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Abstract

Climate is a persistent asset, bar none: changes in climate-related stocks have

consequences spanning over centuries or possibly millennia to the future. To

reconcile the sensitivity of policies to such far-distant impacts and realism of

the shorter-term decisions, we consider hyperbolic time-preferences in a climate-

economy model. The climate-economy model is rich in details but can be solved

in closed-form yielding Markov carbon prices dependent on climate system param-

eters, damage estimates, technology parameters, and both short- and long-term

time preferences.

Preferences with declining discount rates have unexplored general-equilibrium

effects: carbon prices exceed the pure carbon externality costs —the Pigouvian tax

level— by multiple factors in our quantitative assessment. The model justifies high

carbon taxes while preserving a realistic calibration, thus providing a solution for

the dilemma centering the carbon tax-discount rate debate. The welfare ranking

of the policy alternatives is unambiguous: enforcing the Pigouvian tax decreases a

consistently-defined welfare measure.
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1 Introduction

“Climate” is an extremely persistent asset, with a complicated and long delay structure of

impacts, involving atmospheric and ocean carbon dioxide diffusion, and land surface and

ocean temperature adjustments (e.g., Maier-Reimer and Hasselmann 1987, Hooss et al.

2001). The consequences of current changes in climate-related stocks span over centuries

or possibly millennia into the future. The persistence of climate change is a central

feature in applied climate-economy models, the so called integrated assessment models

(IAMs) put forward by Peck and Teisberg (1992), Nordhaus (1993), and Manne and

Richels (1995). However, policy evaluations of the climate-economy models ignore the

persistent far-distant socioeconomic climate impacts, when holding a view on discounting

that respects revealed preferences on shorter-term decisions such as the savings behavior

(for discussion, see, e.g., Nordhaus 2007, Weitzman 2007, Dasgupta 2008).

One may take it as given that policies should respect the shorter-term time prefer-

ences consistent with historical data (Nordhaus, 2007). But there is also evidence that

preferences for the far-distant future should be treated differently. Weitzman (2001) sur-

veyed 2,160 economists for their best estimate of the appropriate real discount rate to

be used for evaluating environmental projects over a long time horizon, and used the

data to argue that the policy maker should use a discount rate that declines over time

— coming close to zero after 300 years. Rather than relying on experts, some studies in-

voke “similarity” as evidence for non-constant discounting: from the current perspective,

generations living after 400 or, alternatively, after 450 years look the same. That being

the case, no additional discounting arises from the added 50 years, while the same time

delay commands large discounting in the near term. Rubinstein (2003) was among the

first to argue that such similarity of alternatives can justify hyperbolic time discounting

(see also Karp 2005).

While much has been said to motivate time-changing discounting for climate policy

evaluations, the climate-economy general-equilibrium implications have gone unnoticed.1

This paper considers the normative implications of such time preferences for climate

policies: How should we design the current climate policies, internalizing all climate

1The Stern Review (2006) triggered a heated debate on how the policies of the climate-economy

models could be made more sensitive to the long-term climate outcomes — essentially, the literature

has sought for reasons to use lower long-term discount rates. In general, non-constant discount rates

can result, e.g., from: aggregation over heterogenous individuals (Gollier and Zeckhauser, 2005; Leng-

wiler, 2005, Jackson and Yariv, 2011); uncertainty (Gollier, 2002). We discuss the motivations directly

consistent with our setting in detail below.
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impacts of emissions, when the future decision makers design their own policies looking

at the future from their vantage point? Policy makers living 400 years after us also make

a distinction between the short and long runs, even though —from our point— they live

in the long run.

In this setting, the distinction between short- and long-run discounting leads to a cli-

mate policy game between generations even when the current and all future policy makers

internalize all climate impacts of emissions. The equilibrium time discount factor is then

endogenous, as opposed to one that is assumed a priori, and this endogeneity of time

preference allows partial de-linking of the equilibrium discount factor used for savings

from the one used for evaluating the future impacts of current carbon emissions. Strik-

ingly, the current optimal carbon price exceeds the Pigouvian tax level — unambiguously

defined as the net present value of the future externality costs from current emissions —

potentially by multiple factors. Apart from the time structure of preferences, the frame-

work for quantitative analysis producing these results is a standard general-equilibrium

growth framework with a climate module, following the Nordhaus’ approach and its re-

cent gearing towards the macro traditions by Golosov, Hassler, Krusell, and Tsyvinsky

(2011).

The key distortion introduced by time-changing time discounting is the lack of com-

mitment to actions that we would like to implement in the future, as the future decision

makers with their present-biases (from our point of view) control their own capital sav-

ings and emissions. But the future decision makers face the same dilemma — they value

future savings and emission reductions, after their time, relatively more than the subse-

quent actual polluters. Therefore, also the future policy makers would value any devices

that would allow commitment to long-run actions. The long persistence of climate im-

pacts provides such a commitment device: the current climate policy decisions have a

long lasting impact on the future agents. Also, future agents have no reason to under-

mine past climate investments as they value the climate capital for the same reason.

The mechanism is similar to that delivering value for commitment devices in self-control

problems (Laibson, 1997);2 it explains why investments in climate protection is valued

above the level implied by the pure Pigouvian externality costs of emissions.

Our point of departure is a Markov equilibrium where each generation sets its self-

interested savings and climate targets understanding how the future generations respond

to current choices. The model is analytically tractable having thus the same virtues as

2However, self-control at the individual level is not the interpretation of the “behavioral bias” in our

economy, as we explain shortly.
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the approach in Golosov et al. 2011, even though we include time-changing discount-

ing and a more detailed delay-structure of the carbon-climate cycle — such delays have

dramatic effects on the carbon price levels. As a result, we can derive the Markov equilib-

rium savings and carbon prices dependent on the multi-layer climate system parameters,

damage estimates, production technology parameters, and both short and long-term

time-preferences.

In the Markov equilibrium, the commitment value is larger the longer are the climate

delays, and it can justify high carbon prices as suggested by the Stern Review (2006)

while allowing realistic calibration of the shorter-term macro variables. Table 1 contains

the gist of the quantitative assessment, detailed at the end of the paper. The technology

parameters of the model are calibrated to 25 per cent gross savings, when preferences

are consistent and the annual time discount rate is 2 per cent. This is consistent with

the Nordhaus’ DICE 2007 baseline scenario (Nordaus, 2007), giving 8.4 Euros per ton of

CO2 as the optimal carbon price in the year 2010 (i.e., 40 Dollars per ton C). When long-

term preference parameters are chosen such that the long-term receives a higher weight

(roughly consistent with Weitzman’s (2001) survey results), short-term preferences can

be matched so that the model remains observationally equivalent to Nordhaus in terms of

macroeconomic performance, savings in particular. But carbon prices increase: for very

low long-term discounting, ultimately carbon prices approach those suggested by Stern.3

Note that the equilibrium outcome — high carbon prices and realistic savings — does

not implement an efficient allocation for such preferences, but it presents the Markov

equilibrium describing how the climate decisions are de facto made given the order of

moves in the time line.

discount rate

short-term long-term savings carbon price

“Nordhaus” .02 .02 .25 8.4

Markov .026 .001 .25 116.4

“Stern” .001 .001 .30 151.8

Table 1: Equilibrium carbon prices in EUR/tCO2 year 2010.

What is then the first-best in the climate policy game? We treat agents in different

periods as distinct generations (as in Phelps and Pollak, 1968), and thus the multi-

3Under “Stern” the capital-share of output is fully saved (30 per cent); increasing the capital-share

leads to unrealistic savings as discussed, e.g., in Weitzman 2007 and Dasgupta 2008.
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generation Pareto optimality is a natural welfare concept (as, e.g., in Caplin and Leahy,

2004) for considering whether policy measures can improve welfare above that in the

Markov equilibrium.4 A natural policy experiment is to impose the Pigouvian exter-

nality pricing of carbon as an institutional constraint — it can be thought of as a rule

of behavior for an environmental agency scrutinizing the climate policies within each

period. The result is striking: pricing carbon according to the common principle that

each unit of emissions should pay the present-value marginal damages caused by that

unit lowers welfare for all generations! That is, even if the present generation and all

future generations could commit to follow this rule, the commitment would generate no

social value, without additional policy measures. To explain this surprising result, we

show the equivalence of the Pigouvian externality pricing and a standard definition of

efficiency for consumption streams. But, we also show that such efficiency does not imply

Pareto optimality for welfare levels when there is intergenerational altruism as implied

by quasi-hyberbolic discounting (Saez-Marti and Weibull, 2005).5

The changing time-preference opens the door for our conceptual results; their quanti-

tative significance follows from the unusual delays of the consequences of climate change.

We develop and calibrate a tractable representation of the carbon cycle, with the peak

impact lagging 60-70 years behind the date of emissions. The analytics allows us to de-

compose the contribution of the different layers of the climate system to the carbon price:

ignoring the delay of impacts — as in Golosov et al. 2011 — misses the correct price

levels by a factor of 2, even when preferences are consistent. It should be emphasized

that getting the carbon price right is not merely an academic exercise; such prices are in-

creasingly factored into the policy decisions, for example, into those that favor particular

electricity generation technologies.6

We take the time-structure of preferences as given and focus on their general-equilibrium

climate policy implications; however, multiple recent arguments can justify the devia-

tion from geometric discounting. First, if we accept that the difficulty of distinguishing

long-run outcomes describes well the climate-policy decision problem, then our decision

procedure can imply a lower long-term discount factor than that for the short-term de-

4See Bernheim and Rangel (2009) for an alternative concept, and its relationship to the Pareto

criterion. The Pareto criterion may not be reasonable when the focus is on the behavioral anomalies at

the individual level. Our welfare analysis follows closely our working paper Gerlagh and Liski (2011)
5In a different context, Bernheim and Ray (1987) also show that, in the presence of altruism, efficiency

does not imply Pareto optimality.
6See Muller et al. (2011) for the dramatic effect that carbon prices can have for the value-added

evaluation of the US electricity sector.
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cisions (see Rubinstein 2003 for the procedural argument). Second, climate investments

are public decisions requiring aggregation over heterogenous individual time-preferences,

leading again to a non-stationary aggregate time-preference pattern, typically declining

with the length of the horizon, for the group of agents considered (Zeckhouser and Gollier

2005; Jackson and Yariv 2011). We can also interpret Weitzman’s (2001) study based on

the survey of experts’ opinions on discount rates as an aggregation of persistent views.

Third, the long-term valuations must by definition look beyond the welfare of the imme-

diate next generation; any pure altruism expressed towards the long-term beneficiaries

implies changing utility-weighting over time (Phelps and Pollak 1968 & Saez-Marti and

Weibull 2005).7

The paper is organized as follows. The next section introduces a simplified version of

the model in three periods to pinpoint the biases in the carbon prices, policy proposals,

as well as the main idea of the welfare analysis. The section has several subsections as

we want to clarify all stages of the main plot in three periods in order to avoid confusion

in the main model. Section 3 then introduces the full infinite-horizon climate-economy

model, and provides the first look at the numbers on carbon pricing. Section 4 calibrates

the full model with climate system parameters from the scientific evidence to generate the

climate-economy outcomes over the next thousand years — due to the unique delays in

the system non-trivial effects remain over such horizons. Section 5 discusses the relevance

of the results for the climate policy debates. Section 6 concludes.

2 A three-period model

2.1 Technologies and preferences

Consider three generations, living in periods t = 1, 2, 3. In each period, consumers are

represented by an aggregate agent having a concern also for future consumers’ utilities and

welfare. The representative decision-maker in each period internalizes all future impacts

of current actions, and thereby there is no climate-change commons problem but rather

the focus is on the optimal design of policies under the preferences that we define shortly.

In period one, production depends on the use of fossil fuels, with associated emissions. In

period two, a substitute energy source has been developed, and consumption possibilities

7The first and third arguments for using lower discount rates in the long run are directly consistent

with our formal model. For the second, we do not formally consider the aggregation of preferences, but

Jackson and Yariv (2011) show that utilitarian aggregation leads necessarily to a present bias.
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depend on the capital stock inherited. In period three, emissions from the first period

have translated into a climate problem negatively affecting production. An allocation

(c,k, z) = (c1, c2, c3, k2, k3, z) ∈ A ⊆ R6
+ (convex set) constitutes a consumption level for

each generation ct, the first-period use of fossil fuels z, which we also consider a proxy

for the emissions of carbon dioxide emissions, and capital stocks k2 and k3 left for future

agents (k1 is given). Generations care about current and future utilities as follows

w1 = u1(c1) + β[δu2(c2) + δ2u3(c3)] (1)

w2 = u2(c2) + β[δu3(c3)] (2)

w3 = u3(c3), (3)

where all utility functions ut are assumed to be continuous and, in addition, strictly

concave, differentiable, and satisfying limc→0 u
′
t = ∞. Discount factor βδt, with δ ∈ (0, 1),

has the quasi-exponential form that contains the standard exponential function as special

case β = 1. When β < 1, discounting is quasi-hyperbolic, implying that the first-period

decision-maker’s patience increases over time: one-period postponement of a utility gain

is first discounted with βδ and then with δ. This increasing patience captures the idea of

utility discount rates declining over time. Notice that wt denotes the social preferences,

used by each generation for its welfare evaluation of policies influencing future utilities.

These preferences are specific for generation t, and in that sense, wt is different from

the generation-independent social welfare function (SWF) as discussed, e.g., in Goulder

and Williams (2012) and Kaplow et al. (2010). Furthermore, the first generation’s

welfare attributes weights to future utilities but, obviously, these translate into weights

on future welfares. The condition β < 1 is equivalent to pure altruism towards future

decision makers (Saez-Marti and Weibull 2005):

w1 = u1(c1) + a2w2 + a3w3 (4)

a2 = βδ > 0, a3 = β(1− β)δ2 > 0,

where a2, a3 can be interpreted as welfare weights given by the first generation, implied

by increasing patience over time. When β = 1, there is one-period pure altruism, and

the typical recursive-dynastic representation of welfare follows.

In the first period, the consumption possibilities are determined by a strictly concave

neoclassical production function f1(k1, z), where k1 is the capital stock, and z is the use

of fossil fuels, or emissions of carbon dioxide, both having positive marginal products,
∂f1
∂k

= f1,k,
∂f1
∂z

= f1,z > 0. The first generation starts with a capital stock k1, and
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produces output using z, which can be used to consume c1, or to invest in capital for the

immediate next period k2:

c1 + k2 = f1(k1, z). (5)

For convenience we abstract from fossil-fuel use in the second and third period, but

the first-period fossil-fuel use impacts production negatively in the third period. The

second agent starts with the capital stock k2, produces output using a strictly concave

neoclassical production function f2(k2), and can use its income to consume c2, or to invest

in capital for the third period k3:

c2 + k3 = f2(k2). (6)

The third consumer derives utility from its consumption, which equals production. Past

emissions now enter negatively, as damages, in the production function, f3,k > 0, f3,z < 0:8

c3 = f3(k3, z). (7)

We assume that also this production function is strictly concave.

2.2 Equilibrium carbon price

Consider now the subgame-perfect equilibrium of the game where generations choose

consumptions and emissions in the order of their appearance in the time line, given the

preference structure (1)-(3) and choice sets defined through (5)-(7).

The third agent consumes all capital received and cannot influence past emissions.

The second agent decides on the capital k3 transferred to the third agent, given the

capital inherited k2 and the emissions z chosen by the first agent. We thus have a policy

function k3 = g(k2, z). The policy is defined by

max
k3

u2(c2) + βδu3(f3(k3)), (8)

leading to equilibrium condition

u′2 = βδu′3f3,k ⇒ 1 =
R2,3

MRSt=2
2,3

, (9)

where we introduce the notation Ri,j for the rate of return on capital from period i

to j, and MRSt
i,j for the absolute value of the marginal rate of substitution between

consumptions in periods i and j for generation t.

8We follow standard practice in integrated assessment modelling to express all climate change damages

in output losses. Including damages directly in utility does not change results.
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The strict concavity of utility implies consumption smoothing, and thus if the second

agent inherits marginally more capital k2, the resulting increase in output is not saved

fully but rather split between the second and third generation:

Lemma 1 Policy function g satisfies 0 < gk < R1,2.

Proof. Substitute the policy function k3 = g(k2, z) in (9),

βδu′3(f3(g(k2, z), z))f3,k(g(k2, z), z) = u′2(f2(k2)− g(k2, z)). (10)

Full derivatives with respect to k2 lead to

βδgk(u
′′
3f3,kf3,k + u′3f3,kk) = u′′2(f

′
2 − gk)

⇒ gk =
f ′
2u

′′
2

βδu′′3f3,kf3,k + βδu′3f3,kk + u′′2
< f ′

2 = R1,2. (11)

as u′′t , f3,kk < 0 and f3,k, u
′
3 > 0.

Understanding the second agent’s policy, the first agent decides on consumption and

fossil-fuel use to maximize its welfare

w1 = u1 + βδ[u2(f2(k2)− g(k2, z)) + δu3(f3(g(k2, z), z)].

The choice for leaving capital k2 satisfies

u′1 = βδ(f2,k − gk)u
′
2 + βδ2f3,kgku

′
3

⇒ MRSt=1
1,2 = R1,2 + (

1

β
− 1)gk. (12)

where we use (9).When β = 1, preferences are consistent, and the term in brackets

vanishes as in standard envelope arguments for single decision makers; capital k is then

valued according to the usual consumption-based asset pricing equation MRSt=1
1,2 = R1,2.

For β < 1, the second agent has a steeper indifference curve between consumptions in

periods 2 and 3: the first-order effect in the bracketed term remains positive, leading

to capital returns that no longer reflect the first generation’s consumption trade-offs.

Letting MRSt=1
1,3 =MRSt=1

1,2 ×MRSt=1
2,3 , we have

Lemma 2 The compound capital return satisfies MRSt=1
1,3 < R1,3 if and only if β < 1 .
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Proof. Using (12), MRSt=1
2,3 = βMRSt=2

2,3 = βR2,3, and Lemma 1:

MRSt=1
1,3 = MRSt=1

1,2 ×MRSt=1
2,3 =

[
R1,2 + (

1

β
− 1)gk

]
×MRSt=2

2,3

⇒ MRSt=1
1,3 =

[
R1,2 + (

1

β
− 1)gk

]
βR2,3

<

[
R1,2 + (

1

β
− 1)R1,2

]
βR2,3 = R1,3,

where the inequality holds iff β < 1.

Capital returns are generally excessive from the first agent’s point of view when

β < 1, that is, the result holds without any restrictions on how emissions alter savings.

But for the implications of the excessive capital returns on carbon pricing we must make

assumptions on the effect of first-period emissions on the second-period policy, gz; these

restrictions are common in the integrated assessment models, including ours and, e.g.,

Golosov el al. (2011), so we explicate them here. Taking the full derivatives of (10) with

respect to z, we get

gz = − β(u′′3f3kf3,z + u′3f3,kz)

u′′2 + βu′′3f3,kf3,k + βu′3f3,kk
. (13)

The first term in the numerator captures the income effect of emissions and is positive.

If the first generation emits more, the third generation has lower utility levels and the

second generation will tend to save more, as the marginal utility of the third generation

increases. The second term in the numerator captures the productivity effect and is

negative. If the first generation emits more, productivity of capital in the third period

will fall, and the return to investments in the second period will fall alongside. Assuming

log utility, and that the production damage is multiplicative

ut(ct) = ln(ct) (14)

f3(k3, z) = f3(k3)ω(z), (15)

where ω(z) is a strictly decreasing damage function, implies that the direct effect of

emissions on savings vanishes, gz = 0, as can be easily verified from (13).

Consider then the first generation’s equilibrium carbon policy z:

u′1f1,z = βδgzu
′
2 − βδ2(f3,kgz + f3,z)u

′
3. (16)

If we impose (14)-(15) and thus gz = 0, the carbon policy implied by (16) is described by

MCP =
MCD

MRSt=1
1,3

(17)
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where we let MCP = f1,z denote the marginal carbon product, and MCD = −f3,z
denote the marginal carbon damages. If β = 1, then capital returns reflect consumption

trade-offs, MRSt=1
1,3 = R1,3, so that from (17) the carbon price becomes just equal to the

damage, discounted with capital return:

MCP =
MCD

R1,3
. (18)

This is the general-equilibrium Pigouvian carbon price, under consistent preferences β =

1. However, if β 6= 1, in equilibrium, while (17) continues to hold as an internal cost-

benefit rule for t = 1, Lemma 2 implies that the discounted damage no longer equals the

carbon price:

MCP >
MCD

R1,3
if and only if β < 1. (19)

In equilibrium, the first agent establishes a higher carbon price, compared to the Pigou-

vian level, if and only if β < 1, i.e., when the first agent gives a higher weight to the

long-term utility than the second agent. The result has a very simple intuition. The

first consumer would like to transfer more wealth to the third consumer, compared with

the preferred wealth transfer of the second consumer: the high capital returns reflect

this distortion (Lemma 2). The higher capital returns depress the present-value damages

below the true valuation by the first consumer. The opposite deviation — carbon price

below the Pigouvian price — occurs if β > 1.

Proposition 1 Assume (14)-(15). If β 6= 1, the first-period carbon price does not satisfy

the Pigouvian pricing rule, i.e., MCP 6= MCD
R1,3

. The carbon price exceeds the Pigouvian

level if and only if β < 1.

Proof. Above.

Note that in this general-equilibrium setting the market return R1,3 depends both on

the productivity of the technology, and on the savings generated by preferences. This is

the reason why in standard climate-economy models, the (Pigouvian) carbon pricing is

dictated by the same parameters that are used to calibrate the model to match capital

returns and savings behavior. The result in (19) is the simplest possible illustration of

the point in our paper: in the climate policy game, the equilibrium carbon price is not

tied to the equilibrium capital return. This result opens a number of questions that will

be subsequently analyzed. Since the result arises in a strategic interaction equilibrium,

it cannot reflect a fully efficient outcome. Would enforcing the Pigouvian rule improve

welfare?
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2.3 Welfare, efficiency, and the Pigouvian rule

To evaluate the welfare implications of policies, we consider the Pareto frontier defined by

the welfares of all generations; formally, this leads to the standard Bergsonian objective,

as in Caplin and Leahy (2004). Consider an allocation (c,k, z) that is Pareto optimal

for welfare levels (w∗
1, w

∗
2, w

∗
3) defined in (1)-(3). If we maximize w1, subject to the

constraints w2 ≥ w∗
2, and w3 ≥ w∗

3 and feasibility constraints (5)-(7), then we must find

the same allocation, and non-negative Lagrange multipliers (α2, α3) ∈ R2
+ for the welfare

constraints. That is, the Pareto optimal allocation is also the solution of a program

maximizing

W (c,k,z) = w1 + α2w2 + α3w3 (20)

subject to (5)-(7). The conclusion also holds the other way around: any solution to a

maximization program with some (α2, α3) ∈ R2
+ is Pareto optimal. Strict concavity of the

production and utility functions ensures the uniqueness of the allocation. Therefore, we

can associate with any Pareto optimal allocation a pair of non-negative welfare weights

(α2, α3) ∈ R2
+ that defines the welfare functionW (c,k, z). The welfare function is merely

a tool for welfare analysis, and not intended to introduce dictatorial preferences over

allocations: given an equilibrium allocation, we can verify if non-negative α2, α3 exist,

and thus if a Bergsonian objective can be attached to the allocation.9

Rewrite the welfare aggregator in (20) in terms of utility, and compare it to a general

utility aggregator U(.):

W (c,k,z) = u1 + (βδ + α2)u2 + (βδ2 + α2βδ + α3)u3 (21)

U(c,k,z) = u1 + α′
2u2 + α′

3u3 (22)

The utility aggregator (22) defines a broad concept of efficiency: since ut is a strictly

monotonic transformation of ct, a consumption sequence (c∗1, c
∗
2, c

∗
3) is efficient if and only

if it maximizes U(.) for some positive utility weights (α′
2, α

′
3) ∈ R2

+.
10 The efficient

9How are the weights in (20) related to the altruistic weights in (4) that necessarily follow from the

(β, δ) -preferences? Letting α2 = α3 = 0 gives one point in the Pareto set, that is, the one that leads

to the dictatorship of the present. But, when β < 1, generation t = 1 still gives altruistic weights to w2

and w3 as we can see from (4). Thus, the Pareto weighting (α2, α3), a tool for welfare analysis, should

not be confused with altruistic weights (a2, a3) that follow from the time-preference primitives. Note

that, in their welfare analysis, Krusell et al. (2002) consider one welfare objective, corresponding to

α2 = α3 = 0. We use the weights to describe the Pareto set, and thus we do not restrict the weights.
10Note that the definitions for efficiency and Pareto optimality are standard; see, for example, Bern-

heim and Ray (1987).
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consumption streams include the Pareto optimal ones, when (α2, α3) ≥ 0 exist such

that α′
2 = βδ + α2 and α′

2 = βδ2 + α2βδ + α3. As we will see shortly, not all efficient

consumption sequences are Pareto optimal. Once we have established efficiency for some

allocation, testing whether both welfare weights implied, α2, α3, are non-negative, suffices

to test for Pareto optimality. But first, we will elaborate on the conditions for efficiency.

Given utility aggregator U(.), efficiency of (c1, c2, c3) follows from the first-order con-

ditions for {k2, k3, c1, c2, c3}:

1 = [
α′
2u

′
2

u′1
]f2,k = [

α′
3u

′
3

u′1
]f2,kf3,k (23)

⇒ 1 =
R1,2

MRS1,2

=
R1,3

MRS1,3

, (24)

where we drop the time superscripts on MRS, as the inconsistency between preferences

plays no role given objective (22). For emissions in the first period z, the first-order

condition requires u′1f1,z + α′
3u

′
3f3,z = 0, or,

MCP =
MCD

MRS1,3
, (25)

which is equivalent to (17) but without the reference to the first generation’s preferences.

Efficiency leads to the Pigouvian pricing rule (as opposed to the equilibrium rule (19)):

MCP =
MCD

R1,3
. (26)

The Pigouvian principle is a necessary and sufficient test for efficiency.

Lemma 3 An allocation with strictly positive consumption, capital, and fuel use is effi-

cient if and only if the Pigouvian rule (26) is satisfied.

Proof. Necessity of the Pigouvian rule has been established above. For sufficiency,

we notice that given the allocation, we can construct positive weights (α′
2, α

′
3) from (23).

If (26) is satisfied as well, then all first-order conditions for the maximization of (22) are

satisfied.

The equivalence with efficiency defines the Pigouvian rule in an impartial way — the

definition is independent of the generation-specific welfare representations. The equiv-

alence will be instrumental in our equilibrium analysis. If the Pigouvian rule is not

satisfied, the equilibrium allocation is not efficient and it cannot be Pareto optimal (no

Bergsonian objective exists). We have seen that in equilibrium the Pigouvian rule will

not hold, so the conclusion for efficiency is immediate:
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Corollary 1 The equilibrium described in Proposition 1 is not efficient if β 6= 1.

It is interesting to note that even though decision-makers internalize all future impacts

of current actions, the equilibrium is observationally distinct from the planner’s optimum

for objective (22). This contrasts Barro (1999) where observational equivalence with an

allocation chosen by a fictitious planner follows without restrictions on the actions of the

decision-makers with hyperbolic preferences. Our result shows that when there is more

than one capital-good the observational-equivalence does not hold in general.11

Given Lemma 3, we have a straightforward policy instrument implementing efficiency:

we can consider enforcing the Pigouvian rule as an institutional constraint on the equi-

librium behavior — it can be thought of as an environmental agency scrutinizing the

climate policies within each period. The environmental agency has no preferences, and

it simply enforces the Pigouvian taxes, without restricting the choices of each generation

in any other way.

Proposition 2 Enforcing Pigouvian externality pricing leads to efficiency but not to

Pareto optimality if preferences are quasi-hyperbolic, β < 1.12

Proof. We have seen in Lemma 3 that the Pigouvian tax rule implements (22). From

the first-order conditions for c2, c3 and k3 we have

α′
2u

′
2 = α′

3u
′
3f3,k. (27)

As the second generation does not need fossil fuels, the policy function g does not change

from that defined in (9). Combining (9) and (27) gives

α′
3 = βδα′

2.

Adding βδ2 − (βδ)2 > 0 to the right-hand-hand side gives

α′
3 < βδ2 + (α′

2 − βδ)βδ. (28)

From (21) and (22), (α′
2, α

′
3) ≥ 0 ⇒ (α2, α3) ≥ 0 if and only if

α′
2 ≥ βδ (29)

α′
3 ≥ βδ2 + (α′

2 − βδ)βδ. (30)

11The capital asset nature of carbon becomes more explicit in the general model.
12If preferences are time-inconsistent in the other direction, β > 1, the proof is much more tedious.

However, we prove both directions for the infinite horizon case.
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Thus, (28) and (30) are in contradiction.

Enforcing Pigouvian externality pricing exploits all opportunities for efficiency im-

provements for consumption, although it does not achieve full Pareto optimality as just

demonstrated. But could it lead to a Pareto improvement? In three periods, it is im-

mediate that the answer is negative. The Pigouvian pricing will constrain only the first

generation’s choices.

Proposition 3 The Pigouvian tax does not imply a Pareto improvement vis-a-vis the

equilibrium without it: the welfare of the first generation decreases.

The reason for this result is simple: the Pigouvian tax is only a constraint on the

first generation, as it could have implemented the same allocation without the rule, or

without consulting the later generations. Therefore, enforcing the Pigouvian tax must

decrease welfare of the first generation if β 6= 1. When β = 1, imposing the Pigouvian

tax has no effect on the equilibrium, so the requirement becomes redundant.

2.4 Discussion

The main plot should be clear after this three-period analysis. The carbon price that is

optimal from the current generation’s perspective is not dictated by the capital returns;

see Proposition 1. The infinite-horizon model adds to the analysis in multiple ways.

First, in three periods there is little room for gains from future efficiency improvements,

as indicated by Proposition 3. With a longer sequence of generations, generation 1 could

benefit from the later efficiency improvements by future generations’ adherence to the

Pigouvian tax. Indeed, as we will see at the end of the next section, in the infinite horizon

model we can construct welfare-improving policies. Second, the delay structure of climate

change impacts are important, and an infinite horizon model enables us to describe the

climate dynamics more precisely. We can then analyze how the commitment value of

climate policies depends on the persistence over time of the impacts of current choices.

The infinite horizon model gives analytical results that prescribe the equilibrium carbon

prices dependent on technology, climate, and preference parameters. Third, the infinite

horizon model enables us to provide a quantitative assessment of the magnitudes for both

Pigouvian and equilibrium carbon prices, using realistic parameters values.
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3 An infinite horizon climate-economy model

3.1 Technologies and preferences: general setting

Consider a sequence of periods t ∈ {1, 2, ...}. The economy’s production possibilities

ft(kt, lt, zt, st) depend on capital kt, labour lt, current fossil-fuel use zt, and the emission

history (i.e., past fossil-fuel use),

st = (z1, z2, ..., zt−2, zt−1).

History st enters production for two reasons. First, climate-change that follows from

historical emissions changes production possibilities, as usual in integrated-assessment

models. Second, the current fuel use is linked to historical fuel use through energy

resources whose availability and the cost of use depends on the past usage. In the specific

model that we detail below, we abstract from the latter type of history dependence,

because the scarcity of conventional fossil-fuel resources is not a key factor for the long-

run climate policies. The economy has one final good; closed-form solutions require that

capital depreciates in one period, leading to the following budget accounting equation

between period t and t+ 1:

ct + kt+1 = yt = ft(kt, lt, zt, st), (31)

where ct is the total consumption, kt+1 is capital built for the next period, and yt is gross

output. In each period, the representative consumer makes the consumption, fuel use,

and investment decisions. Let per-period utility be ut and define generation t welfare

generated by the choice sequence {ct, zt, kt}∞t=1 as

wt = ut + β
∑∞

τ=t+1
δτ−tuτ (32)

where we identify dynamically consistent preferences by β = 1. As in three periods,

when β < 1, decision-makers use lower discount rates for long- than for short-term evalu-

ations, and this increasing patience implies altruistic weights on future generations’ wel-

fare levels; see Saez-Marti and Weibull (2005) for the weights implied by quasi-hyberbolic

discounting.13

13The formal analysis is not restricted to this quasi-hyperbolic setting. For interpretations, the quasi-

hyperbolic case is the most natural to keep in mind, but we will state explicitly the formal results that

require β < 1
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3.2 The basis climate-economy model

Golosov et al. (2011) marks an important deviation from Nordhaus’ approach (e.g., 1993)

to integrated-assessment modeling: abatement does not enter as a separate decision but

is implied by the energy input choices. We follow this approach but our modeling of the

climate dynamics, in addition to preferences, departs substantially from both Golosov et

al. and Norhaus. We pull together the production structure as follows:

yt = kαt At(ly,t, et)ω(st) (33)

et = Et(zt, le,t) (34)

ly,t + le,t = lt (35)

ω(st) = exp(−∆yDt), (36)

Dt =
∑t−1

τ=1
θτzt−τ (37)

Production. The gross production consists of: (i) the Cobb-Douglas capital contri-

bution kαt with 0 < α < 1; (ii) function At(ly,t, et) for the energy-labour composite in

the final-good production with ly,t denoting labor input and et the total energy use in

the economy; (iii) total energy et = Et(zt, le,t) using fossil fuels zt and labour le,t, and

(iv) the damage part given by function ω(st) capturing the output loss of production

depending on the history of emissions from the fossil-fuel use. The functional forms for

the capital contribution and damages allow a Markov structure for policies, and thus the

determination of the currently optimal policies as function of the state of the economy,

say, at year 2010. Functions At and Et are essential for capturing the two main options

available for reducing emissions. First, emissions can decline through energy savings, ob-

tained by subsituting labor ly,t for total energy et. Second, emissions can decline through

“de-carbonization” that involves substituting non-carbon inputs for carbon energy inputs

zt in energy production. In the quantitative analysis Section 4, where we specify At and

Et in detail, de-carbonization is obtained by allocating the total energy labor le,t further

between carbon and non-carbon energy sectors.14

Damages and carbon cycle. Equations (36)-(37) show that climate damages are

interpreted as reduced output, dependent on the history of emissions through the state

variable Dt, a non-linear proxy for the global mean temperature rise. The form in (37)

assumes that anthropogenic emissions start at t = 1, taken to be the beginning of the

industrial era. The exponential form for damages combined with linear dependence of

14Typically, the climate-economy adjustment paths will feature early emissions reductions through

energy savings, whereas de-carbonization is necessary for achieving long-term reduction targets.
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Dt on the past emissions is the same as in Golosov et al. (2011). But the specification of

the parameters θτ in our model is very different: we develop a closed-form representation

of the global carbon-climate cycle, allowing a transparent and detailed calibration that

differs from that in DICE (Nordhaus, 2007), but is consistent with the main processes

for CO2 and temperature dynamics of DICE. This representation captures the delays

with which emissions cause damages, having substantial implications for policies, which

we show by contrasting our calibration results with both Nordhaus and Golosov et al.

(2011). We explain now in detail how the weighting of past emissions θτ in the expression

for Dt in (37) is obtained.

The carbon cycle is typically described as a diffusion process of carbon between various

layers of the atmosphere, ocean and biosphere (Maier-Reimer and Hasselman 1987). In

reduced-form models, these layers are converted into a set of “boxes” (Hasselmann et

al. 1997; see our Appendix “Calibration” for the conversion method). The core of the

conversion from a description of layers to an equivalent formal representation of boxes

is that, whereas carbon diffuses between the layers, emissions live only in the particular

box they enter; interactions between the boxes are eliminated. Each box describes the

atmospheric decay of a certain share of total emitted CO2. Label an atmospheric CO2

box by i, and assume that share ai of the total anthropogenic emissions in period t enter

each box i such that
∑

i ai = 1/(1 + µ), where µ is the share of emissions that is taken

up, over short time, by the upper ocean layer.15 The initial values Si,1 are the stocks of

CO2 in the boxes at the start of the first period. For the policy simulations, Si,1 refers

to the stock in 2015, following from the calibration of the carbon cycle model where we

use data on emissions and concentrations for the past century. The depreciation rate of

carbon in box i is ηi. Stock Si,t in box i, and total atmospheric CO2, St, develop for

t = 2, 3, ... according to

Si,t = (1− ηi)Si,t−1 + aizt−1,

St =
∑

i
Si,t,

where zt are the total anthropogenic emissions, expressed in Teratons of CO2 (TtonCO2).

For our purposes, the calibration of a 3-box representation is sufficiently precise, as will

be detailed in Section 4.16

15Strictly speaking, if the period lenght is long, some of the stock in box i may depreciate within the

period, and
∑

i ai < 1/(1 + µ). The condition
∑

i ai = 1/(1 + µ) is a physical identity only for short

periods of, say, less than a year. See the appendix for further clarifications.
16For example, a 3-box model almost perfectly fits the CO2 dynamics in DICE (Nordhaus 2007). The

illustration is available on request.
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Similarly to the atmospheric CO2, we can describe the overall atmospheric temper-

ature adjustment as a linear combination of several temperature adjustment processes,

formally repsented by “boxes” denoted by j. We follow Hooss et al (2001, table 2) and

assume, for all boxes, a common asymptotic climate sensitivity ϕ(St), but a different

adjustment speed εj and weight bj in the overall temperature adjustment:17

Tj,t = Tj,t−1 + εj(ϕ(St)− Tj,t−1)

Tt =
∑

j
bjTj,t

where
∑

j bj = 1 and t = 2, 3, .... Typically, the relationship between the asymptotic

temperature sensitivity and the atmospheric CO2 stock, ϕ(S) , is concave; the loga-

rithmic form is frequently assumed. In steady state, we have T = ϕ(S), but elsewhere

temperature Tt changes depending on the atmospheric CO2 stock. Damages, in turn, are

a function of the temperature

Dt = ψ(Tt)

where ψ(Tt) is convex. It has been noted in the literature that in the relevant domain of

atmospheric CO2 concentrations between 400 and 1000 ppmv,18 the composition of the

typical convex damage and concave climate sensitivity functions returns an almost linear

function through the origin:19

ψ(ϕ(St)) ≈ πSt

with π > 0, a constant sensitivity of damages to atmospheric CO2.
20 Using the approxi-

mation, we can rewrite the damage dynamics directly as dependent on stocks:

Dj,t = Dj,t−1 + εj(bjπSt −Dj,t−1)

Dt =
∑

j
Dj,t.

where Dt can be taken to be a non-linear (e.g., quadratic) proxy for the temperature;

inversely, the temperature can be derived from Dt through ψ
−1(.). Given the two layers

17We can formally relax the assumption that all boxes have the same asymptotic climate sensitivity,

but the common parameter substantially simplifies the exposition below.
18ppmv=parts per million by volume.
19Indeed, the early calculations by Nordhaus (1991) based on local linearization, are surprisingly close

to later calculations based on his DICE model with a fully-fledged carbon-cycle temperature module,

apart from changes in parameter values based on new insights from the natural science literature.
20Multiplying the constants ∆y and π gives the damage sensitivity: the asymptotic percentage loss of

output per TtCO2 in the atmosphere. Inversely, 1/∆yπ is the amount of atmospheric CO2 that leads

to an asymptotic 63 per cent (e−1) loss of output.
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of climate variables — one for carbon stocks Si,t, and the other for damages Dj,t — it

is a straightforward matter of verification that future damages depend on past emissions

as follows:

Si,t = (1− ηi)
t−1Si,1 +

∑t−1

τ=1
ai(1− ηi)

τ−1zt−τ (38)

Dj,t = (1− εj)
t−1Dj,1 +

∑
i
bjπεj

(1− ηi)
t − (1− ηi)(1− εj)

t−1

εj − ηi
Si,1 + (39)

∑
i

∑t−1

τ=1
aibjπεj

(1− ηi)
τ − (1− εj)

τ

εj − ηi
zt−τ ,

where Si,1 and Dj,1 are taken as given at t = 1, and then values for t > 1 are defined

by the expressions. The model is applied to a situation where some climate change has

taken place at the start of time t = 1, so we write the system dependent on Si,1,Dj,1 > 0

— however, interpreting t = 1 as the beginning of the industrial era, say 1850, we can set

Si,0 = Dj,0 = 0. Taking the sum
∑

j Dj,t in (39), and collecting terms over (i, j), allows

us to express Dt as in (37).

The two layers of climate variables in (38)-(39) are an important part of the carbon-

temperature-cycle model, as they introduce a time-lag between the current emissions

and the peak in damages caused: an impulse of z has subsequent periodic damage effects

peaking at a lag between 1/ηi and 1/εj periods.
21

For the simple 1-box representation, a typical estimate for the atmospheric CO2

depreciation η1 is one per cent per year, while for the temperature adjustment ε1 it is

two per cent per year; the associated peak in temperature-response is after about 70

years. In other words, peak temperatures lag 70 years behind emissions, providing a rule

of thumb for discounting damages: discounting future damages at a rate of r per cent per

year results in a discount factor of about 2−r after 70 years. An annual 1, 2 or 3 per cent

discount rate results in a discount factor of damages of 1/2, 1/4, or 1/8, respectively.

Golosov et al.’s (2011) specification can be understood as one where the temperature

adjustment is immediate: εj = 1 so that an emission impulse leads to an immediate

temperature shock that slowly decays. Our reduced-form model above can be calibrated

to approximate the DICE model (Nordhaus 2007). Figure 1 shows the life path of

damages (percentage of total output) caused by inserting one Teraton of Carbon (TtonC)

in the first period, and then contrasting the impact with a counterfactual path without

the carbon impulse.22 The specification following Golosov et al. produces an immediate

21The term within the summation in expression (39),
(1−ηi)

τ
−(1−εj)

τ

εj−ηi
, peaks at a period between 1/ηi

and 1/εj .
22See Appendix “Comparison of climate response functions” for the details of the experiment.
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peak but a fat tail, while the DICE model shows an emissions-damage peak after 60

years with a thinner tail. Our model, that we calibrate with data from the natural

sciences literature, produces a combination of the effects: a peak in the emission-damage

response function after about 60 years and a fat tail; about 16 per cent of emissions do

not depreciate within the horizon of thousand years.

We postpone the detailed calibration of the carbon cycle to Section 4.

∗ ∗ ∗Figure 1 here: Emissions-Damage responses ∗ ∗∗

Periodic utility. We assume that the utility function is logarithmic, and through

a separable linear term we also include the possibility of intangible damages associated

with climate change:

ut = ln(
ct
lt
)−∆uDt. (40)

The utility loss ∆uDt is not necessary for the substance matter of this paper, but it proves

useful to explicate how it enters the carbon price formulas. In calibration, we let ∆u = 0

to maintain an easy comparison with the previous studies.23 It is important to note that

we write utility as an average in our analysis. Alternatively, we can write aggregate utility

within a period by multiplying utility with population size, ut = lt ln(ct/lt) − lt∆uDt.

The latter approach is feasible but it leads to considerable complications in the formulas

below. Scaling the objective with labor rules out stationary strategies — they become

dependent on future population dynamics —, and also impedes a clear interpretation of

inconsistencies in discounting. While the formulas in the Lemmas depend on the use of

an average utility variable, the substance of the Propositions is not altered.24

Strategies. Our starting point is the symmetric and stationary Markov equilibrium.

Symmetry means that all generations use the same policy functions — even though

there is technological change and population growth, the form of the objective in (40)

ensures that there will be an equilibrium where the same policy rule will be used for

all t. The Markov restriction means that the policy does not condition on the history

of past behavior: strategies are identical in states where the continuation payoffs are

identical (see Maskin and Tirole, 2001).25 In equilibrium, the policy will take the form

23See Tol (2009) for a review of the existing damage estimates. While the estimates for intangible

damages are mostly missing, our carbon pricing formulas can help to transform output losses into

equivalent intangible losses to gauge the relative magnitudes of such losses that can be associated with

a given carbon price level.
24The expressions for this case are available on request
25We will construct a natural Markov equilibrium where policies have the same functional form as
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kt+1 = gt(kt,Θt), zt = ht(kt,Θt), where Θt collects the vector of climate state variables.

However, since the climate affects the continuations payoffs only throught the weighted

sum of past emissions, as expressed in (37), we will replace Θt by history st below,

treating it as a state variable.

Structure of equilibria. Given policies gt(kt, st) and ht(kt, st), we can write welfare

in (32) as follows

wt = ut + βδWt+1(kt+1, st+1),

Wt(kt, st) = ut + δWt+1(kt+1, st+1)

where Wt+1(kt+1, st+1) is the (auxiliary) value function. All equilibria considered in this

paper will be of the form where a constant share 0 < g < 1 of the gross output is invested,

kt+1 = gyt, (41)

whereas the climate policy defines emissions through a constant h that defines the carbon

policies through

ft,z = h(1− g)yt, (42)

where ft,z =MCPt is the marginal product of fossil fuel use, the carbon price.26 Equilib-

rium policies will be characterized simply by a pair of constants (g, h). That a constant

fraction of output is saved should not be surprising, given the log utility and Cobb-

Douglas contribution of capital in production.27 Condition (42) implies that the marginal

carbon price per consumption is a constant, h = ft,z/ct where ct = (1 − g)yt. This may

seem suprising given the complicated delay structure (37), and changing productivities

in (33)-(37), and preference inconsistencies.28

Postponing the discussion on welfare and the verification that the policies actually

take the above form, it proves useful to state the properties of the value function implied

by (g, h) policies (the proofs, unless helpful in the text, are in the Appendix).

Lemma 4 (separability) Given the model (33)–(40), assuming that future policies gτ(·)
and hτ (·) for τ = t+1, t+2, ... satisfy (41) and (42), then the value function is separable

when β = 1. For multiplicity of equilibria in this setting, see Krusell and Smith (2003) and Karp (2007).
26Later, we also consider non-stationary equilibria, which are thus not Markovian, but both on-the-

path and off-the-path strategies have the form in (41)-(42). Thus, the value expressions derived here

can be used to analyze these equilibria as well.
27See, e.g., Barro 1999, for the analysis of the one-capital good case.
28Golosov et al. find emission policies that have the same features; our policies exploit the same

functional assumptions, despite the added complexity.
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in capital and historical emissions

Wt+1(kt+1, st+1) = Vt+1(kt+1)− Ω(st+1).

with parametric form

Vt+1(kt+1) = ξ ln(kt+1) + Ãt+1

Ω(st+1) =
t−1∑
τ=1

ζτzt+1−τ .

where ξ = α
1−αδ

, ζ1 = ( ∆y

1−αδ
+∆u)

∑
i

∑
j

aibjπεj
[1−δ(1−ηi)][1−δ(1−εj)]

, and Ãt+1 is independent of

kt+1 and st+1.

The result shows that we can obtain the value of savings kt+1 and the costs from

fossil-fuel use zt separately.

3.3 The Markov equilibrium carbon price

Consider first savings. Each generation takes the future policies, captured by constants

(g, h) in (41)-(42), as given and chooses its current savings to satisfy

u′t = βδV ′
t+1(kt+1),

where function V (·) from Lemma 4 captures the continuation value implied by the equi-

librium policy.

Lemma 5 (savings) The equilibrium investment share g = kt+1/yt is

g∗ =
αβδ

1 + αδ(β − 1)
. (43)

The proof of the Lemma is a straightforward verification exercise following from the

first-order condition. The savings depend only on the capital share α and preference

parameters; note that when preferences are consistent β = 1, we obtain g = δα , as is

expected.

Consider then the equilibrium carbon price ft,z, that is, the marginal product of the

fossil-fuel use zt. The first-order condition is

u′tft,z = βδ
∂Ω(st+1)

∂zt
,

where function Ω(.) gives the future costs implied by the equilibrium policy. Given

Lemma 4, the equilibrium carbon price and the fossil-fuel use can be obtained:
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Lemma 6 Equilibrium emissions zt = z∗t depend only on the current technology at period

t as captured through At(.) and Et(.). The carbon price satisfies (42) where h∗ = βδζ1:

MCPt = ft,z = βδζ1(1− g)yt (44)

When yt is known, say yt=2010, the carbon policy for t = 2010 can be obtained from

(44), by reducing fossil-fuel use to the point where the marginal product of z equals the

consumption-weighted externality cost of carbon, as expressed by the right-hand-side of

(44).

The Markov equilibrium carbon price, as indicated by (44) and Lemma 4, depends on

the delay structure in the carbon cycle captured by parameters ηi and εj for each box.

Carbon prices increase with the damage sensitivity (∂ζ1/∂π > 0), slower carbon depre-

ciation (∂ζ1/∂ηi < 0), and faster temperature adjustment (∂ζ1/∂εj > 0). Higher short-

and long-term discount rates both decrease the carbon price (∂ζ1/∂β > 0; ∂ζ1/∂δ > 0).

3.4 Efficiency and the Pigouvian tax rule

As in three periods, when ∆u = 0, we define a feasible program {ct, zt, kt}∞t=1 to be

efficient if there does not exist another feasible program such that c′t ≥ ct for all t > 0

and with strict inequality for at least some t = τ . If intangible climate change damages

are positive, ∆u > 0, efficiency is defined as a maximal utility stream. In both cases, an

efficient allocation maximizes a utility aggregator

∑∞

t=1 α
′
tut

where {α′
t}∞t=1 is some sequence of utility weights; we rule out dynamically ineffient

allocations by requiring a bounded mass for αt. Given the structure of our equilibria

with constant savings, we can focus directly on geometric weights, γ = α′
t+1/α

′
t, with

0 < γ < 1, that in equilibrium is obtained from

u′t = γu′t+1Rt,t+1

where Rt,t+1 is the capital return between t and t + 1. Thus,

γ =
u′t

u′t+1Rt,t+1

=
ct+1

ctRt,t+1

=
ct+1

ct

kt+1

αyt+1

=
g

α
. (45)

In the Markov equilibrium where g = g∗, we have

γ∗ =
βδ

1 + αδ(β − 1)
. (46)
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This is the imputed geometric utility discount factor that is consistent with the efficiency

of the equilibrium consumption stream. Given the equilibrium utility discount factor γ∗,

we can find the carbon externality costs caused by the equilibrium actions.29

Lemma 7 The net present value of marginal damages of emissions, the Pigouvian tax,

τγt is proportional to gross output,

τ γt = hγ(1− g)yt (47)

hγ =
∑

i

∑
j

( ∆y

1−g
+∆u)γπaibjεj

[1− γ(1− ηi)][1− γ(1− εj)]
(48)

Imposing the Pigouvian tax policy on the equilibrium is, then, the requirement that

marginal product of emissions should equal the expression in (47), that is, ft,z = τγt .

Note that this procedure is valid since the equilibrium savings, and thus γ∗, is unaffected

by the carbon pricing policy (due to separability of policies from Lemma 4). We can now

compare the two carbon prices:

Proposition 4 For quasi-hyperbolic preferences, β < 1, the equilibrium carbon price

strictly exceeds the Pigouvian carbon price if climate change delays are sufficiently long.

Formally, the ratio of the equilibrium carbon price and the Pigouvian carbon price, ft,z/τ
γ
t ,

is continuous in parameters β, δ, ηi, εj , ai, bj, and γ. Evaluating at β < 1, ηi = εj = 0,

and γ∗ by (46), gives
ft,z

τ γ
∗

t

> 1

If preferences are quasi-hyperbolic and the climate system is sufficiently persistent,

then the current generation sees the climate asset as a commitment device to transfer

wealth to far-future generations, and therefore it values the external climate costs above

the Pigouvian level. For β > 1, the inverse holds.

As in three periods, requiring that emissions should follow the rule ft,z = τγt has a clear

justification: it implements efficiency. Only when Pigouvian carbon prices are imposed,

is it not possible to increase consumption at any t without decreasing consumption at

some t′ 6= t.

Proposition 5 An equilibrium with utility discount factor γ (not necessarily γ∗) is effi-

cient if and only if the Pigouvian tax policy in Lemma 7 is implemented.

29Factor γ can also deviate from γ∗, if the equilibrium is non-Markovian. Since we come back to

such policies shortly, we label the Pigouvian tax by the superscript γ, so that the formula provides the

Pigouvian carbon price for any equilibrium with constant savings g.
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Proof. Given utility discount factor γ, we can obtain the Planner’s allocation as the

one that follows in Markov equilibrium when βδ = δ = γ. The Markov equilibrium im-

plies the first-order conditions for capital investments, and these conditions are sufficient

for efficient savings in this economy. The remaining efficiency condition is for emissions.

Efficiency implies and is implied by the Pigouvian carbon price.

Yet, efficiency does not imply Pareto optimality. In the three-period model, the

implied utility weights α′
2 and α

′
3 had to satisfy some conditions. For the infinite horizon

model, the condition for efficiency turns out be a simple condition on the utility discount

factor (proof in Appendix but see also Gerlagh and Liski, 2011):30

Lemma 8 An efficient allocation with utility discount factor γ is Pareto optimal if and

only if γ ≥ max{βδ, δ}.

If time preferences are consistent, β = 1, then the equilibrium utility discount factor

equals both short and long-term preferences, γ = βδ = δ, and the allocation is efficient

and Pareto optimal. If time preferences are inconsistent, β 6= 1, then the equilibrium util-

ity discount factor is bounded by the two contrafactuals: by straightforward substitution,

we can see that for β 6= 1, the Markov-equilibrium discount factor satisfies

min{βδ, δ} < γ∗ < max{βδ, δ} < 1. (49)

The reasoning for this result is straightforward. Consider β < 1. The current gen-

eration cares more for total future welfare, and thus saves more, than a planner would

do if the planner had consistent preferences with discount factor γ = βδ. But then,

the current agent cares less, and saves less, compared to a representative planner who

would have consistent preferences with γ = δ. Clearly, the equilibrium savings must be

somewhere between the extremes.

Proposition 6 If β 6= 1, the equilibrium with Pigouvian carbon prices is not Pareto

optimal.

While the Pigouvian carbon price does not restore full efficiency, it might be argued

that the productive inefficiency removed produces at least a Pareto improvement. This

we will consider in Section 3.6, but first, we want to assess the significance of the gap

between the equilibrium carbon prices that are based on current welfare preferences, and

the Pigouvian carbon prices based on the efficiency criterion.

30Following Bernheim and Ray (1987), we could define quasi-Pareto optimality, which also takes into

account the welfare of past generations. In our economy, this does not change the results, and we leave

the concept of quasi-Pareto optimality out of the paper.

26



3.5 First look at numbers

For the Markov and Pigouvian carbon prices in (44) and (47), we do not have to solve the

full model: the income level, savings, and the carbon cycle parameters allow obtaining the

carbon price levels. The calibration of the carbon cycle is explicated in the Appendix.31.

We note here only that the model is decadal (10-year periods),32 and that our box

presentation of the carbon cycle, when compared to DICE 2007, results in a slightly

lower response of damages to emissions for the first 80 years, and substantially higher

damages after 300 years.33 That is, our parameters suggest a slightly slower and more

persistent climate response, as also illustrated in Figure 1.34

We calibrate the damage parameter so that they are equivalent to 2.7 per cent of

output at a temperature rise of 3 Kelvin, as in Nordhaus (2001), we obtain ∆y = 0.003;

we set ∆u = 0. We calibrate the Cobb-Douglas capital elasticity so that annual pure

time discounting of 2 per cent leads to a 25 per cent gross savings rate. These parameter

choices result in a Pigouvian carbon price of 8.4 Euro/tCO2, equivalent to 40 USD/tC,

for 2010.35 This number is very close to the level found by Nordhaus.36

We can decompose the carbon price (44) into three contributing parts. First, consider

the one-time costs if damages were immediate (ID) but only for one period,37

ID = (
∆y

1− αδ
+∆u)π(1− g)yt,

where 1−αδ is replaced by 1−αγ = 1− g when we evalute this effect for the Pigouvian

tax rule. This value is multiplied by a factor to correct for the persistence of climate

31Appendix ”Calibration: carbon cycle”
32Bill Nordhaus suggested to us that the period lenght could be longer, e.g., 20-30 years to better

reflect the idea that the long-term discounting starts after one period for each generation. We have these

results available on request.
33see Appendix ”Comparisons of damage responses”.
34The main reason for the deviation is that DICE assumes an almost full CO2 storage capacity for

the deep oceans, while large-scale ocean circulation models point to a reduced deep-ocean overturning

running parallel with climate change (Maier-Reimer and Hasselman 1987). The positive feedback from

temperature rise to atmospheric CO2 through the ocean release is essential to explain the large variability

observed in ice cores in atmospheric CO2 concentrations.
35Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD.
36Minor differences are caused by a correction for the price index, and a somewhat more persistent

damage structure in our reduced model
37The adjustment of the output loss ∆y by (1 − αδ)−1 is to account for the decrease in the future

capital stock caused by a current drop in output.
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change, the persistence factor (PF ),

PF =
∑

i

ai
[1− δ(1− ηi)]

,

which we then multiply by a factor to correct for the delay in the temperature adjustment,

the delay factor (DF ),

DF =
∑

j

βδbjεj
1− δ(1− εj)

.

Table 2 below presents the decomposition of the Pigouvian tax, as well as the Markov

tax when the short-term annual discount rate is 2.55 and the long-term is rate .5 per

cent; we discuss these choices shortly.

ID PF DF Carbon price

Pigou 7.61 2.44 .45 8.4

Markov 8.05 5.79 .63 29.5

Table 2: Decomposition of Carbon price, MCP [Euro/tCO2]. ID=immediate costs,

PF=persistence factor, DF=delay factor, MCP = ID × PF ×DF . Parameter values

in text.

Leaving out the time lag between CO2 concentrations and temperature amounts to

replacing the column DF by βδ: abstracting from the delay in temperature adjustments,

as in Golosov et al. (2011), increases the Pigouvian carbon price by almost factor 2.

From Table 2, the Markov carbon prices stand at 29.5 Euro/tCO2, three and half

times the Pigouvian level (and well above the current carbon prices at the EU emissions

trading system). How did we choose the short- and long-run discount rates underlying

the Markov price? Weitzman’s (2001) survey led to discount rates declining from 4 per

cent for the immediate future (1-5 years) to 3 per cent for the near future (6-25 years),

to 2 per cent for medium future (26-75 years), to 1 per cent for distant future (76-300),

and then close to zero for far-distant future. Roughly consistent with Weitzman and our

10-year length of one period, we use the short-term discount rate close to 3 per cent, and

the long-term rate at or below 1 per cent. This still leaves degrees of freedom in choosing

the two rates. We present three cases that all match the savings rate of 25 per cent and

thus the macroeconomic performance in Norhaus (2007): we choose β and δ to maintain

the equilibrium utility discount factor at γ = 0.817 (2 per cent annual discount rate).

Moreover, since the equilibrium utility discount rate remains at 2 per cent, the Nordhaus’
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case is the Pigouvian benchmark; using the 2 per cent rate to determine the present-value

damages implies Pigouvian taxes as proposed by Nordhaus.38 See now Table 3.

annual discount rate

short-term long-term equilibrium ID PF DF Carbon price

“Nordhaus” .02 .02 .02 7.61 2.44 .45 8.4

Markov .0235 .01 .02 7.89 3.70 .55 16.1

Markov .0255 .005 .02 8.05 5.79 .63 29.5

Markov .0271 .001 .02 8.19 19.55 .73 116.4

“Stern” .001 .001 .001 8.19 19.55 .95 151.8

Table 3: Disconnecting carbon pricing from equilibrium discounting. Parameter values

as in Table 2

The first row reproduces the Pigouvian case from Table 2 assuming consistent pref-

erences when the annual utility discount rate is set at 2 per cent: this row presents the

carbon price under the same assumptions as in Nordhaus (2007), but using our carbon

cycle model (which approximates his case very well, as discussed). Keeping the equi-

librium time-preference rate at 2, thus maintaining the savings rate at a constant level

(reported also in Table 1 of the Introduction), we move to the Markov equilibrium by de-

parting the short- and long-term discount rates in first and second columns. We obtain a

radical increase in the carbon price as the long-term discounting decreases, while savings

remain unchanged from one set of preferences to the next. The highest carbon tax, 116.4

EUR/tCO2, corresponds to the case where the long-run discounting is as proposed by

Stern (2006); this case also best matches the Weitzman’s values. For reference, we report

the Stern case where the long-term discounting holds throughout, the carbon price takes a

value of 151.8 EUR/tCO2, and gross savings cover about 30 per cent of income. Thus, the

Markov equilibrium closes considerably the gap between Stern’s and Nordhaus’s carbon

prices, without having unrealistic by-products for the macroeconomy.39

38Using the terminology of Barro (1999): Nordhaus is observationally equivalent to our β, δ -

equilibrium when the Pigouvian rule is imposed on the equilibrium. That is, the equilibrium outcome

is the one that a fictitious planner would choose, assuming that the planner uses the equilibrium utility

discount factor γ. We come back to this issue in Section 3.6.
39The deviation between the Markov (thus Nordhaus) and Stern savings can be made extreme by

sufficiently increasing the capital share of the output that gives the upper bound for the fraction of yt

saved; close to all income is saved under Stern preferences as this share approaches unity (Weitzman,

2007). However, with reasonable parameters such extreme savings do not occur, as in Table 3.
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The empirical evidence is not helpful in gauging the size of intangible damages (pa-

rameter ∆u) associated with a given temperature rise, but using the model structure we

can transform the intangible damages into consumption losses and illustrate the damage

sensitivity of carbon prices. Note that if output loss caused by damages is x per cent,

then the equivalent consumption loss is x/(1 − g) per cent. Above, we had ∆y = .003

that implied x = 2.7 per cent output loss when temperature rises to 3 Kelvin; setting the

intangible damage parameter at ∆u = .004 gives the same loss but now working through

the utility only.

Consider then three potential damage scenarios expressed in terms of the percentage

output loss, x = {1.3, 2.7, 10}. That is, in all cases both tangible and intangible losses

can contribute to the total loss. For example, in the high-damage case, x = 10, setting

∆y = .0056 and ∆u = .0074 gives a total loss that is equivalent to 10 per cent output loss.

Table 4 shows that the Markov equilibrium tax for low damages are between the median

and high damage tax of Nordhaus (i.e, Pigouvian). The results unambiguously show

that both the damage estimates and the time preference structure are equally important

determinants of carbon prices.

Carbon Prices low damages median damages high damages

“Nordhaus” 4.0 8.4 30.9

Markov equilibrium 14.2 29.5 109.4

“Stern” 73.1 151.8 562.1

Table 4: Carbon prices [Euro/tonCO2] dependence on structure of time preferences and

damage estimates

3.6 Welfare

We have seen that the Pigouvian rule implies efficiency, but not Pareto optimality. We

still need to assess whether welfare increases or decreases when Pigouvian carbon prices

are implemented. To study this, and to identify policies that improve welfare, we consider

how future policies affect current welfare. Note that from the perspective of the current

generation, future savings and emission levels are optimal if they are consistent with the

long-term time preference δ, that is, if g = αδ and hγ=δ where hγ is defined in Lemma

7; then future agents would behave as if they were consistent with present long-term

preferences. This thought-experiment gives a clear benchmark against which we can test
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how various policy proposals affect current welfare through future policies.

Lemma 9 For β 6= 1 and τ > t,

∂wt

∂gτ
> 0 iff gτ < αδ

∂wt

∂hτ
> 0 iff hτ < hδ.

Since the equilibrium policies depart from those optimal for the long-run preference

δ, any policy that manages to take the decision variables closer to the long-run optimal

levels increases current welfare. It turns out that imposing the stand-alone Pigouvian

tax principle implies a correction in the wrong direction.

Proposition 7 For slow climate change, implementing Pigouvian carbon prices from

period t onwards implies a welfare loss for generation t vis-a-vis the Markov equilibrium.

Proof. By Lemma 4, the change to the Pigouvian carbon price does not affect policy

g; thus, we can focus on the change in current welfare wt due to the effect of future

carbon prices. Let β < 1 so that βδ < γ < δ, and let climate change be a slow process

such that τ δt > ft,z > τγt ; see Proposition 4. Imposing the Pigouvian carbon price will

then decrease the future carbon price, taking it further away from τ δt , decreasing current

welfare as shown in Lemma 9. The same mechanism applies for β > 1, when we have

τ δt < ft,z < τ γt . Add the finding that imposing Pigouvian carbon prices on current

policies must reduce welfare compared to the unrestricted Markov policy, and it follows

that present welfare decreases through both channels.

The remarkable feature of the above proposition is that a Pigouvian carbon price

policy strictly decreases welfare, not as a second-order effect, but as a first-order effect;

this extends the three-period result of Proposition 3 to infinite horizon. However, Lemma

9 suggests that we can achieve more in the infinite horizon setting. We can look for

welfare-improvements through self-enforcing policy rules; that is, there is surplus to be

created by increasing the policy choices (g, h) for all generations while maintaining their

incentive constraints, coming from the threat to switch back to the Markov equilibrium

where no rules regarding future behavior apply. Consider a policy pair (ĝ, ĥ) that the

current generation would like to propose for all generations, including itself. For clarity,

consider the quasi-hyberbolic case β < 1 for the rest of this section. Note from Lemma 9

that generation t would like to propose for all future generations the decision rules gPO =

δα and hPO = hδ; these policies would implement efficiency and Pareto optimality, as
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the resulting carbon price is Pigouvian, and the utility discount factor satisfies Lemma 8.

But, achieving such a future policy requires that these policies are followed also at t, which

is ruled out by the current incentive constraints: consumption and carbon pricing given

by (gPO, hPO) does not maximize wt. But, also from Lemma 9, the current generation is

willing to give up part of its consumption, by increasing g and h, beyond their Markov

equilibrium level, anticipating that all subsequent decision-makers will follow suit when

facing the same decision. The best self-enforcing policy pair supported by the Markov

equilibrium is between the Pareto Optimal and the Markov policy:

Proposition 8 For β < 1, there exist a policy pair gPO > ĝ > g∗ and hPO > ĥ >

h∗, such that this policy rule maximizes welfare of the first generation, and no future

generation can benefit from switching back to the Markov equilibrium, also when applied

for each policy rule separately.

We have seen that the Markov equilibrium allows us to disconnect utility discounting

and carbon pricing. Proposition 8 implies that we can tighten the carbon policy (ĥ > h∗)

while keeping savings at the Markov level (ĝ = g∗). The proposition justifies, from the

welfare point of view, carbon prices that are not only higher than the Pigou tax but

also higher than the Markov price, even if for institutional reasons, one cannot adjust

the savings. Recall that the discussion following Stern (2006) on the appropriate level of

the carbon price is centered around the choice of the social discount factor. To justify

the Stern’s level for carbon prices, one may invoke ethical arguments or fundamental

uncertainties (Weitzman, 2007). Our argument is completely different. When the short

and long-term time-preferences differ, the self-enforcing policies can support carbon prices

above Markov levels, closing the gap between the Stern and Nordhaus estimates even

further. In our quantitative analysis below, we illustrate that the quantitative magnitude

of such a policy is significant.40

40The model can also justify Stern through high equilibrium utility discount factors: self-enforcing

policies that target both savings and emissions imply simultaneously higher equilibrium discount factors,

ĝ/α > g∗/α, and lower emissions, ĥ > h∗. Obviously, this maximizes the welfare potential of the policies

considered, but can lead to savings rates close to α, which we calibrated in our numerical model below

to 0.306. Such savings may be hard to justify, in particular if the capital share α is large, which is the

common critique on Stern. We concur with the practical relevance of this criticism, but note that the

endogenous link between equilibrium discounting and welfare shows that the Stern proposal is intelligible

as an equilibrium outcome. We come back to the numbers in the quantitative analysis.
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4 Quantitative analysis

While we can obtain the current climate policies for the current state of the economy, the

evaluation of future policies depends on how we expect that technologies in the economy

will develop. Thus, to obtain the future climate-economy adjustment paths we need to

further specify technologies, and make additional quantitative choices. In particular, we

need a detailed structure for the energy sector.

4.1 Production and energy

Consider a production function as in (33) but further specified to

yt = kαt [At(ly,t, et)]
1−αω(st)

At(ly,t, et) = min {Ay,tly,t, Ae,tet}

where the overall labor-energy composite At(ly,t, et) takes a CES form with extremely

low elasticity of subsitution between labor in the final-good sector ly,t and energy et, i.e.,

we take it as Leontief. Productivities Ay,t and Ae,t are calibrated and thus exogenous.

The Leontief assumption avoids unrealistically deep immediate cuts of emissions; see also

Hassler, Krusell and Olovsson (2011).41 Energy et also uses labor: the core allocation

problem on which we add detail here is how to allocate a given total labor lt at time

t between final output ly,t, fossil-fuel energy, lf,t, and non-carbon energy, ln,t. Thus

the energy and climate policy steers the labor allocation (ly,t, lf,t, ln,t)t≥0 and thereby

the quantities of fossil-fuel, ef,t, and non-carbon energy, en,t. Both energy sources are

intermediates, summing up to the total energy input:

et = ef,t + en,t.

We assume that ef,t can be produced with constant-returns to scale technology using

labor lf,t and the fossil-fuel zt,

ef,t = min{Af,tlf,t, Btzt},

where Af,t and Bt describe productivities. The fuel resource is not a fixed factor and

commands no resource rent; by this assumption, our focus is on the “coal phase”, as

coined by Golosov et al. (2011), where the fuel resource relevant for long-term climate

41We have the quantitative analysis also for a Cobb-Douglas form for At(ly,t, et). These results are

available on request. See also the next footnote.
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policies is in principle unlimited. In contrast, the non-fossil fuel energy production is

land-intensive and subject to diminishing returns and land rents (Fischer and Newell,

2008):

en,t =
ϕ+ 1

ϕ
(An,tln,t)

ϕ

ϕ+1 ,

where ϕ > 0 describes the elasticity of supply from this sector, given the labor cost. To

find the competitive equilibrium, we first find the policies (g, h) as outlined in the sec-

tions above. Subsequently we determine the labour allocation (ly,t, lf,t, ln,t), per period.
42

We provide the equilibrium conditions for the labor-market allocation in the Appendix

“Equilibrium labor market allocation”. We also include the Appendix “Calibration”,

separately for climate and economic parameters.43

Our calibration, detailed in the Appendix, progresses as follows. When there is

no carbon policy, h = 0, the labor market allocation can be solved in closed form;

thus, we can invert the model to map from quantities (l, y, ef , en)t≥0 to productivities

(Ay, Ae, Af , An)t≥0.
44 We match the business-as-usual (BAU) quantities (y, ef , en)t≥0

with the A1F1 SRES scenario from the IPCC (2000). Population follows a logistic growth

curve based on World Bank forecasts. Population in 2010 is set at 6.9 [billion], while

the maximum population growth rate is chosen such that in 2010 the effective popula-

tion growth rate per decade equals 0.12 [/decade]. The maximum expected population

(reached at about 2200) is set at 11 [billion]. We calibrate to 25 per cent gross savings

in all scenarios. Under consistent preferences with 2 per cent annual pure time discount,

the capital share, under 25 per cent savings, becomes α = g/ρ = .306. For the Markov

equilibrium, we take βδ = .7724 and δ = .9511, corresponding to 2.55 and .5 per cent

annual discounting, respectively. Thus, the scenarios correspond to the Markov carbon

price at 29.5 for year 2010 in Tables that we have presented in Section 3.5. These choices

preserve g = .25. From the BAU calibration we proceed to policy experiments: Markov,

Pigouvian, and more advanced policies. We turn next to these results.

42The climate policy is essentially a labor market policy. The low elasticity between the final-good and

energy in At(ly,t, et), combined with the decreasing returns to scale for non-fossil fuel energy, prevents

unrealistic short-term reallocations of labor following emissions penalties. Note that, in principle, the

Leontief does not rule out growth in the long run: the economy can be scaled up without limits with

labor, if h = 0. Thus, it is the land-intensive carbon-free production that prevents the scale-up in the

presence of carbon policies.
43The supplementary material, available online, contains a file that pulls together all parameters, as

well as a program files that can be used for replicating the results.
44We express all energy in carbon units; to obtain this, we set Bt = 1 and employ three distinct energy

productivities (Ae, Af , An).
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4.2 Climate-economy adjustment paths

We use now the full model for four scenarios. The simulations are run through the years

2010-3000; the model is initiated at the period labeled ‘2010’, representing 2006-2015.

We consider the following scenarios. First, in the business as usual (BAU) scenario,

we assume no climate policy and set h = 0, while savings g are at the Markov equilibrium

level. Second, in the Markov equilibrium generations choose their equilibrium savings

and climate policies at each income level as we have described in our theory (Section

3.3). Third, in the Pigouvian equilibrium, we impose the Pigouvian tax as detailed in

Section 3.4. For interpretation, it is useful to notice that because, under our assumptions,

savings and carbon policies are separable, moving between scenarios one to three does not

change the savings rate; only the carbon policy is affected. Moreover, as we calibrate the

model to match savings under consistent preferences with 2 per cent annual discounting,

the Pigouvian outcome is observationally equivalent to the Nordhaus DICE 2007 cost-

benefit scenario. Finally, we consider an “Advanced policy” scenario where the carbon

prices are chosen to maximize each generation’s welfare in a self-enforcing manner: as

in Proposition 8 we find the highest carbon tax, characterized by constant ĥ, such that

each generation has incentives to follow this policy rather than switching the continuation

path to the Markov equilibrium. We consider the advanced policy only for the carbon

tax and not for the savings.45

Figure 2 shows the carbon prices for the three policy scenarios. The Pigouvian tax

rule has the lowest carbon prices, from 8.3 EUR/tCO2 in 2010, increasing with output

to 43 EUR/tCO2 in 2100.46 The Markov equilibrium implements a considerably higher

carbon price, rising from 29.4 to 106 EUR/tCO2 during the same time period. Finally,

the advanced policy further increases the carbon price to 34 EUR/tCO2 in 2010, arriving

at 106 EUR/tCO2 in 2100. Between the scenarios, welfare is, of course, the lowest for

all generations in the BAU scenario and increases as we move to the Pigouvian scenario,

and then to the Markov equilibrium, and, finally, the highest welfare is reached by all

generations in the Advanced Policy scenario.

***Figure 2 here: Carbon prices over 2010-2100***

Figure 3 shows the emissions associated with these scenarios.47 The key take-away

45There are two reasons for this focus. First, describing the self-enforcing policies in the two dimensions

is computationally challenging. Second, such policies imply high savings and thus violate our basic

premise that the shorter-term decisions should be consistent with actual historical behavior.
46Multiply the values by factor 4.7 to arrive at the USD/tC values.
47We calculate carbon prices for 2010, but assume that they will affect emissions from the second
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from this figure is that Pigouvian taxes cannot prevent emissions from increasing sub-

stantially beyond current levels, for the full two coming centuries. In contrast, the carbon

prices in the Markov equilibrium trigger a complete transition towards carbon-free energy

sources by the end of 2100, and the Advanced Policy has the most drastic implications

for energy supply and use. The increasing sequence of carbon prices translates into lower

cumulative emissions over the period 2006-2105. They range from 6600 GtCO2 in BAU,

via 5300 GtCO2 for the Pigouvian scenario, and 1770 GtCO2 for the Markov scenario,

to 1410 GtCO2 for the Advanced Policy scenario. We note that while the Pigou scenario

matches the Nordhaus DICE 2007 emissions well, for the Markov and Advanced scenarios

the model predicts a change in the energy system that is unrealistically fast, given that

the existing capital structure pre-determines energy infrastructure options in the near

future.48

***Figure 3 here: CO2 emissions 2000-2200***

Figure 4 shows the temperature rise associated with these scenarios. Due to the

extreme persistence of climate, we show the temperatures up to the year 3000. There is

large uncertainty about the climate sensitivity parameter π.49 We use the best scientific

estimates for π, implying that taking no policy action can lead to temperatures rising

above 10 Kelvin, changing earth into an environment that hardly resembles anything

humans have encountered in history. Applying the Pigouvian carbon price rule curbs

the temperature rise to a maximum temperature rise of 3.7 K, reached around 2220.

Even after thousand years, global temperatures are hardly below 3K.50 The Markov

equilibrium where emissions over the coming century are cut more than 70 per cent

vis-a-vis the BAU scenario almost keeps the temperature rise below 2 K. Finally the

Advanced Policy scenario keeps the temperature slightly lower, but even in this drastic

scenario, for the coming thousand years, temperatures will remain above levels seen for

the past 400,000 years.

∗ ∗ ∗Figure 4 here: Temperature rise 2000-3000 ∗ ∗∗

Figure 5 shows the effect of the policies on consumption per capita. The Pigouvian

period onwards only, that is, from the period labeled ‘2020’.
48Because of the added complexity, only a few integrated assessment models describe a vintage-based

capital structure (e.g., van der Zwaan et al. 2002).
49See Kelly and Kolstad (1999) for seminal work on modeling the learning of climate sensitivity.
50Such a temperature path could already lead to the collapse of the Greenland ice sheet. See Krieglera

et al. (2009), and Alley et al. (2010) , and the following quote in the latter: “The evidence suggests

nearly total ice-sheet loss may result from warming of [..] perhaps as little as 2◦C or more than 7◦C.”
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carbon prices decrease consumption at about 0.1 percentage, relative to the Business

as Usual for the coming century, and prevents a downturn at the second half of the

millennium when temperature rises would cause severe damage. The Markov policy

decreases consumption at about one percentage in addition to the Pigouvian tax scenario,

for the coming century. In return, consumption increases from 2150 onwards, by up to 3

per cent between 2200 and 2300. The advanced policy takes it one step further, but the

difference with the Markov equilibrium is small.

We emphasize that the results describing BAU and the Pigouvian scenarios are consis-

tent with the experiences from numerous integrated assessment models for the medium-

term future.51 However, not all integrated climate-economy assessment models feature

the same persistence of climate change, implying that the far-distant impacts are rela-

tively pronounced in our model. This seems justified because the main consequences of

climate policies of the 21st century will be felt beyond 2200, and because our parameters

are based on rigorous scientific insights.52

∗ ∗ ∗Figure 5 here: Consumption per capita 2000-3000 ∗ ∗∗

5 Discussion

In an editorial comment Nordhaus (1997) discusses a benchmark climate change policy,

comparable to our Pigouvian tax rule, and its various alternatives giving more weight

to the concerns for climate change. The first alternative applies a lower than market

discount rate uniformly to both capital and climate investments. The second alternative

uses differential discounting: a market discount rate is used for capital, while a lower

discount rate is used for climate investments; the approach is based on Hasselmann et

al. (1997). The third approach sets a longer-term climate target, based on the variables

believed to matter most for ultimate climate change damages. The target could be a limit

on the global temperature rise by the year 2500. The fourth approach sets intermediate

climate change targets, e.g., for emissions or atmospheric CO2 concentrations. In his

assessment of the Pigouvian tax rule and the alternative policies, Nordhaus finds that

the Pigouvian tax rule outperforms all alternatives. That is, all alternatives result in

51Running the baseline DICE 2007 using our .02 discount rate throughout, leads to a climate-economy

outcome that is very close our Pigouvian scenario during the coming two centuries, not only with respect

to the initial tax but also to the time paths described in this section.
52It is not possible to calculate the same scenarios in other integrated assessment models, as they are

not well suited to the analysis of Markov type of equilibria.
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strict welfare losses compared to the Pigouvian approach. The long-term climate target

has the lowest welfare losses given the gains from climate stabilization; using intermediate

climate variables as targets comes next; differential discounting comes third; and using

lower discount rates for both capital and climate change policy is the worst policy.

While our results are certainly supportive of setting a price on emissions, our as-

sessment of the policies is markedly different. Our Proposition 8 establishes that when

intergenerational preferences are not time-consistent, the welfare potential is maximized

by self-enforcing commitment to a lower than shorter-term market discount rates for both

capital investments and climate change policy. If self-enforcing policies are deemed un-

realistic, the Markov equilibrium is a simple alternative. In contrast with the Pigouvian

approach, it sets differential discount rates for climate and private capital; the Markov

policies perform hugely better than the Pigouvian policies applying a uniform (market-

return) discounting for all assets.53

To illustrate the gains from differential discounting (in the Markov equilibrium) when

compared to the uniform discounting at the level of capital returns (in the Pigouvian

equilibrium), we construct a “wrinkle experiment”, following Norhaus (2007). In his

criticism on Stern, Nordhaus (2007) proposes the following thought experiment. Consider

a project that can yield a small but perpetual gain in a distant future, such as 0.1 per

cent gain in income 200 years from now onwards. How much the current decision-maker

is willing to give up to achieve such a future gain? If we discount future gains at 0.1 per

cent per year, the net present value of the project amounts to 80 per cent of one year of

income (Nordhaus 2007). We certainly do not want to give up so much for such a small

future gain, even if perpetual. Our wrinkle experiment compares the Pigou policy with

the Markov equilibrium scenario: viewing such a comparison as a project, it brings the

peak global average warming from 3.7 K to about 2 K, and a large part of this gap (1.3K)

is almost perpetual. The question we must ask is whether the current generation is willing

to give up 1-2 per cent of its income to implement that project. Under our parameter

choices, the answer is affirmative to this project decision. The associated “consumption

wrinkle” is depicted in Figure 6. A subsequent project, in the same Figure, compares

the Advanced Policy with the Markov scenario, which would shave off another 0.1K from

global warming, from 2200 onwards, perpetually. The costs of this challenging policy

53The climate target policies suffer from another type of problem: they are infeasible, as envisioned

by Nordhaus, without a supporting intertemporal global commitment device. The target is arbitrary,

and once we realize that, why would the next generation set the same target as the current generation?

But the moment you can change the target over time, the concept becomes internally inconsistent.
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would be an additional 0.1 per cent of our income for the coming century.54 Under our

parameter choices, the answer is again affirmative to this far-reaching project as well.

The parameters may err on both sides. We may have considered too low discount rates

for the long-term structure of time preferences. On the other hand, we may underestimate

the damages of climate change severely; a constant damage parameter ∆y over centuries

is a strong assumption. Despite the scope for errors, the conclusions from our wrinkle

experiment seem robust: the experiment favors the stricter climate policies under the

Markov equilibrium over the Pigouvian carbon price with a large margin.

∗ ∗ ∗Figure 6 here: Changes in consumption between scenarios 2000-3000 ∗ ∗∗

The most important consequences of climate change might not be related to the

loss of income as measured through industrial activities and services (market impacts

influencing prices), but future generations may measure their loss in terms of non-market

impacts including losses of large ecosystems such as rain-forests and coral reefs that

can collapse when they can not adapt quickly enough to the rapidly changing global

environment. Though global warming receives most attention, ocean acidification is

increasingly considered a complementary consequence of anthropogenic CO2 emissions,

and a major threat to marine biodiversity (Orr et al. 2005). As market-based effects are

easier to evaluate, the set of available estimates tends to be biased towards such impacts.

Our model shows that, to carry out relevant policy assessments, we are in need of three

sources of information. First, there should be a more structured approach to estimating

climate impacts, including non-market damages. Second, we need to better understand

the carbon-climate cycle. Third, given the assessment of possible consequences, we have

to assess the willingness of people to give up part of their income to prevent part of these

consequences from happening, respecting the willingness to pay as a decision separate

from savings.

6 Concluding remarks

September 2011, the U.S. Environmental Protection Agency (EPA) sponsored a work-

shop to seek advice on how the benefits and costs of regulations should be discounted for

54To calculate the costs of the climate policy on its own merits, we constructed an auxiliary scenario

where we fixed the savings policy to the BAU levels, and determined the optimal carbon tax policy h,

that would be self-enforcing.
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projects with long horizons; that is, for projects that affect future generations. The EPA

invited 12 academic economists to address the following overall question: “What princi-

ples should be used to determine the rates at which to discount the costs and benefits

of regulatory programs when costs and benefits extend over very long horizons?” In the

background document, the EPA prepared the panelists for the question as follows: “So-

cial discounting” in the context of policies with very long time horizons involving multiple

generations, such as those addressing climate change, is complicated by at least three fac-

tors: (1) the “investment horizon” is significantly longer than what is reflected in observed

interest rates that are used to guide private discounting decisions; (2) future generations

without a voice in the current policy process are affected; and (3) compared to shorter

time horizons, intergenerational investments involve greater uncertainty. Understanding

these issues and developing methodologies to address them is of great importance given

the potentially large impact they have on estimates of the total benefits of policies that

impact multiple generations.”

In this paper, we have developed a methodology for addressing the over-arching ques-

tion posed above, and also provided a quantitative evaluation of optimal carbon prices

using the methods developed. The analysis builds on two premises that seem consistent

with practical program evaluation principles: (i) shorter-term decisions should respect

the revealed attitudes towards choices over time; and (ii) the far-distant future should be

treated differently and discounted with a lower rate. The climate-change problem stipu-

lates a general-equilibrium approach where the returns on assets become dependent on

the policies adopted. In this setting, distortions cannot be avoided: even when climate

externalities are internalized, i.e., when policy makers fully take into account the inflicted

impacts on future generations, the consumption trade-offs over time of the future decision

makers are incongruent with those of the current generation. These distortions imply that

the capital returns do not reflect how the future damages from climate impacts should

be discounted; when time discounting declines with time, the current decision makers

value investments in the climate asset more that indicated by the capital returns. As a

result, the current optimal price on carbon emissions exceeds the Pigouvian level. When

welfare is measured such that the original preferences of the generations are respected

(no dictatorial objectives), imposing the Pigouvian rule decreases welfare for all gener-

ations. We have quantitatively demonstrated the significance of the difference between

equilibrium and Pigouvian policies in all quantitate dimensions of the climate problem

using state of the art approaches to the economy as well as to the climate system.
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generational Policies and Its Application to Integrated Assessment Models of Cli-
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Appendix

Lemma 4

The proof is by induction. Assume that (41) and (42) hold for all future periods t+1, t+

2, .... , and that the lemma holds for t+ 2. We can thus construct the value function for

the next period, as

Wt+1(kt+1, st+1) = ut+1 + δWt+2(kt+2, st+2).
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Substitution of the investment decision at time t+ 1, kt+2 = gyt+1 and emissions zt+1 =

z∗t+1 , gives

Wt+1(kt+1, st+1) = [ln(1− gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))]−∆uDt+1

+δÃt+2 + δξ[ln(gt+1) + ln(At+1) + α ln(kt+1) + ln(ω(st+1))] + δΩ(st+2)

Collecting the coefficients that only depend on future policies gτ and zτ for τ > t, and

that do not depend on the next-period state variables kt+1 and st+1, we get the constant

part of Vt+1(kt+1):

Ãt+1 = ln(1− gt+1) + δξ ln(gt+1) + (1 + δξ) ln(At+1)− δζ1zt+1 + δÃt+2. (50)

Collecting the coefficients in front of ln(kt+1) yields the part of Vt+1(kt+1) depending kt+1

with the recursive determination of ξ,

ξ = α(1 + δξ).

so that ξ = α
1−αδ

follows.

Collecting the terms with st+1 yields Ω(st+1) through

Ω(st+1) = ln(ω(st+1))(1 + δξ)−∆uDt+1 + δΩ(st+2).

where zt+1 = z∗t+1 appearing in st+2 = (z1, ...zt, zt+1) is independent of kt+1 and st+1

(by Lemma 6 that holds by the induction hypothesis) so that we only need to consider

the values for z1, ..., zt when evaluating Ω(st+1). The values for ζτ can be calculated by

collecting the terms in which zt+1−τ appear. Recall that ln(ω(st+1)) = −∆yDt+1 so that

ζτ = ((1 + δξ)∆y +∆u)
∑

(i,j)
aibjπεj

(1− ηi)
τ − (1− εj)

τ

εj − ηi
+ δζτ+1

Substitution of the recursive formula, for all subsequent τ , gives

ζτ = (
∆y

1− αδ
+∆u)

∑
(i,j)

∑∞

t=τ
aibjπεjδ

t−τ (1− ηi)
t − (1− εj)

t

εj − ηi

To derive the value of ζ1, we consider

∑∞

t=1
δt−1 (1− ηi)

t − (1− εj)
t

εj − ηi

=

∑∞

t=1[δ(1− ηi)]
t −∑∞

t=1[δ(1− εj)]
t

δ(εj − ηi)

=

δ(1−ηi)
1−δ(1−ηi)

− δ(1−εj)

1−δ(1−εj)

δ(εj − ηi)

=
1

[1− δ(1− ηi)][1− δ(1− εj)]

Finally, we notice that a careful examination shows that the final equation still holds

when ηi = εi, even though we then cannot follow the same derivation. Q.E.D.
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Lemma 6

The first-order conditions for fossil-fuel use zt, and the labor allocations over the final

goods ly,t and the energy sectors le,t give:

u′t
∂yt
∂zt

= βδ
∂Ωt+1

∂st+1

∂st+1

∂zt
⇒ 1

1− g

1

At

∂At

∂et

∂Et

∂zt
= βδζ1 (51)

∂At

∂ly,t
=

∂At

∂et

∂Et

∂le,t
(52)

The second part of the Lemma follows immediately from (51):

∂yt
∂zt

= ft,z = βδζ1(1− g)yt.

The second equation equates the marginal product of labor in the final good sector

with the indirect marginal product of labor in energy production. We have thus four

equations, energy production (34), labour market clearance (35), and the above two first-

order conditions, that jointly determine four variables: zt, ly,t, le,t, et, only dependent on

technology at time t through At(ly,t, et) and Et(zt, le,t). Thus, zt = z∗t can be determined

independent of the state variables kt and st.Q.E.D.

Lemma 7

To determine the Pigouvian tax as the net present value of marginal damages, note that

from the emissions-damage response function we have

dut+τ

dzt
= (

∆y

1− g
+∆u)

dDt+τ

dzt

= (
∆y

1− g
+∆u)

∑
i
aibjπεj

(1− ηi)
τ − (1− εj)

τ

εj − ηi

Furthermore, we note that the marginal rate of substitution for utility, between two

periods, in equilibrium, is γ, so that the net present value of future damages associated

with one extra unit of emissions, in current utility terms, hPig, is given by

hPig =
∑∞

τ=1 γ
τ dut+τ

dzt

= (
∆y

1− g
+∆u)

∑
i

aibjπεj
εj − ηi

∑∞

τ=1 γ
τ (1− ηi)

τ − γτ (1− εj)
τ

= (
∆y

1− g
+∆u)

∑
i
aibjπεjγ

∑∞

τ=0 γ
τ (1− ηi)

τ − γτ (1− εj)
τ

= (
∆y

1− g
+∆u)

∑
i

γπaibjεj
[1− γ(1− ηi)][1− γ(1− εj)]

= hγ
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Q.E.D.

Lemma 8

This proof follows Gerlagh and Liski (2011). Pareto optimal program is a feasible allo-

cation {ct, zt, kt}∞t=1 maximizing objective

W (·) =
∑∞

t=1
αtwt

for some non-negative welfare weights αt having a bounded mass
∑∞

t=1 αt < ∞. The

lemma considers allocations represented through geometric utility weights α′
t = γt−1.

If γ < βδ or γ < δ, it is not possible to construct a sequence of non-negative welfare

weights αt consistent with a Planner maximizing under the sequence of utility weights

α′
t. Suppose the contrary, that welfare weights αt ≥ 0 consistent with α′

t exist. Then,

using the definition of welfare, we see that for some τ > t, the relationship between the

two is α′
1 = α1 and α′

τ = ατ +
∑τ−1

t=1 αtβδ
τ−t. Expanding the latter gives

α′
τ = α1βδ

τ−1 + α2βδ
τ−2 + ...+ ατ−1βδ + ατ . (53)

If γ < δ and α1 > 0, we see that the equation cannot hold with ατ ≥ 0 for sufficiently

large τ : α′
τ − α1βδ

τ−1 < 0 for some finite τ > 0.

If γ < βδ, include only the last two terms on the right in (53) to obtain

α′
τ+1 ≥ βδατ + ατ+1.

Substitute α′
τ+1 = γα′

τ ,

γα′
τ − βδατ ≥ ατ+1.

Since γ < βδ, this cannot hold with ατ+1 ≥ 0 for any τ .

Consider now γ ≥ max{βδ, δ}. We show that now one can construct the non-negative

welfare weights. We construct an algorithm for finding the weights. Let α̃1 = {α1
τ}τ≥1,

α̃2 = {α2
τ}τ≥2, and so on. Define

α1
τ = γτ−1, τ ≥ 1

α2
τ = α1

τ − α1
1δ

τ−t−1, τ ≥ 2

...

αt+1
τ = αt

τ − αt
tδ

τ−t−1, τ ≥ t.

The value of αt
τ measures the weight remaining for generation τ after all altruistic weights

of generations 1 to t− 1 have been subtracted. Note that the equilibrium implies utility
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weights α̃1, and {αt
t}t≥1 is the sequence of welfare weights consistent with α̃1. The main

intermediate result that we need, in order to prove that the sequence of welfare weights

{αt
t}t≥1 is non-negative, is that for all τ ≥ t :

αt
τ+1

αt
τ

> max{βδ, δ}. (54)

By construction, this condition is satisfied for t = 1. It implies that next sequence α̃2,

induced by the algorithm, is non-negative, as

α2
τ = γτ−1 − δτ−t−1 > α1

τ{(max{βδ, δ})τ−1 − βδτ−t} > 0, τ ≥ 2.

By induction, if the condition holds for α̃t, the sequence α̃t+1 is non-negative:

αt+1
τ > αt

τ{(max{βδ, δ})τ−t − βδτ−t} > 0, τ ≥ t.

Thus, we are done if we can show that condition (54) holds. Notice that

αt+1
τ+1 = αt

τ+1 − αt
tβδ

τ−t+1 > max{βδ, δ}αt
τ − αt

tβδ
τ−t+1 ≥ δ{αt

τ − αt
tβδ

τ−t} = δ{αt+1
τ }.

If β < 1, this proves that αt+1
τ+1 > δ{αt+1

τ } > βδ{αt+1
τ }. On the other hand, if β > 1, we

have

αt+1
τ+1 = αt

τ+1 − αt
tβδ

τ−t+1 > max{βδ, δ}αt
τ − αt

tβδ
τ−t+1 ≥ βδ{αt

τ − αt
tβδ

τ−t} = βδ{αt+1
τ },

which completes the proof. Q.E.D.

Lemma 9

Consider a given policy path (gτ , zτ )τ≥t. We then look at variations in policies at time τ ,

consider the effect on welfare at time t. All effects are captured by Wt+1 that we analyze

in Lemma 4. The analysis in the proof of Lemma 4 implies: the value function at time t

is separable in states and the parameters ξ and ζ do not depend on future polices (gτ , zτ ),

but term Ãt does. Technically, we need to show that, for some τ > t,

1. Ãt increases in gτ for gτ < αδ,

2. Ãt decreases in zτ for zτ > zδτ ,

where zδτ is the emission level that is consistent with the policy variable hδ and zτ is

the emission level consistent with some h < hδ. From the proof of Lemma 4, consider
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(50). Term Ãt increases with Ãτ for some τ > t. Moreover, Ãτ is strictly concave in

gτ , and maximal when gτ maximizes ln(1 − gτ ) + δξ ln(gτ ), that is, for gτ = δξ

1+δξ
= αδ.

This proves item 1. Furthermore, notice that Aτ depends on zτ , that Ãτ is strictly

concave in zτ and maximal when zτ maximizes (1 + δξ) ln(Aτ (zτ )) − δζ1zτ , that is, for
d lnAt

Aτdzτ
= δζ1(1 − αδ). This is the value of zτ consistent with hδ. This proves item 2. We

now shown the “if” part of Lemma 9. The “only if” follows from the strict concavity of

Ãτ with respect to (gτ , zτ ). Q.E.D.

Proposition 4

We consider the ratio between the carbon price and the Pigouvian carbon price for very

long climate change delays, ηi = εj = 0, and quasi-hyperbolic preferences, β < 1:

ft,z
τ γt

=
(1− γ)2

(1− δ)2
βδ

γ

=

(
1− βδ

1−αδ+αβδ

)2

(1− δ)2
(1− αδ + αβδ)

=
(1− δ(α+ (1− α)β))2

(1− δ)2(1 + αδ(β − 1))
> 1

The first equality follows from substitution of ηi = εj = 0 in the equation for the

equilibrium carbon price and Pigouvian carbon price. The second equality substitutes

the value for γ. The final inequality follows as for β < 1, we have that α+ (1−α)β < 1,

and thus the numerator exceeds 1− δ, while β < 1 also ensures that the second term in

the denominator falls short of 1. Q.E.D.

Equilibrium labor market allocation in Section 4

This Appendix details the labor market allocation for the functional forms introduced in

Section 4; this allocation is then numerically solved to obtain the overall climate-economy

adjustment path in Section 4.2. As explained in the text, the allocation can be solved

period-by-period taking the (i) productivity parameters, (ii) total labor, (iii) savings g,

and (iv) carbon policies h = βδζ1 as given. Items (i)-(ii) change over time, implying

reallocations of labor. But these reallocations satisfy equations (55)-(58) below. We

drop the time subscript in the variables.
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1. Consumers choose the fraction g of output y that is available for consumption. We

normalize prices for the final good to equalize marginal utility, so that factor prices

can be interpreted as marginal welfare per factor endowment:

p =
1

c
=

1

(1− g)y
.

2. Final-good producers of y take capital k, wages w, and the prices of energy q and

output p as given. Since y = kα[min {Ayly, Aee}]1−αω(s), factor compensation for

labour and energy together receives a share (1− α) of the value of output py:

wly + qe = (1− α)py

where e = ef + en.

3. Fossil-fuel energy production combines labor and fuels, with technology ef,t =

min{Af,tlf,t, Btzt}. Fossil fuel use and labour employed, z, lf ≥ 0, are strictly

positive if q covers the factor payments, including the carbon price βδζ1[
q −

(
w

Af

+
ρζ1
B

)]
× lf ≤ 0.

The zero profit condition for fossil fuel energy allocates the value of fossil fuel energy

to labour and emission permits; using the production identity we can express it in

terms of labour employed.

qef = wlf + ρζ1z = (w +
ρζ1Af

B
)lf

4. Carbon-free energy inverse supply is given by the first-order condition

q = w
∂ln
∂en

=
wt

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 .

The value share of labour employed in the carbon-free energy sector equals ϕ/(1+

ϕ), so that the rent value is expressed in labour employed:

qen = (1 +
1

ϕ
)wln

We obtain four equations in four unknowns ly, lf , ln, w:

Ayly = Ae(Af lf +
ϕ+ 1

ϕ
(Anln)

ϕ

ϕ+1 ) (55)

wl +
ρζ1Af

B
lf +

1

ϕ
wln =

1− α

1− g
(56)

w

Af

+
ρζ1
B

≥ w

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 ⊥ lf ≥ 0 (57)

ly + lf + ln = l (58)
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Equation (55) follows since, for strictly positive input prices, At(·) = min {Ayly, Aee} ⇒
Ayly = Aee. Equation (56) allocates the value of output that is not attributed to capital

(the right-hand side) to the labour, carbon emissions, and land rent for the non-carbon

energy (where we latter two terms are expressed in labour units). Equation (57) compares

the production costs for fossil fuel energy with non-carbon energy, and the last equation

is the labor market clearing equation. Note that the solution depends on the state of the

economy only through total labor l and productivities Ay, Ae, Af , An.

In the absence of a carbon policy, ζ1 = 0, we can solve the allocation in closed-form:

ln,t =
Aϕ

n,t

Aϕ+1
f,t

(59)

wt =
1− α

1− g

ϕ

ϕlt + ln,t
(60)

ly,t =
Ae,t

Ay,t + Ae,tAf,t

[Af,t(lt − ln,t) +
ϕ+ 1

ϕ
(An,tln,t)

ϕ

ϕ+1 ] (61)

lf,t = lt − ly,t − ln,t (62)

Here we include the time subsripts to emphasize the drivers of the solution. This business-

as-usual allocation is used to calibrate the productivities as explained in the text.

Calibration

In this section, we pull together all carbon cycle and economic parameters used in the

quantitative assessment. The online supplementary material contains program files for

replicating the results.

Calibration: Climate parameters

We describe a 3-layer/3-box representation of the global biogeochemical cycles. We

denote the layers by the vector Lt, where L1,t represents the atmosphere plus the upper

ocean layer, L2,t represents the biomass, and the third layer represents the deep ocean.

Below, the layer system is transformed to a system of boxes that we denote by vector St.

We denote the individual layers by j and the boxes by i.

The layers contain physical carbon stocks measured in [T tCO2]. The atmosphere and

upper ocean layer completely mix within the model’s decadal period, but as the CO2

stored in the upper ocean layer does not add to the greenhouse effect, we correct the
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CO2 in the first layer to find the atmoshperic CO2 stock

Atmt =
L1,t

1 + µ
.

where µ is the amount of CO2 stored in the upper ocean layer, relative to the amount

in the atmosphere. In each period, share bj of total emissions zt enters layer j. The

diffusion and between the layers is described through matrix M that has real and distinct

eigenvalues λ1, λ2, λ3. No CO2 leaves the system, so that row elements of M sum to one,

M(1, 1, 1)′ = (1, 1, 1)′, and the elements of b sum to 1. Dynamics satisfy

Lt+1 = MLt + bzt.

Using the eigen decomposition theorem of linear algebra, we can define the linear trans-

formation of co-ordinates Ht = Q−1Lt where Q = [ v1 v2 v3 ] is matrix of eigenvectors

vλ such that

Q−1MQ = Λ = diag[λ1, λ2, λ3].

We obtain

Ht+1 = Q−1Lt+1 = Q−1MQHt +Q−1bzt

= ΛHt +Q−1bzt,

which enables us to write the (uncoupled) dynamics per box i of the vector Ht as

Hi,t+1 = λiHi,t + cizt

where λi are the eigenvalues and we defined the vector c = Q−1b. Then, we can solve for

the development of the atmospheric CO2 as

Atmt =

∑
i q1,iHi,t

1 + µ

where q1,i corresponds to the first row of Q. Redefine Si,t =
q1,i
1+µ

Hi,t, a =
q1,i
1+µ

Q−1b, and

ηi = 1− λi, to obtain

Si,t+1 = (1− ηi)Si,t + aizt

Atmt =
∑

i Si,t

Notice that we know one eigenvalue λ = 1, from which it follows that we have one box i

with no depreciation, ηi = 0. If the model is run in almost continuous time, that is, with

short periods so that most of the emissions enter the atmosphere, b1 = 1, it follows that
∑

i ai = 1/(1 + µ). Otherwise, we have
∑

i ai < 1/(1 + µ).
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We take data from Houghton (2003) and Boden et al. (2011) for carbon emissions

in 1751–2008. We calibrate the layer model parameters M, b, µ, to minimize the error

between the atmospheric concentration prediction from the 3-layer model and the Mauna

Loa observations, while maintaining CO2 stocks in the various layers and flows between

the layers consistent with scientific evidence as reported in Fig 7.3 from the IPCC fourth

assessment report from Working Group I (Solomon et. al. 2007). There are 4 parameters

we calibrate:55 (1) the CO2 absorption capacity of the “atmosphere plus upper ocean”,

(2) the CO2 absorption capacity of the biomass layer relative to the atmosphere, while we

fix the relative size of the deep ocean layer at 4 times the atmophere, based on the IPCC

special report on CCS, Fig 6.3 (Caldeira and Akai, 2005). We furthermore calibrate (3)

the speed of CO2 exchange between the atmosphere and biomass and (4) between the

atmosphere and the deep ocean. Subsequently, we transform this annual 3-layer model

into a decadal layer model adjusting the exchange rates within a period between the

layers and the shares of emissions that enter the layers within the period of emissions.

Then, we transform the decadal 3-layer model into the decadal 3-box model, as described

above. The transformed box model has no clear physical meaning other than this: box 0

measures the amount of atmospheric carbon that never depreciates; box 1 contains the

atmospheric carbon with a depreciation of about 7 per cent in a decade; while carbon in

box 2 depreciates 50 per cent per decade.56 About 20 per cent of emissions enter either

the upper ocean layer, biomass, or the deep ocean within the period of emissions. In the

reduced-form model, they do not enter the atmospheric carbon stock, so that the shares

ai sum to 0.8. Our procedure provides an explicit mapping between the physical carbon

cycle and the reduced-form model for atmospheric carbon with varying deprecation rates;

the Excel file available as supplementary material contains these steps and allows easy

experimentation with the model parameters. The resulting boxes, their emission shares,

and depreciation factors are:

St=2005 = (.304, .250, .256)

a = (.163, .184, .449)

η = (0, .074, .470).

55We set b = (1, 0, 0) for a short period. The matrix M has 9 elements. The condition that the rows

sum to one removes 3 parameters. We assume no diffusion between the biosphere and the deep ocean,

removing 2 other parameters. We fix the steady state share of the deep ocean at 4 times the atmospheric

share. This leaves us with 3 elements of M to be calibrated, plus µ.
56As explained above, the decay rates in the final reduced-form model come from the eigenvalues of

the original model.
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These coefficients are used to calculate the stock dynamics as given by (38) when

the path of future emissions is given by the economy model. To transform stocks into

damages as given by (39), we assume a 1-box damage model and choose the parameters

as follows:

b = 1, ε = .183, π = 4.23

We thus have one box (b = 1). We inteprete Dt in (39) as the Global Mean Temperature

(GMT ) squared (GMTt =
√
Dt); ε = .183 in the decadal model implies a temperature

adjustment speed of 2 per cent per year. Choice π = 4.23 [K2/GtCO2] implies a climate

sensitivity of 3 Kelvin per 2.129 T tCO2. These choices are within the ranges of scientific

evidence (Solomon et al. 2007).

We seek to calibrate the damage parameters to match the case presented in Nordhaus

(2007) as a bencchmark. Assuming damages equivalent to 2.7 per cent of output at a

temperature rise of 3 Kelvin, as in Nordhaus (2001), we obtain ∆y = 0.003; we set

∆u = 0, unless otherwise stated.

Calibration: Economic parameters

In Section 4 (see also Appendix on the labor allocation solution) we explained the

business-as-usual calibration, that is, the mapping from quantities path (l, y, ef , en)t≥0 to

productivities (Ay, Ae, Af , An)t≥0. Thus, we need to make choices that drive the quanti-

ties (l, y, ef , en)t≥0. Population is assumed to follow a logistic growth curve:

lt+1 = [1 + γL(1−
lt
lmax

)]lt

with parameters given by the World Bank forecasts. Population in 2010 (L) is set at

6.9 [billion], while the maximum population growth rate γL is chosen such that in 2010

the effective population growth rate per decade equals 0.12 [/decade]. The maximum

expected population (reached at about 2200) is set at 11 [billion].

Consider then the determinants of initial output yt=2010. We take Gross Global Prod-

uct as 600 Trillion Euro [Teuro] for the first decade, 2006-2015 (World Bank, using PPP).

Fossil-fuel energy input ef , measured in CO2, is .318 [T tCO2] for 2006-2015 (SRES IPCC

2000); we set en at 10 per cent of ef . These are the raw quantities entering production

function at t = 2010; now, we use the model structure to calibrate the remaining vari-

ables at t = 2010. There is only one energy sector parameter to be set: the elasticity of

carbon-free supply; see Section 4. We set this parameter to ϕ = 2.
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We calibrate the preference parameters to yield 25 per cent savings (g = .25), which

together with u(c) = ln(c) and yt=2010 = 600, gives the price of output as p = 1/((1 −
g)600). The relative price of energy is taken to be q/p = 50 [euro/tCO2]. In Appendix

for the labor allocation, we derived the labor allocation as a function of productivities.

We have now information on the endogenous variables: the energy outputs (en,ef ), total

output y and the energy price q/p, so we can solve both the labor allocation (ly, lf , ln)

and the productivities (Ay, Ae, Af , An) at t = 2010.

To progress to the next decade t = 2020, we take capital k given by savings, keep

the energy price q/p = 50 [euro/tCO2], and match y and (en,ef ) to the A1F1 SRES

scenario from the IPCC (2000). This way the calibration procedure for productivities

can be repeated for all future decades.

Finally, capital elasticity α follows from the assumed time-preference structure β and

δ, and observed historic gross savings g. As a base-case, we consider net savings of 25%

(g = .25), and a 2 per cent annual pure rate of time preference (β = 1,δ = 0.817),

resulting in α = g/ρ = 0.306. For the Markov equilibrium, we take βδ = .7724 and

δ = .9511. These choices preserve g = .25.

Sea level rise in damages

Climate change does not stop at temperature changes. After temperature rises, the sea

level will rise as well, and it may do so more or less proportionally to temperatures

(Jevrejeva et al. 2011). When damages are proportional to output and quadratic in the

level of sea-level rise, we can use SLRt for the damages associated with sea level rise,

and write for the dynamics of damages

SLRt = SLRt−1 + εSLR(πSLRDt − SLRt)

It is a tedious but straightforward matter to derive the resulting dynamics as

SLRt =
∑

i

∑
j

∑
τ
aibjππSLRεjεSLR×

(εj − εSLR)(1− ηi)
τ+1 + (εSLR − ηi)(1− εj)

τ+1 + (ηi − εj)(1− εSLR)
τ+1

(εj − ηi)(εj − εSLR)(εSLR − ηi)
zt−τ

where we forego the terms associated with the initial conditions. Let ∆SLR be the

costs relative to output of 1m sea level rise. After some tedious substitutions, the Markov
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equilibrium carbon price is then calculated as

ρζSLR =
∑

i

∑
j
aibjππSLRεjεSLRρ∆SLR ×

(ε2j − η2i )εSLR + (ε2SLR − ε2j )ηi + (δ2i − ε2SLR)εj

(εj − δi)(εj − εSLR)(εSLR − ηi)(1− θ[1− εSLR])(1− θ[1− εj])(1− θ[1− ηi])

For sea level rise, both the senstivity πSLR and the speed of adjustment εSLR are

both very uncertain, but the estimates for both parameters are strongly and negativel

correlated: a higher sensitivity must be matched with a lower adjustment speed, to match

the historically observed records, εSLRπSLR ∈ [0.02, 0.05] (per decade). Estimates for the

sensitivity range from 0.2 to 5 meter sea level rise per W/m2 forcing increase (Jevrejeva

2011), where typically 1 W/m2 leads to a temperature rise just below 1 Kelvin, so that our

parameters range would be πSLR ∈ [0.2, 4]. A choice of πSLR = 1 [m/K] and εSLR = 0.04

would represent a reasonable assumption. Yet, the resulting carbon prices will not deviate

too much from the carbon prices presented in the main text. The literature does not

provide estimates for damages associated with sea level rise that substantially exceed

those for temperature rise, that is ∆SLRπSLR ≪ ∆y, so that, given the extended lag in

sea level rise, the increase in the level of carbon prices associated will be small in relative

terms.

Comparison of climate response functions

We compare our response function for damages, as percentage of output, resulting from

emissions, with those in Nordhaus (2007) and Golosov et al. (2011). The GAMS source

code for the DICE model provides a large variety of scenarios with different policies

such as temperature stabilization, concentration stabilization, emission stabilization, the

Kyoto protocol, a cost-benefit optimal scenario, and delay scenarios. For each of these

scenarios we calculated the damage response function by simulating an alternative sce-

nario with equal emissions, apart from a the first period when we decreased emissions

by 1GtC. Comparison of the damages, in terms relative of output, then defines the re-

sponse function for that specific scenario. It turns out that the response functions are

very close, and we took the average over all scenarios. To interpret the response func-

tion in Nordhaus (2007), we notice that the average DICE carbon cycle and damage

response can very accurately be described by our reduced form using the parameters

a = (0.575, 0.395, 0.029), η = (0.310, 0.034, 0), which give a perfect fit for the carbon

cycle of DICE2007, and ε = 0.183, π = 4.09 for the temperature delay. That is, the
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carbon-cycle in DICE (Nordhaus 2007) is characterized by a very large long-term up-

take of CO2 in the oceans. The reduced model in Golosov et al. is represented by

a = (0.2, 0.486, 0.314), η = (0, 0.206, 1), which implies a similar carbon cycle model to

ours, but Golosov et al. have no temperature delay structure, ε = 1. Figure 1 presents

the emissions damage responses.
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Figure 1. Emissions‐Response function in 3 models. 
Damages as share of output for a 1 TtCO2 impulse. 

 
 
 

 
Figure 2. Carbon prices in 3 scenarios 

 
 
 

 
Figure 3. CO2 emissions, per year, in 4 scenarios 
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Figure 4. Temperature rise in 4 scenarios 

 
 
 
 

 
Figure 5. Per capita consumption levels in 4 scenarios 

 
 
 
 

 
Figure 6. Change in consumption, Markov vs. Pigou and Advanced vs Markov 
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