows easy experimentation with the model parameters. The resulting boxes, their

emission shares, and depreciation factors are as reported in the text.

Figure 1: calibrating damage-response functions

For Figure 1, we calibrate our response function for damages, presented as a percentage

drop of output, to those in Nordhaus (2007) and Golosov et al. (2014). The GAMS source

54As explained above, the decay rates in the final model come from the eigenvalues of the original

model.
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code for the DICE2007 model provides a precise description of the carbon cycle through

a three-reservoir model. We use the linear algebra from Appendix “Calibrating carbon

cycle” to convert the DICE reservoir model into a three-box model, using Matlab (the

code is available in the supplementary package). This gives the parametric representation

of the DICE2007 carbon cycle through a = (0.575, 0.395, 0.029), η = (0.306, 0.034, 0).

To find the two remaining parameters π and ε for calibrating our representation to

DICE2007, we consider a series of scenarios presented in Nordhaus (2008), each with a

different policy such as temperature stabilization, concentration stabilization, emission

stabilization, the Kyoto protocol, a cost-benefit optimal scenario, and delay scenarios.

For each of these scenarios we calculated the damage response function by simulating

a counterfactual scenario with equal emissions, apart from a the first period when we

decreased emissions by 1GtCO2 (Gigaton rather than Teraton used in the text to keep

the impulse marginal for the purposes here). Comparison of the damages, relative of

output, then defines the response function θτ for that specific scenario. It turns out that

the response functions are very close, and we take the average over all scenarios. Finally,

we search for the values of π and ε that approximate the average response θτ as closely

as possible. We find ε = 0.156 [decade−1], π = 0.0122 [TtCO2−1].

Golosov et al. is matched by setting a = (0.2, 0.486), η = (0, 0.206); they have no

temperature delay structure, so that ε = 1. Figure 1 presents the emissions damage

responses.
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Appendix: A three-period extension to general func-

tional forms

Technologies and preferences

Consider three generations, living in periods t = 1, 2, 3. In each period, consumers are

represented by an aggregate agent having a concern also for future consumers’ utilities

and welfare. Generations care about current and future utilities as follows

w1 = u1(c1) + β[δu2(c2) + δ2u3(c3)] (47)

w2 = u2(c2) + β[δu3(c3)] (48)

w3 = u3(c3), (49)

where all utility functions ut are assumed to be continuous and, in addition, strictly

concave, differentiable, and satisfying limc→0 u
′
t =∞. The condition β < 1 is equivalent

to pure altruism towards future decision makers (Saez-Marti and Weibull 2005):

w1 = u1(c1) + a2w2 + a3w3 (50)

a2 = βδ > 0, a3 = β(1− β)δ2 > 0,

where a2, a3 can be interpreted as welfare weights given by the first generation, implied

by increasing patience over time. When β = 1, there is one-period pure altruism, and

the typical recursive-dynastic representation of welfare follows.

In the first period, the consumption possibilities are determined by a strictly concave

neoclassical production function f1(k1, z), where k1 is the capital stock, and z is the use

of fossil fuels, or emissions of carbon dioxide, both having positive marginal products,
∂f1
∂k

= f1,k,
∂f1
∂z

= f1,z > 0. The first generation starts with a capital stock k1, and

produces output using z, which can be used to consume c1, or to invest in capital for the

immediate next period k2:

c1 + k2 = f1(k1, z). (51)

We abstract from fossil-fuel use in the second and third period, but the first-period

fossil-fuel use impacts production negatively in the third period: this captures the delay

of climate-change impacts. The second agent starts with the capital stock k2, produces

output using a strictly concave neoclassical production function f2(k2), and can use its

income to consume c2, or to invest in capital for the third period k3:

c2 + k3 = f2(k2). (52)
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The third consumer derives utility from its consumption, which equals production. Past

emissions now enter negatively, as damages, in the production function, f3,k > 0, f3,z < 0:

c3 = f3(k3, z). (53)

We assume that also this production function is strictly concave.

An allocation (c,k, z) = (c1, c2, c3, k2, k3, z) ∈ A ⊆ R6
+ (convex set) constitutes a

consumption level for each generation ct, the first-period use of fossil fuels z, which we

thus also consider a proxy for the emissions of carbon dioxide emissions, and capital

stocks k2 and k3 left for future agents (k1 is given).

Equilibrium carbon price

In the subgame-perfect equilibrium generations choose consumptions and emissions in

the order of their appearance in the time line, given the preference structure (47)-(49)

and choice sets defined through (51)-(53).

The third agent consumes all capital received and cannot influence past emissions.

The second agent decides on the capital k3 transferred to the third agent, given the

capital inherited k2 and the emissions z chosen by the first agent. We thus have a policy

function k3 = g(k2, z), defined by

max
k3

u2(c2) + βδu3(f3(k3)), (54)

leading to equilibrium condition

u′2 = βδu′3f3,k ⇒ 1 =
R2,3

MRSt=2
2,3

, (55)

where we introduce the notation Ri,j for the rate of return on capital from period i

to j, and MRSti,j for the absolute value of the marginal rate of substitution between

consumptions in periods i and j for generation t.

The strict concavity of utility implies consumption smoothing, and thus if the second

agent inherits marginally more capital k2, the resulting increase in output is not saved

fully but rather split between the second and third generation:

Lemma 6 Policy function g satisfies 0 < gk < R1,2.

Proof. Substitute the policy function k3 = g(k2, z) in (55),

βδu′3(f3(g(k2, z), z))f3,k(g(k2, z), z) = u′2(f2(k2)− g(k2, z)). (56)
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Full derivatives with respect to k2 lead to

βδgk(u
′′
3f3,kf3,k + u′3f3,kk) = u′′2(f ′2 − gk)

⇒ gk =
f ′2u

′′
2

βδu′′3f3,kf3,k + βδu′3f3,kk + u′′2
< f ′2 = R1,2. (57)

as u′′t , f3,kk < 0 and f3,k, u
′
3 > 0.

Understanding the second agent’s policy, the first agent decides on consumption and

fossil-fuel use to maximize its welfare

w1 = u1 + βδ[u2(f2(k2)− g(k2, z)) + δu3(f3(g(k2, z), z)].

The choice for leaving capital k2 satisfies

u′1 = βδ(f2,k − gk)u′2 + βδ2f3,kgku
′
3

⇒ MRSt=1
1,2 = R1,2 + (

1

β
− 1)gk. (58)

where we use (55). When β = 1, preferences are consistent, and the term in brackets

vanishes as in standard envelope arguments for single decision makers; capital k is then

valued according to the usual consumption-based asset pricing equation MRSt=1
1,2 = R1,2.

For β < 1, the second agent has a steeper indifference curve between consumptions in

periods 2 and 3: the first-order effect in the bracketed term remains positive, leading

to capital returns that no longer reflect the first generation’s consumption trade-offs.

Letting MRSt=1
1,3 = MRSt=1

1,2 ×MRSt=1
2,3 , we have

Lemma 7 The compound capital return satisfies MRSt=1
1,3 < R1,3 if and only if β < 1 .

Proof. Using (58), MRSt=1
2,3 = βMRSt=2

2,3 = βR2,3, and Lemma 6:

MRSt=1
1,3 = ... =

[
R1,2 + (

1

β
− 1)gk

]
×MRSt=2

2,3

⇒ MRSt=1
1,3 =

[
R1,2 + (

1

β
− 1)gk

]
βR2,3

<

[
R1,2 + (

1

β
− 1)R1,2

]
βR2,3 = R1,3,

where the inequality holds iff β < 1.

Capital returns are generally excessive from the first agent’s point of view when

β < 1, that is, the result holds without any restrictions on how emissions alter savings.
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But, for the implications of the excessive capital returns on carbon pricing, we must

make assumptions on the effect of first-period emissions on the second-period policy, gz.

Taking the full derivatives of (56) with respect to z, we get

gz = − β(u′′3f3kf3,z + u′3f3,kz)

u′′2 + βu′′3f3,kf3,k + βu′3f3,kk

. (59)

Assuming f3,kz 6 0, all terms in the denominator are negative, so that with the

overall negative sign in front, the signs of the numerator’s elements inform us about

the mechanisms in play. The first term in the numerator captures the income effect of

emissions and is positive. If the first generation emits more, the third generation has

lower utility levels and the second generation will tend to save more, as the marginal

utility of the third generation increases. The second term in the numerator captures the

productivity effect and is negative. If the first generation emits more, productivity of

capital in the third period will fall, and the return to investments in the second period

will fall alongside. The relative strength of both mechanisms depends on the elasticity

of marginal utility versus the elasticity of marginal damages:

gz > 0 iff EMU > EMD (60)

where EMU = −c3u
′′
3/u

′
3 is the elasticity of marginal utility, and EMD = f3f3,kz/f3kf3z

is the elasticity of marginal damages, and we use c3 = f3. If utility is more concave,

then the left-hand side of the last inequality will increase, and the second generation will

tend to save more with higher past emissions. If marginal damages increase more than

proportionally with income, the right-hand side will increase and the second generation

will tend to save less with higher emissions.

Assuming log utility, and that the production damage is multiplicative:

ut(ct) = ln(ct) (61)

f3(k3, z) = f3(k3)ω(z), (62)

where ω(z) is a strictly decreasing damage function, sets both sides of the inequality to

unity, and implies that the direct effect of emissions on savings vanishes, gz = 0, as can

be easily verified from (59).

Lemma 8 The second generation does not adjust its savings to past emissions if utility

is logarithmic and damages are proportional to output. More elastic marginal utility (or

damages that increase less than proportionally with output) imply that second generation’s

savings increase with past emissions.
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Consider then the first generation’s equilibrium carbon policy z:

u′1f1,z = βδgzu
′
2 − βδ2(f3,kgz + f3,z)u

′
3. (63)

which after substitution of (55) can be rewritten as

u′1f1,z = (1− (1− β)gz
f3,k

−f3,z

)βδ2(−f3,z)u
′
3 (64)

or

MCP = (1− (1− β)gz
f3,k

−f3,z

)
MCD

MRSt=1
1,3

(65)

where we let MCP = f1,z denote the marginal carbon product, and MCD = −f3,z

denote the marginal carbon damages. If β = 1, then capital returns reflect consumption

trade-offs, MRSt=1
1,3 = R1,3, so that from (65) the carbon price becomes just equal to the

damage, discounted with capital return:

MCP =
MCD

R1,3

. (66)

This is the general-equilibrium Pigouvian carbon price, under consistent preferences β =

1. If we impose (61)-(62) and thus gz = 0, the first term in the carbon policy implied by

(63) is unity. Yet, if β 6= 1, in equilibrium, while (65) continues to hold as an internal

cost-benefit rule for t = 1, Lemma 7 implies that the discounted damage no longer equals

the carbon price (if gz = 0):

MCP >
MCD

R1,3

if and only if β < 1. (67)

In equilibrium, the first agent establishes a higher carbon price, compared to the Pigou-

vian level, if and only if β < 1, i.e., when the first agent gives a higher weight to the

long-term utility than the second agent. The result has a very simple intuition. The

first consumer would like to transfer more wealth to the third consumer, compared with

the preferred wealth transfer of the second consumer: the high capital returns reflect

this distortion (Lemma 7). The higher capital returns depress the present-value damages

below the true valuation by the first consumer. The opposite deviation — carbon price

below the Pigouvian price — occurs if β > 1.

Proposition 7 Assume (61)-(62). If gz = 0 but β 6= 1, the first-period carbon price

does not satisfy the Pigouvian pricing rule, i.e., MCP 6= MCD
R1,3

. The carbon price exceeds

the Pigouvian level if and only if β < 1. Furthermore, for gz 6= 0 and β < 1, we find

that a larger elasticity of marginal utility with respect to consumption tends to lower
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carbon prices while a larger elasticity of marginal damages with respect to income tends

to increase carbon prices.

Proof. Above.
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